当前位置:文档之家› 自平衡小车设计报告

自平衡小车设计报告

自平衡小车设计报告
自平衡小车设计报告

2012年省电子竞赛设计报告

项目名称:自平衡小车

姓名:连文金、林冰财、陈立镔

指导老师:吴进营、苏伟达、李汪彪、何志杰日期:2012年9月7日

摘要:

本组的智能小车底座采用的是网上淘宝的三轮两个电机驱动的底座,主控芯片为STC89C52,由黑白循迹采集模块对车道信息进行采集,将采集的信息传送到主控芯片,再由主控芯片发送相应的指令到电机驱动模块L298N,从而控制电机的运转模式。

关键词:

STC89C52 L298N 色标传感器 E18-F10NK 自动循迹

引言:

近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以STC89C52为控制核心,用色标传感器 E18-F10NK作为检测元件实现小车的自动循迹前行。

一、系统设计

本组智能小车的硬件主要有以STC89C52 作为核心的主控器部分、自动循迹部分、电机驱动部分。

1.1方案论证及选择:

根据设计要求,可以有多种方法来实现小车的功能。我们采用模块化思想,从各个单元电路选择入手进行整体方案的论证、比较与选择。

本方案以STC89C52作为主控芯片,通过按键进行模式的选择切换,按键一选择三轮循迹,按键二进行两轮循迹。

1.1.1模式一(三轮循迹):

模式一(按键一控制):三轮循迹的时候,通过色标传感器和激光传感器进行实时的数据采集,反馈给主控芯片,主控芯片通过驱动L298来控制两路直流减速电机,从而保证路线的准确性。

引导线断开区域:由于小车是逆时针行走,考虑到惯性,五个传感器全部没有检测

到,就直接一定程度上的左转,正好和惯性在一定程度上进行抵消,校正电机两轮电机的线性偏差。直接从D区域走到E区域。

S型曲线:通过安装传感器,实地模拟所有经过的所有情况,来经过“S”型曲线。

加减速区域:经过第一个十字路线,设置标志位flag为1,第二个十字路线,设置标志位为2,第三个十字路线的时候,flag为3,flag为4时清零。

1.1.2模式二(两轮循迹):

模式二(按键二控制):两轮循迹的时候,通过色标传感器、激光传感器进行路况分析,陀螺仪与加速度传感器集成模块通过倾角改变量来进行反馈给小车,保证小车的两轮平衡行驶。

两轮循迹方案(平衡、速度、方向控制)理论分析及计算

当测量倾斜角度的传感器检测到车体产生倾斜时,控制系统根据测得的倾角产生一个相应的力矩,通过控制电机驱动两个车轮朝车身要倒下的方向运动,以保持小车自身的动态平衡。两轮自平衡小车的运动主要由驱动两个轮子转动的电机产生的转动力矩所控制。而我们在控制小车的平衡及运动时, 控制量也是轮子的转动力矩。

1.1.

2.1平衡控制:

平衡控制是通过负反馈来实现的,系统可以类比为一个倒立的单摆模型,因为车模只有两个轮子着地,车体会在轮子滚动的方向上发生倾斜。控制轮子转动,抵消其在这个维度上倾斜的趋势就可以保持车体的平衡了。

对倒立车模进行数学建模,建立速度的比例微分负反馈控制,根据基本控制理论讨论车模通过闭环控制保持稳定的条件。

车模简化为高度为L ,质量为m 的简单倒立摆,它放置在可以左右移动的车轮上。假设外力干扰引起车模产生角加速度)(t x 。沿着垂直于车模地盘方向进行受力分析。

由图推导出车模倾角与车轮运动加速度

)(t a 以及外力干扰加速度)(t x 之间的运动方程

[2]: )(x )](cos[)()](sin[)(22t L t t a t g dt t d L +-=θθθ (1.1.2.1 - 1)

在角度θ很小时,θθ=sin ,1cos =θ , 运动方程简化为:

)()()()(22t Lx t a t g dt t d L +-=θθ (1.1.2.1 - 2)

车模静止时,0)(=t a

)(

)(

)(

2

2

t

Lx

t

g

dt

t

d

L+

θ

(1.1.2.1 - 3)对应车模静止时,系统的输入输出的传递函数为:

L

g

s

X

s

Y

s

H

-

=

=

2

s

1

)

(

)

(

)

(

(1.1.2.1 - 4)此时系统具有两个极点L

g

s

p

±

=

。一个极点位于S平面的右半开面,车模不稳定。

通过对系统的拉氏分析,知当车模静止时,此时系统的一个极点位于S平面的右半平面,车模不稳定[3]。因此引入比例、微分反馈控制(在角度控制中,与角度成比例的控制量称为比例控制,与角速度成比例的控制量称为微分控制,其中角速度是角度的微分)之后的系统如图2-2所示,其中

ω

θ

2

2

1

1

,k

a

k

a=

=

图2-2 加入比例微分反馈控制后的系统框图

系统的传递函数为:

L

g

k

s

L

k

s

s

X

s

Y

s

H

-

+

+

=

=

1

2

2

1

)

(

)

(

)

(

(1.1.2.1 - 5)此时系统的两个极点位于:

L

g

k

L

k

k

s

p2

)

(

4

1

2

2

2

-

-

±

-

=

(1.1.2.1 - 6)系统稳定需要两个极点都位于S平面的左半开平面,要满足这一点,需要0

,

2

1

≥k

g

k

,由此得出结论,当

,

2

1

≥k

g

k

时,直立车模可以稳定。

1.1.

2.2速度控制:

通过MPU-6050模块,测量加速度传感器获得的角度信号,与角速度传感器测得的信号进行对比,对比积分得到的角度与重力加速度得到的角度,使用他们之间的偏差改变陀螺仪的输出,从而使积分的角度逐渐跟踪到加速度传感器测得的角度。这样对于加速度传感器给定的角度,经过比例、微分、积分环节之后产生的角度θ必然等于我们要测量的车模倾斜的角度,通过调节PWM 信号从而达到对小车的直立控制。也就是利用PID 算法计算输出量,根据输出量控制PWM 。

1.1.

2.2.1电机模型化分析和简化:可以将电机转速与施加在其上的电压之间的关系化成一个一阶惯性环节模型。施加在电机上的一个阶跃电压)(t Eu ,电机的速度方程是:

)(}1{)(1t u e Ek t T t

m --=ω (1.2.2 .1- 7) 式中,E 为电压;)(t u 为单位阶跃函数;1T 为时间常数;m k 为电机转速常数。分析该式可知,电机运动分为两个阶段,加速阶段和恒速阶段。其中,在加速阶段,电机带动车模后轮进行加速运行,加速度近似和施加在电机上的电压成正比,加速阶段的时间长度取决于时间常数1T 。在恒速阶段,电机带动车模后轮进行恒速运行,运行速度与施加在电机上的电压成正比。由此计算所得的加速度控制量a 再乘以一个比例系数即为施加在电机上的控制电压,通过调节PWM 信号,这样就可以保证小车的自平衡循迹直立状态。

1.1.

2.3方向控制:

控制两个电机之间的转动差速实现车模转向控制,可直接通过不同电压脉冲信号进行控制。

两轮自平衡小车控制系统的设计

两轮自平衡小车控制系统的设计 摘要:介绍了两轮自平衡小车控制系统的设计与实现,系统以飞思卡尔公司的16位微控制器MC9S12XS128MAL作为核心控制单元,利用加速度传感器MMA7361测量重力加速度的分量,即小车的实时倾角,以及利用陀螺仪ENC-03MB测量小车的实时角速度,并利用光电编码器采集小车的前进速度,实现了小车的平衡和速度控制。在小车可以保持两轮自平衡前提下,采用摄像头CCD-TSL1401作为路径识别传感器,实时采集赛道信息,并通过左右轮差速控制转弯,使小车始终沿着赛道中线运行。实验表明,该控制系统能较好地控制小车平衡快速地跟随跑道运行,具有一定的实用性。 关键词:控制;自平衡;实时性 近年来,随着经济的不断发展和城市人口的日益增长,城市交通阻塞以及耗能、污染问题成为了一个困扰人们的心病。新型交通工具的诞生显得尤为重要,两轮自平衡小车应运而生,其以行走灵活、便利、节能等特点得到了很大的发展。但是,昂贵的成本还是令人望而止步,成为它暂时无法广泛推广的一个重要原因。因此,开展对两轮自平衡车的深入研究,不仅对改善平衡车的性价比有着重要意义,同时也对提高我国在该领域的科研水平、扩展机器人的应用背景等具有重要的理论及现实意义。全国大学生飞思卡尔智能车竞赛与时俱进,第七届电磁组小车首次采用了两轮小车,模拟两轮自平衡电动智能车的运行机理。在此基础上,第八届光电组小车再次采用两轮小车作为控制系统的载体。小车设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械及能源等多个学科的知识。 1 小车控制系统总体方案 小车以16位单片机MC9S12XS128MAL作为中央控制单元,用陀螺仪和加速度传感器分别检测小车的加速度和倾斜角度[1],以线性CCD采集小车行走时的赛道信息,最终通过三者的数据融合,作为直流电机的输入量,从而驱动直流电机的差速运转,实现小车的自动循轨功能。同时,为了更方便、及时地观察小车行走时数据的变化,并且对数据作出正确的处理,本系统调试时需要无线模块和上位机的配合。小车控制系统总体架构。 2 小车控制系统自平衡原理 两轮小车能够实现自平衡功能,并且在受到一定外力的干扰下,仍能保持直立状态,是小车可以沿着赛道自动循线行走的先决条件。为了更好地控制小车的行走方式,得到最优的行走路径,需要对小车分模块分析与控制。 本控制系统维持小车直立和运行的动力都来自小车的两个轮子,轮子转动由两个直流电机驱动。小车作为一个控制对象,它的控制输入量是两个电机的转动速度。小车运动控制可以分解成以下3个基本控制任务。 (1)小车平衡控制:通过控制两个电机正反方向运动保持小车直立平衡状态; (2)小车速度控制:通过调节小车的倾斜角度来实现小车速度控制,本质上是通过控制电机的转速来实现小车速度的控制。 (3)小车方向控制:通过控制两个电机之间的转动差速实现小车转向控制。 2.1 小车平衡控制 要想实现小车的平衡控制,需要采取负反馈控制方式[2]。当小车偏离平衡点时,通过控制电机驱动电机实现加、减速,从而抵消小车倾斜的趋势,便可以保持车体平衡。即当小车有向前倾的趋势时,可以使电机正向加速,给小车一个向前的加速度,在回复力和阻尼力的作用下,小车不至于向前倾倒;当小车有向后倾的趋势时,可以使小车反向加速,给小车一个向后的加速度,从而不会让小车向后倾倒,。

智能婴儿车设计报告样本

智能婴儿车设计报 告

智能制造论文 专业:机械设计制造及其自动化 学号: 学生姓名: 指导老师: 多功能智能婴儿车

一、简介: 本设计是涉及触摸感应和电磁感应的触摸感应式婴儿车智能刹车装置,哭声检测智能摇摆及报警装置,大小便检测报警装置,婴儿车智能追踪定位装置,手动可调摇篮摇摆频率装置。这些智能设计旨在防止婴儿车在有坡度的地方无人推行时发生溜动而造成的安全事故,而且跟踪定位婴儿车的位置,使婴儿车时时刻刻都在身边,哭声检测智能摇摆及报警装置和手动可调摇篮摇摆频率装置是用于减轻婴儿照看者的负担,不用时时刻刻守在婴儿旁边,大小便检测报警装置是为了提醒照看者婴儿是否大小便,方便照看者给婴儿换尿布。 本创造结构简单,安装方便,能实现婴儿车在有人控制时正常行驶,无人控制时停止锁住无法滑动,避免发生事故,而且提醒照看人婴儿车内婴儿的各种信息。 二、技术背景: 照顾孩子的父母或是保姆不可能时时刻刻待在孩子身边,特别是在晚上,而且人们不可能因为孩子其它事什么都不做。基于以上几点我们设计出了智能婴儿车,它能帮助父母花更少的时间更好得照顾好婴儿,使婴儿更加健康茁壮的成长,而且能在照顾好孩子的同时做些家务及一些其它事情。智能婴儿摇篮能够提供给宝宝舒适摇晃,又能够经过自动移动和自动避障及自动追踪,使得妈妈们也可腾出手来处理家务或者休息。从而大大的减轻了

婴幼儿父母的劳动负担。 婴儿车是一种为婴儿户外活动提供便利而设让的工具车,有各种车型,一般0到4岁的孩子用的是婴儿车,是宝宝最喜爱的散步交通工具,更是妈妈带宝宝上街购物出游时的必须品,而当今的婴儿车的刹车装置方面还存在一定的缺陷,使得婴儿车存在一定的安全隐患。 由于婴儿车停放位置不当或婴儿的活动等其它原因,婴儿车可能会发生溜动,从而引发意外事故,而婴儿坐在婴儿车内不具有制止婴儿车运动的能力以致发生碰撞而导致惨剧发生。现已发生多起因为家长的疏忽导致的婴儿车滑动引起的安全事故。因此安全性是购买婴儿车的最重要的指标,如果婴儿车不具备很强的安全性,就极其容易伤害到脆弱的婴儿。因此出于安全因素的考虑,婴儿车应具有自动制动的能力,特别是在无人看管时。 现有的婴儿车安全装置旨在人工制动,需要在停放时人工打开刹车,可是很多家长往往意识不到安全隐患的存在从而忽略这个步骤,导致安全事故的发生,因此现在的婴儿车安全装置并不能解决无人看管时引发的安全隐患。 该创造正是要实现婴儿车智能化,具有很强的可控性,很大程度上减少了安全隐,很大地提高婴儿车的安全性,这个设计的应用范围较广,同样也能够用于残疾人的推车等。该设计轻巧方便,功耗低,成本较低,具有很高的实用性。 三、关键词:

两轮平衡车说明书

双轮自平衡车 学校:德州学院 学生:唐文涛焦方磊李尧 指导老师:孟俊焕 时间:二О一四年7 月10日~10 月 6 日共12 周

中文摘要 两轮自平衡车是动态平衡机器人的一种。2008年我国奥运会的时候安全保卫工作使用过它,到今年两轮平衡车已经发展的相对成熟。在国家节能、降耗、环保、低碳、经济的方针政策下,两轮平衡车进行了资源整合、技术升级,在原来的两轮单轴式自平衡的基础上采取两轴双轮可折叠设计,两轮自平衡车具有运动灵活、智能控制、操作简单、驾驶姿势多样、节省能源、绿色环保、转弯半径为0等优点。适用于在狭小空间内运行,能够在大型购物中心、国际性会议或展览场所、体育场馆、办公大楼、大型公园及广场、生态旅游风景区、大学校园、城市中的生活住宅小区等各种室内或室外场合中作为人们的中、短距离代步工具。也是集娱乐、代步、炫酷为一体的,主打形象是汽车伴侣解决停车后几公里内的代步问题。 两轮自平衡车主要由驱动电机、锂电池组、车轮、车身等组成。其工作原理:车体内置的精密固态陀螺仪来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。 关键词:陀螺仪,动态稳定,折叠,驱动系统,平衡。 English abstract Two rounds of self-balancing vehicle is one of the dynamic balance of the robot. In 2008 the Olympic Games security work used it in our country, in the year to balance two rounds of car has developed relatively mature. In the national energy saving, consumption reduction, environmental protection, low carbon, economic policies and regulations, the two rounds of balance of resource integration, technology upgrades, in the original two rounds of single shaft type taken on the basis of self balancing two shaft double folding design, two rounds of self-balancing vehicle movement, flexible, intelligent control, simple operation and driving posture diversity, save energy, green environmental protection, the advantages of turning radius of 0. Apply to run in narrow space, can in a large shopping center, the international conference and exhibition venues, sports venues, office buildings, large parks and square, ecological tourism scenic spot, the university campus, city life in residential quarters and other indoor or outdoor situations as the medium and short distance transport of people. Is entertainment, walking, cool as a whole, the main image is car partner solve the problem of parking within a few kilometers after walking. Two rounds of self-balancing vehicle is mainly composed of drive motor, lithium battery pack, wheel, body, etc. Its working principle: the body's built-in precision solid-state gyroscope to judge the body's position, through sophisticated and high-speed central microprocessor

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁 桂宾 指导老师: 2014年4月——2010年6月

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理 器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计 摘要 两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定。本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合。系统选用STC 公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态。 整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态。通过蓝牙,还可以控制小车前进,后退,左右转。 关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法 Design of Control System of Two-Wheel Self-Balance Vehicle based on Microcontroller Abstract Two-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometer

智能循光小车毕业设计论文

毕业设计(论文) 智能循光小车设计 教学单位: 专业名称: 学号: 学生姓名: 指导教师: 指导单位: 完成时间:

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日导师签名:日期:年月日

循迹小车课程设计报告

南京工程学院 工程基础实验与训练中心 本科课程设计说明书(论文)题目:自动循迹小车 专业: 班级: 学号: 学生姓名: 指导教师: 起迄日期:2012.6.11~2012.7.6 设计地点:工程中心B208

目录 摘要: (4) Abstract (5) 一、系统方案 (6) 1、课设要求: (6) 1.1、完成基本设计功能: (6) 1.2、发挥部分 (6) 2、总体设计 (6) 3、模块方案比较与论证 (7) 3.1、电源模块: (7) 3.2、电机驱动模块: (7) 3.3、传感器模块: (9) 3.4、显示模块: (10) 3.5、测速模块 (12) 二、循迹小车硬件设计 (13) 1、机械设计 (13) 2、小车各模块分布 (13) 3、小车传感器位置排布 (13) 三、循迹小车软件设计 (14) 1、循迹小车主函数流程图 (14) 2、计算路程模块流程图 (14) 3、循迹模块流程图 (16)

四、程序 (18) 五、开发总结与心得 (18) 1、总体方案论证和确立 (18) 2、各分立模块的制作调试 (18) 3、总车的装配调试 (19) 4、总结与展望 (19) 六、参考文献 (19)

课程设计说明书(论文)中文摘要 摘要: 硬件设计:自动循迹小车控制器采用STC89C52单片机,采用LCD1602液晶显示屏显示当前小车速度和里程等数据;电机正反转采用L298N集成电路模块来驱动,也可以直接采用三极管组成桥式驱动电路来控制。里程检测传感器采用霍尔传感器或光电发射接收对管。跑道标志线采用光电发射接收对管检测并使用软件整形消抖措施,电源采用4节7号充电电池供电(在条件允许情况下单片机与电机可使用独立稳压电源供电)。 软件设计:主程序主要任务一方面扫描光电发射接收对管检测到的信号,然后判断小车转向;另一方面主程序还需要完成速度里程显示任务。采用外部中断0来实现小车速度检测,通过光电接收对管或霍尔传感器检测小车转速,小车每转动一周将会使传感器发出一中断申请信号;采用外部中断1来实现金属块检测,传感器选用接近开关,检测到金属后,接近开关将申请中断。 关键词:单片机液晶显示桥式驱动电路主程序

两轮自平衡小车毕业设计毕业论文

两轮自平衡小车毕业设计毕业论文 目录 1.绪论 (1) 1.1研究背景与意义 (1) 1.2两轮自平衡车的关键技术 (2) 1.2.1系统设计 (2) 1.2.2数学建模 (2) 1.2.3姿态检测系统 (2) 1.2.4控制算法 (3) 1.3本文主要研究目标与容 (3) 1.4论文章节安排 (3) 2.系统原理分析 (5) 2.1控制系统要求分析 (5) 2.2平衡控制原理分析 (5) 2.3自平衡小车数学模型 (6) 2.3.1两轮自平衡小车受力分析 (6) 2.3.2自平衡小车运动微分方程 (9) 2.4 PID控制器设计 (10) 2.4.1 PID控制器原理 (10) 2.4.2 PID控制器设计 (11) 2.5姿态检测系统 (12) 2.5.1陀螺仪 (12) 2.5.2加速度计 (13) 2.5.3基于卡尔曼滤波的数据融合 (14) 2.6本章小结 (16) 3.系统硬件电路设计 (17) 3.1 MC9SXS128单片机介绍 (17) 3.2单片机最小系统设计 (19)

3.3 电源管理模块设计 (21) 3.4倾角传感器信号调理电路 (22) 3.4.1加速度计电路设计 (22) 3.4.2陀螺仪放大电路设计 (22) 3.5电机驱动电路设计 (23) 3.5.1驱动芯片介绍 (24) 3.5.2 驱动电路设计 (24) 3.6速度检测模块设计 (25) 3.6.1编码器介绍 (25) 3.6.2 编码器电路设计 (26) 3.7辅助调试电路 (27) 3.8本章小结 (27) 4.系统软件设计 (28) 4.1软件系统总体结构 (28) 4.2单片机初始化软件设计 (28) 4.2.1锁相环初始化 (28) 4.2.2模数转换模块(ATD)初始化 (29) 4.2.3串行通信模块(SCI)初始化设置 (30) 4.2.4测速模块初始化 (31) 4.2.5 PWM模块初始化 (32) 4.3姿态检测系统软件设计 (32) 4.3.1陀螺仪与加速度计输出值转换 (32) 4.3.2卡尔曼滤波器的软件实现 (34) 4.4平衡PID控制软件实现 (35) 4.5两轮自平衡车的运动控制 (37) 4.6本章小结 (39) 5. 系统调试 (40) 5.1系统调试工具 (40) 5.2系统硬件电路调试 (40) 5.3姿态检测系统调试 (41)

智能小车设计报告

智能小车 学校:江汉大学 学院:物信学院 班级、姓名: 10通信曹聪慧 10自二彭洋

摘要: 本系统采用STC89C52作为主控制芯片,采用7805作为稳压芯片,采用L9110芯片作为直流电机驱动,在PWM 控制下,小车自动寻路,快慢速行驶和转向。三者的结合使小车更加智能化,自动化,并用霍尔元件测速,用1602液晶把速度显示出来。电路结构简单,可靠性能高。 关键词:STC89C52单片机、PWM调速、自动循迹,测速

目录 1.系统方案 (4) 1.1 车体设计 (4) 1.2 控制器模块 (4) 1.3电机模块 (4) 1.4电机驱动模块 (5) 1.5测速模块 (5) 1.6电源模块 (5) 1.7最终方案 (6) 2.系统硬件设计 (7) 2.1电源模块的设计 (7) 2.1控制模块的设计 (6) 2.1循迹模块的设计 (6) 2.1电机驱动模块的设计 (7) 2.1测速模块的设计 (7) 3.软件程序的设计 (10) 3.1总体流程图 (10) 3.2软件大体思路 (10) 4.系统功能测试 (9) 4.1 问题分析及解决 (10) 5.总结 (12) (附录)

系统方案 1.1 车体设计 自己制作电动车。一般的说来,自己制作的车体比较粗糙,性能不太稳定。但只要对车体仔细制作,通过优良的控制算法,也能实现控制小车前进转弯的功能。 1.2 控制器模块 采用STC公司的STC89C52单片机作为主控制器。STC89C52是一个低功耗,高性能的51内核的CMOS 8位单片机,片内含8k空间的可反复擦些1000次的Flash只读存储器,具有256 bytes的随机存取数据存储器(RAM),32个IO口,2个16位可编程定时计数器。且该系列的51单片机可以不用烧写器而直接用串口或并口就可以向单片机中下载程序。我们自己制作51最小系统板,体积很小,下载程序方便,放在车上不会占用太多的空间。 1.3电机模块 方案一:采用步进电机实现物体的精确定位和方向控制。步进电机可以作为一种控制用的特种电机,可以精确地控制角度和距离。缺点是相对体积较大,力矩比较小,容易失步,而且价格比较昂贵。 方案二:采用普通直流电机。直流电机运转平稳,精度有一定的保证。直流电机控制的精确度虽然没有步进电机那样高,但完全可以满足本题目的要求。通过单片机的PWM输出同样可以控制直流电机的旋转速度,实现电动车的速度控制。并且直流电机相对于步进电机

创新性实验 循迹小车实验报告

时间:周三上午 组号:5 创新性实验报告 题目寻迹小车 学院电子信息学院 专业xxx 班级xxx 学号xxx 学生姓名xxx 指导教师xxx 完成日期2014年5月

目录 1 摘要 (3) 2 引言 (3) 3系统总体设计 (3) 4硬件电路设计 (5) 5 制作与调试 (6) 5.1 硬件电路的布线与焊接 (6) 第一步:电路部分基本焊接 (6) 第二步:机械组装 (6) 第三步:安装光电回路 (7) 5.2 调试 (7) 整车调试: (7) 6 结论及建议 (7) 7 附录 (8)

1 摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进。LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一 个闭环控制,因此能快速灵敏地控制。 关键词:红外反射式传感器,自寻迹小车,闭环控制 2 引言 随着素质教育的越来越被重视,很多学校都把制作智能小车作为首选课题,智能小车生动有趣还牵涉到机械结构、电子基础、传感器原理、自动控制甚至单片机编程等诸多学科知识,学生通过动手实践能大大提高解决实际问题的能力,而且智能小车还是一个很好的硬件平台,只要增加一些控制电路就能完成循迹小车、救火机器人、足球机器人、避障机器人、遥控汽车等课题。 我们制作的是一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。 3 系统总体设计 本系统的整体框图如图1所示。它包括传感器电路、电压比较电路、电 机驱动电路、电源电路。

自平衡小车设计报告

2012年省电子竞赛设计报告 项目名称:自平衡小车 姓名:连文金、林冰财、陈立镔 指导老师:吴进营、苏伟达、李汪彪、何志杰日期:2012年9月7日

摘要: 本组的智能小车底座采用的是网上淘宝的三轮两个电机驱动的底座,主控芯片为STC89C52,由黑白循迹采集模块对车道信息进行采集,将采集的信息传送到主控芯片,再由主控芯片发送相应的指令到电机驱动模块L298N,从而控制电机的运转模式。 关键词: STC89C52 L298N 色标传感器 E18-F10NK 自动循迹 引言: 近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以STC89C52为控制核心,用色标传感器 E18-F10NK作为检测元件实现小车的自动循迹前行。 一、系统设计 本组智能小车的硬件主要有以STC89C52 作为核心的主控器部分、自动循迹部分、电机驱动部分。 1.1方案论证及选择: 根据设计要求,可以有多种方法来实现小车的功能。我们采用模块化思想,从各个单元电路选择入手进行整体方案的论证、比较与选择。 本方案以STC89C52作为主控芯片,通过按键进行模式的选择切换,按键一选择三轮循迹,按键二进行两轮循迹。 1.1.1模式一(三轮循迹): 模式一(按键一控制):三轮循迹的时候,通过色标传感器和激光传感器进行实时的数据采集,反馈给主控芯片,主控芯片通过驱动L298来控制两路直流减速电机,从而保证路线的准确性。

开题报告(智能小车)

CHAHGZH0U 開TfRIE OF ENGINEERWG TECHNOLOGY 毕业设计(论文)开题报告 现状: 智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实 现循迹、避障、检测贴片寻光入库、避崖等基本功能,这几届的电子设计大赛 智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。 我此次的设计主要实现循迹避障这两个功能。 智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶 等功能于一体的综合系统。它具有道路障碍自动识别、自动报警、自动制动、 自动保持安全距离、车速和巡航控制等功能。智能车辆的主要特点是在复杂的 道路情况下,能自动的操纵和驾驶车辆绕开障碍物并沿着预订的道路进行。智 能小车主要运用领域包括军事侦察与环境检测、探测危险与排除险情、安全检 测受损评估、智能家居。 发展趋势: 智能循迹小车可广泛应用于军事侦察、勘探、矿产开采等不便于人员实地 堪察 的环境。稍加改造,可应用于军事反恐、警察维和等领域,从而达到最大 限度的避免人员伤亡,保存战斗实力的目的。因此,具有重要的军事和经济意 义。 随着汽车工业的,其与电子信息产业的融合速度也显着提高,汽车开始向 电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具 有交通、娱乐、办公和通讯等多种功能。智能小车是一个集环境感知、规划决 策,自动行驶等功能与异地的综合系统,它集中的运用了计算机、传感、信息、 通信、导航及自动控制等技术,是典型的高新技术综合体。 、基本信息 学生姓名 倪小玉 班级 电子0911 学号 2009238108 系名称 自动化技术系 专业 应用电子 毕业设计(论文)题目 智能循迹小车的设计 指导教师 李玮 二、开题意义 课题 的现状与 发展趋势

循迹小车制作报告

综合电子设计与实践 课程实验报告 课题名称:循迹小车的制作 班级:XXXXXX 实验者:XXXXXX 实验时间:XXXXX

摘要 本设计主要有三个模块包括信号检测模块、主控模块、电机驱动模块。信号检测模块采用红外光对管,用以对黑线进行检测。主控电路采用宏晶公司的8051核心的STC89C52单片机为控制芯片。电机驱动模块采用意法半导体的L298N专用电机驱动芯片,单片控制与传统分立元件电路相比,使整个系统有很好的稳定性。信号检测模块将采集到的路况信号传入STC89C52单片机,经单片机处理过后对L298N发出指令尽心相应的调整。小车速度由单片机输出的PWM波控制。控制电动小车的速度及转向,从而实现自动循迹的功能。 关键词:智能小车STC89C52单片机L298N 红外光对管 一.绪论 (一)智能小车的作用和意义 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。随着科学技术的发展,机器人的感系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航一种实用有效的方法。机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。避障控制系统是基于自动导引小车(A VG—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。使用传感器感知路线和障碍并作出判断和相应的执行动作。该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、CPU、执行部分。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现 (二)智能小车的现状 现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系

智能循迹小车 设计报告

智能循迹小车设计 专业:自动化 班级: 0804班 姓名: 指导老师: 2010年8月——2010年10月 摘要:

本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

循迹小车课程设计报告

智能循迹小车设计与制作 课程设计报告 系别: 专业: 班级: 成员: 指导老师: 时间:二〇一一年6月30日

一、设计目的: 1、学会智能电子产品的功能设计与任务分析,能进行小型电子产品方案设计; 2、掌握基于51单片机、FPGA模数混合硬件系统设计和程序设计; 3、熟悉电子信息类企业项目完整的运作过程及管理规范,培养团队协作能力、沟通能力、创新能力和组织能力。 二、智能循迹小车任务分析 这是一种基于STC89C51单片机的小车寻迹系统。该系统采用两组高灵敏度的光电对管,对路面黑色(白色)轨迹进行检测,并利用单片机产生PWM波,控制小车速度。测试结果表明,该系统能够平稳跟踪给定的路径。 整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行 三、智能循迹小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。利用了简单、应用比较普遍的检测方法—发光二极管+光敏电阻。 发光二极管+光敏电阻,即利用光线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射白光,当白光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。

四、智能循迹小车总体方案 整个电路系统分为检测、控制、显示、驱动四个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,然后显示小车的运行状态,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 五、智能循迹小车各模块方案 1、循迹模块设计 方案1: 用红外发射管:接收管自己制作光电对管循迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射出的光线则测出黑线继而输出高电平。这样自己制作组装的寻迹传感器基本能够满足要求,但是工作不够稳定,且容易受外界光线的影响,因此我们放弃了这个方案。 方案2: 发光二极管+光敏电阻组成光敏探测器,光敏电阻的阻值可以根跟随周围 环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射

双轮自平衡小车机器人系统设计与制作

燕山大学 课程设计说明书题目:双轮自平衡小车机器人系统设计与制作 学院(系):机械工程学院 年级专业:12级机械电子工程 组号:3 学生: 指导教师:史艳国建涛艳文史小华庆玲 唐艳华富娟晓飞正操胡浩波 日期: 2015.11

燕山大学课程设计(论文)任务书院(系):机械工程学院基层教学单位:机械电子工程系

摘要 两轮自平衡小车是一种非线性、多变量、强耦合、参数不确定的复杂系统,他体积小、结构简单、运动灵活,适合在狭小空间工作,是检验各种控制方法的一个理想装置,受到广大研究人员的重视,成为具有挑战性的课题之一。 两轮自平衡小车系统是一种两轮左右并行布置的系统。像传统的倒立一样,其工作原理是依靠倾角传感器所检测的位姿和状态变化率结合控制算法来维持自身平衡。本设计通过对倒立摆进行动力学建模,类比得到小车平衡的条件。从加速度计和陀螺仪传感器得出的角度。运用卡尔曼滤波优化,补偿陀螺仪的漂移误差和加速度计的动态误差,得到更优的倾角近似值。通过光电编码器分别得到车子的线速度和转向角速度,对速度进行PI控制。根据PID控制调节参数,实现两轮直立行走。通过调节左右两轮的差速实现小车的转向。 制作完成后,小车实现了在无线蓝牙通讯下前进、后退、和左右转向的基本动作。此外小车能在正常条件下达到自主平衡状态。并且在适量干扰下,小车能够自主调整并迅速恢复稳定状态。 关键词:自平衡陀螺仪控制调试

前言 移动机器人是机器人学的一个重要分支,对于移动机器人的研究,包括轮式、腿式、履带式以及水下式机器人等,可以追溯到20世纪60年代。移动机器人得到快速发展有两方面原因:一是其应用围越来越广泛;二是相关领域如计算、传感、控制及执行等技术的快速发展。移动机器人尚有不少技术问题有待解决,因此近几年对移动机器人的研究相当活跃。 近年来,随着移动机器人研究不断深入、应用领域更加广泛,所面临的环境和任务也越来越复杂。机器人经常会遇到一些比较狭窄,而且有很多大转角的工作场合,如何在这样比较复杂的环境中灵活快捷的执行任务,成为人们颇为关心的一个问题。双轮自平衡机器人概念就是在这样的背景下提出来的。两轮自平衡小车是一个高度不稳定两轮机器人,是一种多变量、非线性、强耦合的系统,是检验各种控制方法的典型装置。同时由于它具有体积小、运动灵活、零转弯半径等特点,将会在军用和民用领域有着广泛的应用前景。因为它既有理论研究意义又有实用价值,所以两轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。 本论文主要叙述了基于stm32控制的两轮自平衡小车的设计与实现的整个过程。主要容为两轮自平衡小车的平衡原理,直立控制,速度控制,转向控制及系统定位算法的设计。通过此设计使小车具备一定的自平衡能力、负载承载能力、速度调节能力和无线通讯功能。小车能够自动检测自身机械系统的倾角并完成姿态的调整,并在加载一定重量的重物时能够快速做出调整并保证自身系统的自我平衡。能够以不同运动速度实现双轮车系统的前进、后退、左转与右转等动作,同时也能够实现双轮自平衡车系统的无线远程控制操作

智能小车实训报告

智能小车实训报告 摘要: 本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的: 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N 发出控制命令,控制电机的工作状态以实现对小车姿态的控制。 三.报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术原理的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智

能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。 技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块。 工作原理: 利用红外采集模块中的红外发射接收对管检测路面上的轨迹 将轨迹信息送到单片机 单片机采用模糊推理求出转向的角度,然后去控制 行走部分 最终完成智能小车可以按照路面上的轨迹运行。 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。 其中各个部分的功能如下: 1、时钟电路:给单片机提供一个外接的16MHz的石英晶振。 2、电源电路:给单片机提供5V电源。 3、复位电路:在电压达到正常值时给单片机一个复位信号。

相关主题
文本预览
相关文档 最新文档