当前位置:文档之家› 煤矿排水系统设计

煤矿排水系统设计

煤矿排水系统设计
煤矿排水系统设计

主排水泵选型计算设计

、概述

本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,

副立井、回风立井井口标咼均为+1195n,副立井、回风立井落底标咼均为+220m主斜井与暗主斜井斜交,暗主斜井落底标高为+206m初期大巷最低点标高为+205m

根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于

120nVh,最大涌水量大于600nVh,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按

照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。

二、矿井主排水

(一)设计依据

地质报告提供矿井正常涌水量807nVh,最大涌水量为1234nVh,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h 的排水量,因此在设备选型时按正常涌水量857m3/h ,最大涌水量为1284nVh计算;矿井水处理所需要增加15m扬程。

(二)排水系统方案

根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较:

方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m年排水电

费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。

方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷一主斜井井筒敷设,将矿井

涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井

井口低273m排水设备工况扬程低,水泵级数少,设备投资省,电耗低

经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的方案

二,即主排水泵房设置在初期大巷最低点,井下涌水由主井排出方案。

(三)矿井主排水泵房排水设备

1、设计依据

根据确定的排水系统方案,本矿井主排水泵房设置在+205m水平副立井井底车场附近的初期大巷最低点,排水管路经管子道、沿主斜井井筒敷设至地面。

地质报告提供矿井正常涌水量807nVh,最大涌水量为1234nVh,考虑矿井井下洒水和黄泥灌浆渗水增加水量50m3/h ,因此在设备选型时按正常涌水期排水量857m3/h ,最大涌水期排水量为1284m/h计算;初期大巷最低点标咼+205m主斜井井口标咼+922m 排水垂高715m考虑矿井水处理所需要增加的15m扬程后,排水总垂高为732m排水管路敷设长度约

5800m。

2、排水设备方案

水泵及管路的初选

(1)泵应具有的排水能力:

3

正常涌水量Q i=X 857=1028.4m /h;

3

最大涌水量Q 2=X 1284=1540.8m3/h

排水扬程H= X(717+5)=830.3m

(2)排水设备初选

MDS420-96系列矿用耐磨离心式排水泵,其额定扬程应不小于830.3m。

(3)排水管路初选

D= (4X 420/ XX 3600)1/2 =0.287m 取DN=0.30m 即DN300mm

排水管路选用D325型复合钢管,吸水管路选用D377型复合钢管。

(4)排水系统阻力系数

排水管阻力损失:

式中:

1--速度压头系数,1;

2--直管阻力系数,

3――弯管阻力系数,?;

4――闸阀阻力系数,?;

5――逆止阀阻力系数,5?14;

6――管子焊缝阻力系数,;

匕——弯管数量,个;

加——闸阀数量,个;

n5——逆止阀数量,个;

n6 ――管子焊缝数量,个;――水与管壁的阻力系数;

L d――排水管路总长度,m;

V d ――排水管流速,m/s;

旧管时:

吸水管路及局部水头损失之和H sf :式中:

2――直管阻力系数,

3――弯管阻力系数,?;

4――滤水器阻力系数,2?3;

5—一偏心异径管阻力系数,?;

n3——弯管数量,个;

――水与管壁的阻力系数;

L s ― ―吸水管路总长度,m;

V s ――吸水管流速,m/s;

旧管时:H S f旧1.7H sf 1.7 0.335 0.57m

排水系统阻力系数

则排水系统Q-H特性曲线方程为H=722+x 10-4c f

3、水泵及管路的计算机优化

根据矿井排水系统和参数,经我院通过部级鉴定的《矿井排水设备选型优化设计计算程序》设计计算,选出了适合本矿井主排水泵房的3个排水设备方案,其技术经济参数详见表7-3-1。

从方案表中可以看出,方案三所选排水系统设备,排水能力大,但水泵运行工况效率低,年电耗高,基建投资多,年综合营运费用也较高,故设计不予推荐;方案二所选排水系统设备,虽

然电动机容量较小,但水泵台数多,年电耗较高,基建投资也较多,因水泵运行工况效率低、综合营运费用也较高,设计也不予推荐;方案一所选排水系统设备,基建投资低,水泵运行工况点效率高,年电耗少,年综合运行费用最低。故设计推荐方案一作为本矿井主排水设备方案。

矿井主排水设备选型方案比较表

(1)排水管路壁厚按下式计算:

式中:

S——排水管路管壁计算厚度,cm;

P——管路最大工作压力,设计取为;

D W——管路管材外径,cm

书一一管路焊缝系数,无缝钢管取1;

[a ――管材需用应力,MPa

本公式已计入管材的制造误差及腐蚀附加厚度。

代入各参数后:

则排水管路壁厚选择为21mm

排水管路选用2趟D325X 21型聚乙烯复合钢管(基材为无缝钢管),分段选择壁厚。排水管路由+205m水平主排水泵房一管子道一主斜井井筒敷设至地面。正常涌水期3泵3管运行,最大涌水期4泵4管运行。

(2)选定方案的设备及运行工况

经计算机优化,并结合前期可研设计时专家的评审建议,本矿井主排水系统设备选用MDS420-96<9型矿用耐磨离心式主排水泵7台,每台水泵配套1台YB2系列4极10kV 1600kW 矿用隔爆电动机。正常涌水期3台工作,3台备用,1台检修,最大涌水期4台水泵工作。

鉴于本矿井的涌水水质较差,考虑到延长排水管路的使用寿命,减小管路维护工作

量,主排水管路选用4趟D325矿用聚乙烯复合钢管(基材为无缝钢管),分段选择壁

厚。排水管路经管子道、主斜井井筒敷设至地面。正常涌水期3泵3管运行,最大涌水

期4泵4管运行。

矿井排水设备运行特性曲线详见图7-3-1 o

矿井排水系统布置详见图7-3-2 o

矿井排水设备运行工况详见表7-3-2 o

水泵运行工况点参数表

第12章 给排水

第十二章给水排水 12.1 给水 12.1.1设计范围及建设分期 本设计包括矿井工业场地及阎庄风井场地的给水排水、供水水源及矿井井下消防洒水给水系统、污水处理、井下排水处理等。 选煤厂的日用消防给水及生产用水水源由本设计解决,其内部给水系统由其单项设计解决。 根据矿井分期建设的要求和分期建设内容并结合给排水专业的特点,本设计将工业场地给水排水、南二采区井下消防洒水、奥灰水源及输水管道、井下排水净化站、污水处理站列为一期工程。北一采区井下消防洒水、阎庄风井场地给水排水系统列为二期工程。 12.1.2用水量 矿井一期用水量为14337.05m3/d,二期用水量为14661.75m3/d。 按水源分:一期取用奥灰水1527.05m3/d,二期取用奥灰水1761.51m3/d;利用井下水12810m3/d。 按用户分:工业场地一期用水14337.05m3/d,二期用水14571.51m3/d;阎庄风井场地二期用水90.24m3/d。 矿井用水量详见表12.1-1。 12.1.3水源 本矿井处于较为缺水的晋东南地区,参照1983年以来收集到的矿区水文地质资料,对矿井可用水源分述如下: ⒈地表水 矿井中部有绛河流过,流量0.37~5.06m3/s。矿井西北约50km处有后湾(即Sting)水库,其库容为146Mm3。矿井东南40km处还有漳泽水库,其库容为197Mm3。因受山

表12.1-1 用水量表 2

西省水资源委员会有关规定的限制,本设计不考虑利用上述水源。就潞安矿业集团目前的情况来看,除50年代末投产的五阳矿水源部分利用漳河水外,其余各矿(含常村矿)的永久水源都未采用地表水而是开采深层的奥灰水。 ⒉地下水 本次设计奥灰水源地选择在距矿井工业场地2.3km处自建水源地,输水到矿井工业场地。水源地位于工业场地东边的东洼村西南侧,属中等径流区,岩溶裂隙发育,水位埋深267~700m,属SO4、HCO3—Ca、Mg型水,水质满足生活饮用水卫生标准。阎庄风井场地用水在场地内自建水源井,取用基岩风化裂隙带或第四系潜水。 ⒊井下排水 矿井正常涌水量为533.5m3/h (12810m3/d),最大涌水量为800m3/h (19216m3/d)。 ⒋用水水源选择 根据水源情况以及矿井生产、生活用水的特点,对矿井用水进行统筹安排,采取充分利用井下水、分质供水及废水处理复用等节水措施安排矿井用水。 用水水源分配如下: ⑴矿井工业场地、阎庄风井场地、选煤厂生活消防用水均利用奥灰水供水以确保卫生要求。在距矿井工业场地东边2.3 km的东洼村西南建设东洼水源井,目前已打了2眼水源井,井深1100m,单井出水量50 m3/h 。阎庄风井场地由于用水量很小,其水源井拟采用基岩风化裂隙带或第四系潜水。 ⑵矿井井下消防洒水、选煤厂生产补充水、储煤场防尘洒水、电厂循环冷却补充水、冲洗厕所、浇洒道路、绿化用水均利用处理后的井下排水。 12.1.4给水系统 1.奥灰水源至工业场地、阎庄风井场地给水系统 东洼水源井来水→工业场地日用消防水池 阎庄水源井来水→阎庄风井场地日用水箱、消防水池 2.选煤厂生产补充水系统 沉淀后的井下排水→生产清水池→生产清水泵→选煤厂生产水箱 3.回用水系统

煤矿排水系统设计

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井

矿井主排水系统毕业设计

矿井主排水系统毕业设计 第一章矿井概况 一、矿井简介 该矿井属于某煤田——河流区域,最高海拔+170米左右,平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~15米,坡度2.6%河深1~2米,平均流量0.77米3/秒,最小流量0.23米3/秒,最大流量(暴雨后)0.85米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10~18度,区内断层共11层,其中除F11逆断层外,F1~F10均为正断层,断层落差最大120~150米,最小为0~17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选

性和渗透性由上游逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表0.6米以下,水位1.2米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带 从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量在0.04~0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基附近厚305米,两冀其它部分,平均厚160米,最低处为18.6

矿井排水系统说明

排水系统设计说明 华坪县定华能源有限责任公司瓦房箐煤矿位于兴泉镇新文村瓦房箐,为腊石沟矿区的东部,矿区井田面积1.0542平方公里,煤层赋存于三迭系大箐层,现目前主要开采C1煤层,煤层厚度0.8—0.5m,平均厚度为0.65米,煤层平均倾角11°,结构简单。煤矿始建于1999年,生产能力3.0万吨/年,2007年核定生产能力4.0万吨/年,预计2010年生产原煤4.0万吨/年,矿井开拓方式为斜井开拓。 一、矿井地质: 矿区地层出露自上而下为第四系(Q)、三迭系(T3t)和中泥盆系(D2),地层走向东西,倾向北南,矿区内有一条正断层,褶曲不发育,属单斜构造,构造地质较简单。 二、矿井水文地质条件: (1)矿区地形呈东高西低,中沟较发育,地面坡度较陡,矿山开采范围位于当地侵蚀基准面以上,有利于地表及地下水的自然排泄。 (2)矿区含水岩系沉积碎屑层,形成含水层、隔水层相间交替排列,具有较好的稳定性。 (3)矿井内旱季地下水涌水量小,雨季涌水量稍大,季节性不明显,矿井水文地质简单。 三、矿井涌水量的来源 1、大气降水渗透增加矿井下水量,主要表现在雨季比

旱季的涌水量稍大。随着矿山开发的进度而增加,也随着年度性的变化,大气降水是该矿井涌水来源之一。 2、C 1煤层上部为三叠系大箐层含水层,下部为中泥盆系灰岩含水层。C 1煤层底板距石灰岩60米,对矿井的充水没有影响,C 1煤层上部含水层涌水是矿井的主要涌水来源之二。 3、其它涌水来源:该矿区北部局部老采空区,对现阶段矿井涌水量有一定影响,是矿井涌水来源之三。 4、矿区边缘有新文水库等地表水体,但距矿区范围较远,对矿井的充水没有影响。 四、矿井涌水量 根据云南省地质局第八地质队提供的资料,及矿井实际涌水情况,预计矿井未来最大涌水量为5m 3 /h,最小涌水量0.5m 3/h,正常涌水量1m 3/h,现实际正常涌水量1m 3/h 。 五、矿井排水方式 矿井排水采用机械排水方式一级排水。 六、排水设备的选择 1、水泵工作能力、管路计算及选型依据: 矿井的最大涌水量为5m 3/h ,正常涌水预计1m 3/h ,根据该矿的实际情况,初选水泵; (1)确定工作泵的最小排水能力 Q 最小=620 524=?m 3/h (2)水泵扬程估算

煤矿排水系统设计精编WORD版

煤矿排水系统设计精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较:

方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井井口低273m,排水设备工况扬程低,水泵级数少,设备投资省,电耗低。 经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的方案二,即主排水泵房设置在初期大巷最低点,井下涌水由主井排出方案。 (三)矿井主排水泵房排水设备 1、设计依据 根据确定的排水系统方案,本矿井主排水泵房设置在+205m水平副立井井底车场附近的初期大巷最低点,排水管路经管子道、沿主斜井井筒敷设至地面。 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆渗水增加水量50m3/h,因此在设备选型时按正常涌水期排水量857m3/h,最大涌水期排水量为1284m3/h计算;初期大巷最低点标高+205m,主斜井井口标高+922m,排水垂高715m,考虑矿井水处理所需要增加的15m扬程后,排水总垂高为732m,排水管路敷设长度约5800m。

矿井排水设备选型设计课程设计

龙岩学院资源工程学院 课程设计 题目:矿井排水设备选型设计 姓名:xxx 学号:xxxxx 班级:采矿工程 年级 : 2010级 指导老师 :xxxxx老师 2013-7

矿井排水选型设计 1、设计题目 某矿正常涌水量为210m3/h,最大涌水量为290m3/h,矿水为中性、密度为1050kg/m3,竖井排水,井深200m,试选择水泵型式,确定台数,确定排水系统,选择管径、管材,验算排水时间,判别工作稳定性。 2、矿井排水系统确定 矿井主要根据第一水平情况进行设计,采用集中排水系统,对其它水平只作适当地数目。 矿井排水系统见图3-1。 图3-1 矿井排水系统简图 排水系统:主排水设备设置在第一水平,第二水平的涌水量由辅助排水设备排至上一水平的水仓中。然后由主排水设备排至地面。 3、排水设备选型计算 1水泵型号及台数 ⑴水泵最小排水量的确定 正常涌水量时:

Q B ′= 2420 Q =1.2Q m 3/h 式中: Q B ′——水泵最小排水量,m 3/h ; Q ——矿井正常涌水量,m 3/h ; 由此: Q B ′=1.2×210 =252 m 3/h 最大涌水量时: Q Br ′=2420 r Q =1.2 Q Br ′ m 3/h 式中: Q r ——矿井最大涌水量,m 3/h ; 由此: Q Br ′=1.2×290 =348 m 3/h ⑵水泵扬程的计算 'P X B g H H H η+= 式中: P H ——排水高度,取井筒垂深,m ; X H ——吸水高度,取5m ; g η——管道效果,竖井取0.89-0.9; 所以: '40050.9 B H += =450m ⑶水泵形式及台数的确定 根据水泵扬程和矿井正常涌水量,从产品样本中选择额定值接近所需值的水泵,水泵型号选250D60×7型,额定流量330 m 3/h ,扬程420m ,转速1480rpm ,吸程6.2m ,效率73%,配带电动机型号JKZ -1250型,容量850KW ,外形2620×1200×1210,自重3500kg 。 水泵台数的选择:根据《安全规程》规定:必须由工作、备用和检修的水泵。工作水泵的能力,应能在20h 内排出矿井24h 的正常涌水量。备用水泵的能力应不小于工作水泵能力的70%。工作和备用水泵的总能力,应能在20h 内排出矿井24h 的最大涌水量。

矿井主排水系统设计

矿井主排水系统设计

第一章矿井概况 一、矿井简介 该矿井属于某煤田一一河流区域,最高海拔+170米左右, 平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~ 15米,坡度2.6%河深1~ 2米,平均流量0.77米3/秒,最小流量0.23米3/秒,最大流量(暴雨后)0.85米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10?18度,区内断层共11层,其中除F11逆断层外,F1?F10均为正断层,断层落差最大120?150米,最小为0?17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选性和渗透性由上游

逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表0.6米以下,水位1.2米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带 从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量 在0.04?0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基

矿井排水系统设计技术统一口径

矿井排水系统设计技术统一口径 一、设计原则和依据 1、遵循《煤矿安全规程》、《煤矿井下排水泵站及排水管路设计规》、《煤炭工业矿井设计规》和《煤炭工业小型矿井设计规》以及其它有关规定; 2、选用取得《煤矿矿用产品安全标志证书》的高效节能产品,安全可靠,技术先进,经济合理; 3、采矿专业提供的矿井最大涌水量Q m 和正常涌水量Q z 、矿井水PH 值、敷设排水管路井筒的井口和井底标高H 1、H 2以及井筒坡度、矿井瓦斯等级。 二、排水泵站的能力确定 1、最小排水能力计算 (1)、正常涌水量时工作水泵最小排水能力:Q 1 =24Q z /20=1。2Q z (2)、最大涌水量时工作水泵最小排水能力:Q 2 =24Q m /20=1。2Q m 2、水泵扬程估算 H =K(H p +H x ) 式中, H p 为排水高度, 且H p = H 1- H 2, H x 为吸水高度, 估算一般取H x =5m, K 为管路损失系数,与井筒坡度有关: 立井: K=1.1~1.15, 斜井:当α<20。.时, K=1.3~1.35, α=20.~30。时, K=1.3~1.25, α>30。时, K=1.25~1.2. 3、 确定水泵台数 根据计算的Q 1、Q 2、H,查水泵样本选择水泵,并根据拟选水泵的主要技术参数,初步预计水泵的流量Q b (一般为额定流量),按《煤矿安全规程》第278条相关规定,分别计算出水泵站內工作水泵、备用水泵、检修水泵台数。水泵站內水泵总台数N 按下面两种情况计算。 (1)、正常涌水量时:N= n 1+ n 2+ n 3 式中,工作水泵台数n 1= Q 1/Q b , 且n 1≥1,当n 1不为整数时,其小数应进位到整数。

煤矿排水系统设计

主排水泵选型计算设计 、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m, 副立井、回风立井井口标咼均为+1195n,副立井、回风立井落底标咼均为+220m主斜井与暗主斜井斜交,暗主斜井落底标高为+206m初期大巷最低点标高为+205m 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于 120nVh,最大涌水量大于600nVh,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按 照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807nVh,最大涌水量为1234nVh,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h 的排水量,因此在设备选型时按正常涌水量857m3/h ,最大涌水量为1284nVh计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m年排水电 费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷一主斜井井筒敷设,将矿井 涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井 井口低273m排水设备工况扬程低,水泵级数少,设备投资省,电耗低 经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的方案

矿井主排水系统设计

矿井主排水系统设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第一章矿井概况 一、矿井简介 该矿井属于某煤田——河流区域,最高海拔+170米左右,平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~15米,坡度%河深1~2米,平均流量米3/秒,最小流量米3/秒,最大流量(暴雨后)米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10~18度,区内断层共11层,其中除F11逆断层外,F1~F10均为正断层,断层落差最大120~150米,最小为0~17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选性和渗透性由上游逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表米以下,水位米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带

从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量在~0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基附近厚305米,两冀其它部分,平均厚160米,最低处为米,单位涌水量为升/秒.米,所以视为隔水层。 3、矿床充水 1)地表水对矿床充水,该河由西向东横贯全区,它的注入是矿井充水的主要补给合源。 2)地质构造对矿床充水的影响,主干断层F10伴生几条高度正断层,是沟通第四系含水层的煤系地层,含水层的良好通道,容易对矿井造成突然涌水和增大涌水量。 3)大气降水,大气降水是地下水主要来源,砾砂含水层和玄武岩覆盖层裂隙发育是大气降水渗入补给的良好通道。 4)煤系地层顶部80米以上岩石含水性强,区内百分之百的涌水部位多数岩性是中性粗砂岩,开采时要防止突然涌水。 第二章矿井主排水设备选择计算

主排水系统智能化控制系统

正龙煤业城郊煤矿主排水泵房智能化控制系统 技术协议 甲方:河南省正龙煤业有限公司城郊煤矿 乙方:徐州上若科技有限公司 根据矿井自动化控制系统的发展需要,对城郊煤矿副井底主排水泵房进行智能化控制系统改造,经甲、乙双方充分技术探讨、方案协商,达成如下技术协议: 一、遵守的主要现行标准及规范 《煤矿安全规程》2009版 MT/T 1004-2006 《煤矿安全生产监控系统通用技术条件》 MT/T 1006-2006 《矿用信号转换器》 MT/T 1008-2006 《煤矿安全生产监控系统软件通用技术条件》 MT/T 1002-2006 《煤矿在用主排水系统节能监测方法和判定规则》 MT 381-2007 《煤矿用温度传感器通用技术条件》 AQ 1029-2007 《煤矿安全监控系统及检测仪器使用管理规范》 AQ 1043-2007 《矿用产品安全标志标示》 二、现场设备情况 (1)水泵 MD580-70×8型,10台,流量580m3/h,扬程560m。 (2)电机 Y500-4型,10台,功率1250kW,额定电压6kV,额定电流143.1A,转速1480转/分。 (3)排水阀门 Z941H-64型 DN250 Pg64,手动操作。 (4)排水管路 Φ426×14 3趟。 (5)抽真空方式

射流方式,射流泵DSP-3型,射流阀DN25-64型,吸水阀DN20-64型。 (6)开关柜型号:KYGC-Z型,10台(保护器为DL型) (7)水仓 共3个,通过配水阀与吸水井相通。 三、系统技术要求 1.系统总体要求 城郊煤矿副井底主排水泵房智能化控制系统采用工业以太网、现场总线技术和可编程控制技术,对主排水系统进行在线监测和水泵自动化操作控制,实现水泵的各项运行参数在线实时监测、统计和显示,通过智能专家系统使水泵始终处于高效率的安全运行状态,通过故障参数进行分析、预警,防止事故发生。同时,可根据操作员指令或预定控制程序,自动完成水泵的定时启动、定水位启动、自动切换启动、智能经济运行等操作,自动控制分时运行、削峰填谷,实现水泵的高效经济运行和现场无人值守运行功能。系统既可现场就地操作控制,也可远程操作控制,当控制系统出现故障(即所有水泵均不能自动运行)时,可切换至手动方式(由水泵司机人工操作)启动水泵,确保主排水系统正常启动运行。乙方提供给甲方的矿井主排水智能化控制系统,必须达到以下技术要求和功能: 1、具有优先控制功能:系统根据检测的水泵历史工况数据使流量最大,吨/百米电耗最低的水泵优先启动。 2、正常情况下,根据小井水位(或水仓水位)系统能自动控制水泵启动、停运台数。当水仓水位高于警戒值(还没有达到安全极限值)需要启动两台水泵或两台以上水泵时,系统则应根据历史检测的水泵工况数据,优先依次启动流量大、吨/百米电耗低、压力(扬程)和流量与第一台在用水泵工况相接近的水泵。当水位低于临界水位需要停运一台或二台及以上的正在运行的水泵时,则应根据历史检测数据,优先依次停运流量较小、吨/百米电耗较高、压力(扬程)和流量相对较低的水泵。当水位排至最低水位时,所有水泵应自动停止运行。 非正常排水(排水抗灾或有淹井危险)时,应具有依次启动主排水泵房所有水泵的自动监测监控功能。 3、水位监测监控传感器采用超声波传感器,安装在与水仓相连的吸水小井内,且根据水位监测的实际情况,具有自动控制水泵依次启动运行或依次停运的

煤矿井下排水自动控制系统

煤矿井下排水自动控制系统 设 计 方 案

一、总则 本方案就是针对煤矿井下主排水系统远程数值化集中控制技术要求,并充分考虑其先进性、安全性、可靠性、经济性及安装、使用与维护的方便而设计。 (一)设计依据 (1)设计方案根据使用方提出技术要求作出。 (二)设计原则 (1)控制系统由地面控制中心,监控分站与工业电视监视组成。 (2)解决就地控制存在的事故隐患,减少各设备之间相互脱节、无法充分发挥效率的缺点。实现就地无人操作,仅设巡检人员。 (3)本系统采用分布式控制,结构合理,信息共享,实现提高指挥效率与生产率,达到减人提效的目的。 (4)实现主排水系统中各种保护与水仓水位的控制信号及工业电视监视信号全部由已有矿井千兆以太网为平台进行数据命令传输。 (5)充分满足现场运行与检修要求。 (6)保证整个系统运行可靠、故障率低、维护方便与修改灵活。 (7)系统具有灵活与可靠的控制功能,简单实用,易于掌握,视频效果明显。 (8)系统具有自诊断功能,报警时可以发出声、光报警 (9)系统结构合理,便于系统的扩展。 (10)使用组态软件编程与模拟动态人机界面具有网络中断主排水系统自动停止功能确保设备安全运转。 (三)达到的技术水平与实现的目标 (1)实现就地与分区集中控制、可视化与语音通话三位一体的自动化控制系统体系。 (2)立足于高起点、高技术与高质量,将计算机控制系统与工业电视相

结合,实现以“集中控制为主,现场监控为辅”的控制模式,保证主排水系统系统的连续性与可靠性。 (3)系统技术达到国内领先水平。提高开机率与管理水平,减少操作人员与工人的劳动强度,为今后矿井生产综合自动化打下良好基础。(4)实现调度中心对主排水系统的长距离控制、多点位信息传输与集中监测监控。具有在线监测、分析及完善的保护与报警功能。 (5)实现在控制中心对现场所有控制分站远程编程。 (6)利用各种保护传感器,实现主排水系统及相关设施的集中控制与保护。 (7)通俗易懂的区域传统操作台,现场技术人员可在最短的时间内掌握操作方法。 (8)与工业电视相结合,有机的完成可视化管理的先进理念。 二、系统结构 针对矿现场煤流运输生产系统的特点,按照以“区域集中监控为主,现场多点监测为辅”的原则,提出以下设计方案。 (一)控制设备 根据现场实际分布情况,采用的集控系统结构原理图,如图1所示。利用光纤、电缆组成混合现场总线,实现对现主排水系统及工业电视。 监测监控系统主要由地面监控中心,传输线路,控制分站与水泵电机开关、水位传感器、开停传感器、甲烷传感器、烟雾传感器电压传感器、电流传感器、温度传感器、门禁传感器信号等构成(可根据实际要求扩展)。 (二)控制系统组成 主排水系统地面集中控制系统结构如图2所示。主要由四部分组成:

矿井主排水系统监测装置的研制(正式版)

文件编号:TP-AR-L6044 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 矿井主排水系统监测装 置的研制(正式版)

矿井主排水系统监测装置的研制(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 矿井主排水系统是煤矿大型设备的一个重要组成 部。主排水系统如果不能正常运行,会危及整个矿井 的安全生产,甚至造成重、特大财产损失事故。鸡西 矿业(集团)有限责任公司现有的23个主排水系统 没有高低水位监视报警,水泵吸空报警装置,只靠运 转员巡视。如要在水位非常情况下,吸水管底阀堵 塞,没能及时发现,就会造成淹泵,甚至淹井事故, 集团公司有的矿井以前曾发生过类似事故。鉴于这种 情况,我们研制了主排水泵监测装置。 1 工作原理

监测装置主要是通过水位和吸空两块插件板来实现的。 1.1水仓水位显示及报警工作原理。 如图1所示。在图1中,虚线所圈部分为6段水位板插件电路,其中J1-J6是6段水位动作执行继电器,分别由T1~T12组成的6套(图中只画出3套)两级晶体管放大电路来驱动,这6套放大电路中J1为有水释放型。J2~J6为有水闭合型。 图1 水仓水位显示及报警电路 J1为第一段水位显示继电器,当水位1处有水时,水的电阻值一般在100K~1MΩ之间,流经R2的基极电流为0.02mA左右。三极管T1放大,流经R1的电流为1.5mA,此时T1导通,T2截止,J1处于释放状态,J1的常闭点闭合,LED1发光。当水位1处

矿井主排水系统安全技术规范.doc

矿井主排水系统安全技术规范 一.设计选型、到货验收及保管 ㈠设计选型必须符合国家和行业有关规定及技术政策。选购的设备必须有鉴定证书和生产许可证。 ㈡设计选型后必须由分管领导组织有关部门进行设计审查后,组织实施。 ㈢设备到货后有关部门必须按设备装箱单进行验收。查验设备、辅机、随机配件及技术资料。验收发现缺件、破损、严重锈蚀、资料不全等问题,由采购部门负责解决。 ㈣设备技术资料: 1.使用说明书。 2.产品出厂合格证、煤矿矿用产品安全标志。 3.设备总装图、基础图。 4.易损零部件图。 5.电气控制原理图、安装接线图。 6.控制设备、主电机试验报告。 ㈤查验合格的设备应及时安装调试,投入使用。暂时不使用的设备必须入库妥善保管,定期维护保养,防止日晒、雨淋、锈蚀、损坏和丢失,并做好防火防盗工作,设备严禁拆套使用。 二.设备及管路的安装、验收 ㈠设备及管路安装

1.?设备及管路安装前必须对矿建项目依据设计要求进行严格的验收,水泵、电动机、三阀、底盘的配套尺寸和结构符合设计要求,以保证安装质量。 2.?工程计划开工前,必须制定安全施工技术措施、安装程序和方法,明确工程质量要求。 ⑴施工组织:明确施工项目负责人、技术负责人、质量检查员、安全检查员及之间的责任和关系。 ⑵安装主要依据:由设计部门和厂家提供的设备装配图、安装图、基础图、平面布置图、原理图等图纸。 ⑶质量标准和技术要求:依据《煤矿安装工程质量检验评定标准》?MT5010-95和随机技术文件,编制水泵及管路安装、防腐质量标准和要求。 ⑷设备安装:水泵及管路安装需编制安装程序表及施工方法、安装进度表、安装网络图。 ⑸设备的试验、调试和试运行:根据质量标准和技术要求,编制水泵和电气控制设备的试验调试方法,管路耐压试验方法及系统试运行试验方案。 ㈡安装验收的图纸及资料 1.设备出厂说明书、合格证、装箱单。 2.装配图和易损件图。 3.设计施工图和基础图。 4.安装竣工图和竣工报告。 5.调试记录及试验报告。

矿井排水设计

第一部分 矿井排水设备选型设计 述1概 2设计的原始资料 开拓方式为斜井片盘,其井口标高为+212.7m,开采水平标高为+48m,正常涌水量为9.5m3/h;最大涌水量为19.0m3/h;持续时间60d。矿水PH值为中性,水温为15℃。该矿井属于低瓦斯矿井,年产量为6万吨。 3排水方案的确定 在我国煤矿中,目前通常采用集中排水法。集中排水开拓量小,管路敷设简单,管理费用低,但由于上水平需要流到下水平后再排出,则增加了电耗。当矿井较深时可采用分段排水。 涌水量大和水文地质条件复杂的矿井,若发生突然涌水有可能淹没矿井。因此,当主水泵房设在最终水平时,应设防水门。 在煤矿生产中,单水平开采通常采用集中排水;两个水平同时开采时,应根据矿井的具体情况进行具体分析,综合基建投资、施工、操作和维护管理等因素,经过技术和经济比较后。确定最合理的排水系统。

从给定的条件可知,该矿井只有一个开采水平,故可选用单水平开采方案的直接排水系统,只需要在+19m 标高水泵房设立中央泵房,就可将井底所有矿水集中排至地面。 4水泵的选型与计算 根据《煤矿安全规程》的要求,主要排水设备必须有工作水泵、备用水泵和检修水泵。工作水泵的能力应能在20h 内排除矿井24h 的正常涌水量(包括充填水和其他用水)。备用水泵的能力应不小于工作水泵能力的70%,并且工作水泵和备用水泵的总能力,应能在20h 内排出矿井24h 的最大泳水量。检修水泵的能力应不小于工作水泵能力的25%。水文地质条件复杂的矿井,可根据具体情况在主水泵房内预留安装一定数量水泵的位置,或另增设水泵。 排水管路必须有工作和备用水管。工作水管的能力应能配合工作水泵在20h 内排完24h 的正常涌水量。工作和备用水管的总能力,应能配合工作和备用水泵在20h 内排出矿井24h 的最大涌水量。 4.1水泵必须排水能力计算 正常涌水期 h m q q Q z z B /4.115.92.12.12024 3=?=== 最大涌水期 h m q q Q /8.22192.12.12024 3max max max =?=== 式中 B Q ——工作水泵具备的总排水能力,3/m h ;

矿井主排水系统管理

矿井主排水系统管理 1 设备选型、到货验收及保管 (一)设计选型必须符合国家和行业有关规定及技术政策。选购的设备必须有鉴定证书和生产许可证。 (二)设计选型后必须由分管领导组织有关部门进行设计审查后,组织实施。 (三)设备到货后有关部门必须按设备装箱单进行验收。查验设备、辅机、随机配件及技术资料。验收发现缺件、破损、严重锈蚀、资料不全等问题,由采购部门负责解决。 (四)设备技术资料: 1、使用说明书。 2、产品出厂合格证、煤矿矿用产品安全标志。 3、设备总装图、基础图。 4、易损零部件图。 5、电气控制原理图、安装接线图。 6、控制设备、主电机试验报告。 (五)查验合格的设备应及时安装调试,投入使用。暂时不使用的设备必须入库妥善保管,定期维护保养,防止日晒、雨淋、锈蚀、损坏和丢失,并做好防火防盗工作,设备严禁拆套使用。 2 设备及管路的安装、验收 一、设备及管路安装 1、设备及管路安装前必须对矿建项目依据设计要求进行严格的验收,水泵、电动机、三阀、底盘的配套尺寸和结构符合设计要求,以保证安装质量。 2、工程计划开工前,必须制定安全施工技术措施、安装程序和方法,明确工程质量要求。 (1)施工组织:明确施工项目负责人、技术负责人、质量检查员、安全检查员及之间的责任和关系。 (2)安装主要依据:由设计部门和厂家提供的设备装配图、安装图、基础图、平面布置图、原理图等图纸。

(3)质量标准和技术要求:依据《煤矿安装工程质量检验评定标准》 MT5010-95和随机技术文件,编制水泵及管路安装、防腐质量标准和要求。 (4)设备安装:水泵及管路安装需编制安装程序表及施工方法、安装进度表、安装网络图。 (5)设备的试验、调试和试运行:根据质量标准和技术要求,编制水泵和电气控制设备的试验调试方法,管路耐压试验方法及系统试运行试验方案。 二、安装验收的图纸及资料 1、设备出厂说明书、合格证、装箱单。 2、装配图和易损件图。 3、设计施工图和基础图。 4、安装竣工图和竣工报告。 5、调试记录及试验报告。 6、安装工程质量检验评定表。 (三)竣工验收 1、工程安装完毕后,由施工单位按有关标准进行自检验收,合格后向主管部门提出申请,主管部门组织质监、设计、设备管理、施工和使用单位等,对该工程进行交接验收。 2、检验工程技术档案、竣工图、隐蔽工程记录、调试报告和设备清单等资料。 3、工程安装质量通过查阅资料和抽检,进行安装质量评定,对存在问题提出处理意见,填写工程竣工移交报告、移交验收鉴定书、质量认证意见。 4、组织施工和使用单位编制运行实施计划和操作规程,检查运行情况。 3 4 技术资料管理 健全技术档案,做到一台一档。 一、主排水泵系统资料 1、排水系统图和技术特征卡片(排水系统图:逆止阀位置、闸阀位置、型

井下排水系统毕业设计

摘要 随着计算机控制技术的迅速发展,以微处理器为核心的可编程逻辑控制器(PLC)控制已逐步取代继电器控制,普遍应用于各行各业的自动化控制领域。 本文采用集中控制器对矿井水泵房设备运行实施实时监控,自动、手动控制水泵的启停及闸阀的开、关,并具有自诊断功能,可实现水泵房的无人值守。控制系统通过以太网接入矿井工业以太网,实现水泵监控子系统与全矿井的监控系统信息共享,满足矿井自动化控制的要求。集中控制器采用西门子S7200系列工业级PLC及先进的过程控制软件,综合考虑矿井各种安全信息,实现井下排水监控系统的最优控制策略;井下排水监控系统的报警,信息显示,报表统计处理全部融入整个矿井监控系统的数据系统。从而实现中央水泵房的自动控制功能。 本文重点讨论了中央水泵房的自动控制设计过程、通信、模拟仿真等问题。 关键字:PLC,西门子S7200,MCGS,工业以太网 第二章绪论 井下排水系统是煤矿生产中四大系统之一,担负着井下积水排除的重要任务。然而,目前我国的井下排水系统仍由很多依靠传统的人工操作方式。本章分析这种排水系统的组成及工作过程,指出其存在的问题,为井下主排水系统自动控制的研究提供依据。 2.1排水系统概述 2.1.1矿井生产过程中排水的重要性 在煤矿地下开采的过程中,由于地层中含水的涌出,雨水和江河中水的渗透,水砂充填和水力采煤矿井的井下供水,将要有大量的水昼夜不停地汇集于井下。矿井涌水与采区的水文地质及当地的气象条件有关系,涌水量在不同的季节也呈现不同。在一些大水矿井,矿井涌水量可达到每秒17立方米,甚至超过每秒20立方米。另外,煤炭开采过程中,由于地层结构被破坏,岩层断裂,使采区与储水层连通,发生突水事故,涌水量会突然增加。如果不能及时地将这些积水排送到井上,井下的生产就可能受到阻碍,井下的安全就会得不到保障,严重者会造成重大事故。给人民的生命、国家的财产都带来了极大的威胁。因此,井下排水就显得尤为重要。井下自动排水系统的任务就是把流入井下煤矿巷道中的矿井积水排送至地表。根据统计,每开采1吨煤就要排出2--7吨矿井水,有时甚至要排出30--40吨矿井水。井下排水设备所配备电机的功率,小的几千瓦到几十千瓦,大的几百千瓦到上千千瓦、在我国煤炭行业中,井下排水用电量占原煤生产总耗电量的18%--41%,一般为20%左右。 因此,井下排水设备运转的可靠性(安全运转)与经济性(效率高、电耗量小),具有十分重要的意义。 2.1.2矿井排水系统的组成部分 井下排水系统一般采用离心式水泵,一些小型煤矿或浅水井临时排水系统也采用潜水泵。离心式水泵排水系统主要由离心式水泵、电动机、起动设备、仪表、管路及管路附件等组成。 ①滤水器和底阀 滤水器安装在吸水管的下端,插入吸水井下面,不得低于O.5m 。其作用是防止井底沉积的煤泥和杂物吸入泵内,导致水泵被堵塞或被磨损。在滤水器内装有舌型底阀,其作用

矿井主排水系统安全技术规范(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 矿井主排水系统安全技术规范 (通用版) Safety management is an important part of production management. Safety and production are in the implementation process

矿井主排水系统安全技术规范(通用版) 一.设计选型、到货验收及保管 ㈠设计选型必须符合国家和行业有关规定及技术政策。选购的设备必须有鉴定证书和生产许可证。 ㈡设计选型后必须由分管领导组织有关部门进行设计审查后,组织实施。 ㈢设备到货后有关部门必须按设备装箱单进行验收。查验设备、辅机、随机配件及技术资料。验收发现缺件、破损、严重锈蚀、资料不全等问题,由采购部门负责解决。 ㈣设备技术资料: 1.使用说明书。 2.产品出厂合格证、煤矿矿用产品安全标志。 3.设备总装图、基础图。 4.易损零部件图。

5.电气控制原理图、安装接线图。 6.控制设备、主电机试验报告。 ㈤查验合格的设备应及时安装调试,投入使用。暂时不使用的设备必须入库妥善保管,定期维护保养,防止日晒、雨淋、锈蚀、损坏和丢失,并做好防火防盗工作,设备严禁拆套使用。 二.设备及管路的安装、验收 ㈠设备及管路安装 1.?设备及管路安装前必须对矿建项目依据设计要求进行严格的验收,水泵、电动机、三阀、底盘的配套尺寸和结构符合设计要求,以保证安装质量。 2.?工程计划开工前,必须制定安全施工技术措施、安装程序和方法,明确工程质量要求。 ⑴施工组织:明确施工项目负责人、技术负责人、质量检查员、安全检查员及之间的责任和关系。 ⑵安装主要依据:由设计部门和厂家提供的设备装配图、安装图、基础图、平面布置图、原理图等图纸。

相关主题
文本预览
相关文档 最新文档