当前位置:文档之家› 数据挖掘关联规则分析报告

数据挖掘关联规则分析报告

数据挖掘关联规则分析报告
数据挖掘关联规则分析报告

关联规则分析报告

2009年7月8日

目录

一前言 (1)

二数据预处理 (1)

三前7710条真实数据分析 (2)

1商品按小类分析 (2)

2商品按中类分析 (4)

3商品按大类分析 (4)

4分析比较 (5)

四后44904条随机数据分析 (5)

1商品按小类分析 (5)

2商品按中类分析 (7)

3商品按大类分析 (8)

4分析比较 (8)

五52614条混合数据分析 (8)

1商品按小类分析 (8)

2商品按中类分析 (11)

3商品按大类分析 (11)

4分析比较 (12)

六总结 (12)

一前言

使用关联规则挖掘算法分析购物清单时,会产生不止“啤酒→尿布”的单一关联规则,而将出现涉及多种商品的“纵横交错”的多条关联规则。针对这一实际问题,本文利用学生日常购物记录数据进行关联分析,通过概念分层从不同粒度上分析商品之间的关联性,从而找到商品之间的关联规则,实现优化超市货物摆放次序的目的。

二数据预处理

1)在SQL server 2000 查询分析器里执行下面的SQL语句

declare @sql varchar(8000)

set @sql = 'select zid ,xh'

select @sql = @sql + ' , max(case goodsid when ''' + goodsid + ''' then goodsid end) [' + 'n'+ goodsid + ']'

from (select distinct goodsid from rcxfjl) as a

set @sql = @sql + ' into table_a from rcxfjl group by zid,xh'

exec(@sql)

2)在PB里将有购买记录的列改为”yes”

for i=1 to dw_1.rowcount()

for li_index=1 to long(dw_1.object.datawindow.column.count)

if integer(dw_1.getitemstring(i,dw_1.describe('#' + string(li_index) +

".name")))>0 then

dw_1.setitem(i,dw_1.describe('#' + string(li_index) +

".name"),"yes")

end if

next

next

3)将处理好的数据直接导出到Excel中

4)将Excel表中的空格替换成”?”(在weka中?表示缺省值)

三前7710条真实数据分析

1 商品按小类分析

1.1商品规范化

中类商品再分小类对挖掘没有太大意义,故都将其看作一类;对于学生来说,家庭用品也没有太大意义,将其删除掉。数据预处理过程如下:

统一商品名:

表1 统一商品

表2 删除的商品

Minimum support: 0.04 ,Minimum metric : 0.4,结果如下,

Best rules found:

1. N030010001=yes 127 ==> N020010001=yes 71 conf:(0.56)

2. N010010002=yes 148 ==> N020010001=yes 66 conf:(0.45)

3. N010010001=yes 180 ==> N020010001=yes 79 conf:(0.44)

4. N010010002=yes 148 ==> N010010001=yes 63 conf:(0.43)

5. N040010001=yes 233 ==> N020010001=yes 99 conf:(0.42)

注:N030010001:罐头\八宝粥,020010001:饮料,N010010002:小面包,N010010001:蛋糕,040010001:冲泡包面\粉

从关联结果可知,买罐头\八宝粥又买饮料关联性最强,其次是小面包、蛋糕、冲泡包面\粉。在日常生活购物中,我们买了罐头、面包后再买饮料或牛奶的概率极大,关联结果比较符合事实。

1.2商品筛选

筛选出商品的购买次数>25的商品然后进行关联分析,结果如下

Minimum support: 0.035 ,Minimum metric : 0.3,结果如下,

Best rules found:

1. N010010005=yes 120 ==> N010010001=yes 53 conf:(0.44)

2. N010010005=yes 120 ==> N010010002=yes 53 conf:(0.44)

3. N010010002=yes 148 ==> N010010001=yes 63 conf:(0.43)

4. N010010002=yes 148 ==> N010010005=yes 53 conf:(0.36)

5. N010010001=yes 180 ==> N010010002=yes 63 conf:(0.35)

注:N010010005:绿豆糕,N010010001:蛋糕,N010010002:小面包

从关联结果可知,买绿豆糕又买蛋糕关联性最强,其次是小面包,关联结果也比较符合事实。

2 商品按中类分析

由于总共才有1535个事务,故将算法参数支持度和置信度设置较低,Minimum support: 0.04 ,Minimum metric : 0.2。结果如下,

Best rules found:

1. N01002=yes 136 ==> N01001=yes 77 conf:(0.57)

2. N02002=yes 161 ==> N01001=yes 83 conf:(0.52)

3. N03001=yes 127 ==> N01001=yes 65 conf:(0.51)

4. N02001=yes 226 ==> N01001=yes 104 conf:(0.46)

5. N04001=yes 233 ==> N01001=yes 85 conf:(0.36)

6. N01003=yes 176 ==> N01001=yes 62 conf:(0.35)

7. N02001=yes 226 ==> N04001=yes 67 conf:(0.3)

8. N04001=yes 233 ==> N02001=yes 67 conf:(0.29)

9. N01001=yes 494 ==> N02001=yes 104 conf:(0.21)

从结果可知,买糖果\巧克力又买饼干\糕点的概率最大,乳品饮料与饼干\糕点、罐头\八宝粥与饼干\糕点、碳酸饮料与饼干\糕点概率次之。

3 商品按大类分析

Minimum support: 0.04 ,Minimum metric : 0.4,结果如下,

Best rules found:

1. N02=yes N04=yes 103 ==> N01=yes 69 conf:(0.67)

2. N03=yes N02=yes 93 ==> N01=yes 61 conf:(0.66)

3. N01=yes N04=yes 106 ==> N02=yes 69 conf:(0.65)

4. N03=yes N01=yes 97 ==> N02=yes 61 conf:(0.63)

5. N02=yes 436 ==> N01=yes 238 conf:(0.55)

6. N03=yes 197 ==> N01=yes 97 conf:(0.49)

7. N03=yes 197 ==> N02=yes 93 conf:(0.47)

从结果可知买食品\酒饮类、食品\粮油类与买食品\休闲类关联性最大。

注:N01是“食品\休闲类”,N02是“食品\酒饮类”,N03是“食品\冲调类”,N04是“食品\粮油类”。

4 分析比较

从上面中类和大类分析可知,食品之间的关联性最大,其实这也是显而易见的,顾客买了罐头\八宝粥后会买饼干\糕点等食品,再买饮料的概率也很大,而实际中超市几乎都是这样安排商品的,大多食品都放在一起饮料放在旁边,这样方便顾客购买,增加销售。

四后44904条随机数据分析

1 商品按小类分析

1.1商品规范化

统一商品名:

表3 统一商品

表4 删除的商品

Minimum support: 0.04 ,Minimum metric : 0.3,结果如下,

Best rules found:

1. N030010001=yes 127 ==> N020010001=yes 71 conf:(0.56)

2. N010010002=yes 148 ==> N020010001=yes 66 conf:(0.45)

3. N010010001=yes 180 ==> N020010001=yes 79 conf:(0.44)

4. N010010002=yes 148 ==> N010010001=yes 63 conf:(0.43)

5. N040010001=yes 233 ==> N020010001=yes 99 conf:(0.42)

6. N010010001=yes 180 ==> N010010002=yes 63 conf:(0.35)

注:N030010001:罐头\八宝粥,020010001:饮料,N010010002:小面包,N010010001:蛋糕,040010001:冲泡包面\粉,N010010005

从关联结果可知,买罐头\八宝粥又买饮料关联性最强,其次是小面包与饮料,至于得出这样的结果,原因可能是我选取后面的44904条数据不完全都是随机生成的。

1.2商品筛选

筛选出商品的购买次数>190的商品然后进行关联分析,结果如下

Minimum support: 0.01 ,Minimum metric : 0.1,结果如下,

Best rules found:

1. N040010003=yes 252 ==> N040010002=yes 59 conf:(0.23)

2. N010010002=yes 290 ==> N010010001=yes 65 conf:(0.22)

3. N040010002=yes 282 ==> N040010003=yes 59 conf:(0.21)

4. N010010001=yes 313 ==> N010010002=yes 65 conf:(0.21)

注:N040010003:热干面,N040010002:酱拌面,N010010001:蛋糕,N010010002:小面包

从关联结果可知,买热干面又买酱拌面关联性最强,其次是小面包与蛋糕,但其支持度和置信度均较低。

2 商品按中类分析

Minimum support: 0.15,Minimum metric : 0.5,结果如下

Best rules found:

1. N10003=yes 1335 ==> N08006=yes 793 conf:(0.59)

2. N10006=yes 1260 ==> N08006=yes 744 conf:(0.59)

3. N08005=yes 1159 ==> N08006=yes 680 conf:(0.59)

4. N08003=yes 1163 ==> N08006=yes 682 conf:(0.59)

5. N02001=yes 1186 ==> N08006=yes 693 conf:(0.58)

6. N01002=yes 1281 ==> N08006=yes 747 conf:(0.58)

7. N07001=yes 1207 ==> N08006=yes 701 conf:(0.58)

8. N06002=yes 1288 ==> N08006=yes 747 conf:(0.58)

9. N01001=yes 1383 ==> N08006=yes 787 conf:(0.57)

10. N07002=yes 2172 ==> N08006=yes 1231 conf:(0.57)

11. N01003=yes 2106 ==> N08006=yes 1189 conf:(0.56)

12. N01001=yes 1383 ==> N07002=yes 707 conf:(0.51)

从结果可知,工具(N08006)与其他商品关联性较强,但是仔细分析数据库中的数据会发现中类“工具”下包括的商品种类是最多的,用随机数生成数据时“工具“中类的商品会明显多于其他中类的商品,所以用中类划分随机数进行关联分析不科学。

3 商品按大类分析

Minimum support: 0.5,Minimum metric : 0.8,结果如下

Best rules found:

1. N10=yes 3170 ==> N08=yes 2753 conf:(0.87)

2. N01=yes 3368 ==> N08=yes 2920 conf:(0.87)

3. N07=yes 3244 ==> N08=yes 2811 conf:(0.87)

4. N02=yes 2800 ==> N08=yes 2418 conf:(0.86)

从结果可知,用大类划分随机数进行关联分析也存在上述问题。

4 分析比较

从上面中类和大类分析可知,不管用大类还是用中类划分随机数进行关联分析都会存在划分不平均的问题。而用处理后的小类商品分析得出买热干面又买酱拌面概率最大。

五52614条混合数据分析

1 商品按小类分析

1.1商品规范化

统一商品名:

表5 统一商品

表6 删除的商品

Minimum support: 0.08 ,Minimum metric : 0.5,结果如下,

Best rules found:

1. N070030002=yes 2267 ==> N020010001=yes 1272 conf:(0.56)

2. N100030001=yes 1407 ==> N020010001=yes 789 conf:(0.56)

3. N030020001=yes 1015 ==> N020010001=yes 565 conf:(0.56)

4. N040010001=yes 944 ==> N020010001=yes 522 conf:(0.55)

5. N070030003=yes 906 ==> N020010001=yes 489 conf:(0.54)

6. N030020001=yes 1015 ==> N070030002=yes 509 conf:(0.5)

注:N070030002:头绳,020010001:饮料,N100030001:果冻,N030020001:蜂蜜,040010001:冲泡包面\粉,N070030003:发卡

从关联结果可知,买头绳又买饮料关联性最强,其次是果冻、蜂蜜和冲泡包面\粉,另一个有趣的是发卡果冻关联性较大。

1.2商品筛选

筛选出商品的购买次数>190的商品然后进行关联分析,结果如下

Minimum support: 0.01 ,Minimum metric : 0.2,结果如下,

Best rules found:

1. N040010003=yes 252 ==> N040010002=yes 59 conf:(0.23)

2. N010010002=yes 290 ==> N010010001=yes 65 conf:(0.22)

3. N040010002=yes 282 ==> N040010003=yes 59 conf:(0.21)

4. N010010001=yes 313 ==> N010010002=yes 65 conf:(0.21)

注:N040010003:热干面,N040010002:酱拌面,N010010001:蛋糕,N010010002:小面包

从关联结果可知,买热干面又买酱拌面关联性最强,其次是小面包与蛋糕,但其支持度和置信度均较低。

2 商品按中类分析

Minimum support: 0.1,Minimum metric : 0.5,结果如下

Best rules found:

1. N10006=yes 1299 ==> N08006=yes 755 conf:(0.58)

2. N10003=yes 1407 ==> N08006=yes 815 conf:(0.58)

3. N08005=yes 1196 ==> N08006=yes 691 conf:(0.58)

4. N08003=yes 1223 ==> N08006=yes 703 conf:(0.57)

5. N04003=yes 1070 ==> N08006=yes 608 conf:(0.57)

6. N01003=yes N07002=yes 1072 ==> N08006=yes 593 conf:(0.55)

7. N07002=yes 2267 ==> N08006=yes 1254 conf:(0.55)

8. N01002=yes 1420 ==> N08006=yes 770 conf:(0.54)

9. N01003=yes 2295 ==> N08006=yes 1213 conf:(0.53)

10. N06002=yes 1439 ==> N08006=yes 758 conf:(0.53)

11. N07001=yes 1364 ==> N08006=yes 717 conf:(0.53)

12. N02002=yes 1277 ==> N08006=yes 650 conf:(0.51)

13. N02001=yes 1408 ==> N08006=yes 708 conf:(0.5)

从结果可知,用中类划分数据进行关联分析存在上述问题。

3 商品按大类分析

Minimum support: 0.1,Minimum metric : 0.9,结果如下

Best rules found:

1. N07=yes N01=yes N04=yes N10=yes 800 ==> N08=yes 728 conf:(0.91)

2. N07=yes N04=yes N06=yes 742 ==> N08=yes 673 conf:(0.91)

3. N07=yes N01=yes N04=yes N06=yes 555 ==> N08=yes 501 conf:(0.9)

4. N01=yes N04=yes N10=yes N11=yes 543 ==> N08=yes 490 conf:(0.9)

从结果可知,用大类划分随机数进行关联分析仍存在上述问题。

4分析比较

从上面中类和大类分析可知,不管用大类还是用中类划分随机数进行关联分析都会存在划分不平均的问题。而用处理后的小类商品分析得出买热干面又买酱拌面概率最大。

六总结

本文通过概念分层从不同粒度上分析商品之间的关联性,虽然用大类和用中类划分随机数进行关联分析都会存在划分不平均的问题,但根据处理后的小类分析仍得到了一些有趣的规则,例如热干面与酱拌面的关联性较大,发卡与果冻的关联性也较大。

数据挖掘与分析心得体会

正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。 1、数据挖掘 数据挖掘应当更正确的命名为:“从数据中挖掘知识”,不过后者显得过长了些。而“挖掘”一词确是生动形象的!人们把数据挖掘视为“数据中的知识发现(KDD)”的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤! 由此而产生数据挖掘的定义:从大量数据中挖掘有趣模式和知识的过程!数据源包括数据库、数据仓库、Web、其他信息存储库或动态地流入系统的数据。作为知识发现过程,它通常包括数据清理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。 数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进! 2、数据分析 数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步: 1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。 3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。 数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各

(整理)数据挖掘-关联

数据收集及处理 数据描述: 本文的所采用的数据集来源于网络数据中心数据堂所提供的,来自主要电商平台:京东,淘宝,天猫,亚马逊,一号店的2013年10月20日至2013年10月22日的爽肤水交易信息。数据集主要分为3个部分,第一部分为各平台上爽肤水的交易记录,单日的交易数据包含了19203条交易记录,14个变量,变了包括商品ID,电商名称,日期,商品名称,商品URL,促销价,商品销量销售额,店铺名称,店铺等级,品牌功效,适合皮肤,容量,如图所示为在EXCEL中打开的京东在2013年10月20日的交易数据。第二部分为买家购买后的评价,单日包含925条的评论信息,6个变量,变量包含商品ID,购买时间,评论时间,昵称,评分,评论内容,如图所示就是2013年10月20日京东的评论信息。第三部分为品牌数据集,一共51990条数据,7个变量,包括类目,品牌,电商平台,平均价格,日总销量,对应商品ID。如图所示就是2013年10月20日所有电商平台的评判信息。 本论文所采用的数据全部来自于知名网络数据中心数据堂,具有相当的可信度。经过对数据的观察,为了使得研究过程能够更加方便,我们选择数据较为完整并且有序的自于京东平台的交易信息。由于本文目的是建立如何选择商品的模型,因此不会对结果造成影响。 数据初步处理: 本轮问所有的数据都采用SAS中SQL语言与EXCEL相结合进行

处理。 先对对京东平台上爽肤水的交易记录进行处理。首先应该去掉与本文研究不相关的信息。由于电商名称,日期,店铺名称与本文研究目标不匹配,同时在京东平台上并没有店铺信息,商品名称内容包含于品牌名称等其他变量中。因此我们只选择其中的变量:商品ID,促销价,商品销量销售额,品牌功效,适合皮肤,容量。 将源数据导入SAS之后采用EM模块的InputData节点对销量变量进行描述性统计如图所示: 我们可以发现,其中大多数商品的销售额都为0,是因为这里仅仅采用3天的交易数据,所以大多都没有销量。因为没有销量的商品对本文的并无研究意义,因此我们只研究销售量大于0的商品。 采用SQL语言将3日的交易数据合并,并选取所需变量,并且将相同的商品进行合并。 Proc sql; CREATE table Homework.JD as select * FROM Homework.JINGD1 UNION ALL select * FROM Homework.JINGD2 UNION ALL select * FROM Homework.JINGD3;

关联规则数据挖掘

关联规则数据挖掘 学习报告

目录 引言 2 案例 2 关联规则 3 (一)关联规则定义 (二)相关概念 (三)关联规则分类 数据 6 (一)小型数据 (二)大型数据 应用软件7 (一)WEKA (二)IBM SPSS Modeler 数据挖掘12 总结27

一、引言 数据库与互联网技术在日益发展壮大,人们每天可以获得的信息量呈指数级增长。如何从这浩如瀚海的数据中找出我们需要的数据显得尤为重要。数据挖掘又为资料探勘、数据采矿。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 数据挖掘大致分为以下几类:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。 二、案例 "尿布与啤酒"的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

数据清洗、数据分析、数据挖掘

数据清洗 1.基本概念 数据清洗从名字上也看的出就是把"脏"的"洗掉",指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为"脏数据"。我们要按照一定的规则把"脏数据""洗掉",这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 ?残缺数据 这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。 折叠错误数据

这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL 的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。 折叠重复数据 对于这一类数据--特别是维表中会出现这种情况--将重复数据记录的所有字段导出来,让客户确认并整理。 数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题, 解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结 论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实 用中,数据分析可帮助人们作出判断,以便采取适当行动。 类型 在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的

聚类分析、数据挖掘、关联规则这几个概念的关系

聚类分析和关联规则属于数据挖掘这个大概念中的两类挖掘问题, 聚类分析是无监督的发现数据间的聚簇效应。 关联规则是从统计上发现数据间的潜在联系。 细分就是 聚类分析与关联规则是数据挖掘中的核心技术; 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。 关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

分析报告、统计分析和数据挖掘的区别

分析报告、统计分析和数据挖掘的区别 关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力(insight)”。 举个例子说。 你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。 孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。 你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。 数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。 用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。

数据挖掘关联规则分析报告

关联规则分析报告 2009年7月8日 目录 一前言 (1) 二数据预处理 (1) 三前7710条真实数据分析 (2) 1商品按小类分析 (2) 2商品按中类分析 (4) 3商品按大类分析 (4) 4分析比较 (5) 四后44904条随机数据分析 (5) 1商品按小类分析 (5) 2商品按中类分析 (7) 3商品按大类分析 (8) 4分析比较 (8) 五52614条混合数据分析 (8) 1商品按小类分析 (8) 2商品按中类分析 (11) 3商品按大类分析 (11) 4分析比较 (12) 六总结 (12)

一前言 使用关联规则挖掘算法分析购物清单时,会产生不止“啤酒→尿布”的单一关联规则,而将出现涉及多种商品的“纵横交错”的多条关联规则。针对这一实际问题,本文利用学生日常购物记录数据进行关联分析,通过概念分层从不同粒度上分析商品之间的关联性,从而找到商品之间的关联规则,实现优化超市货物摆放次序的目的。 二数据预处理 1)在SQL server 2000 查询分析器里执行下面的SQL语句 declare @sql varchar(8000) set @sql = 'select zid ,xh' select @sql = @sql + ' , max(case goodsid when ''' + goodsid + ''' then goodsid end) [' + 'n'+ goodsid + ']' from (select distinct goodsid from rcxfjl) as a set @sql = @sql + ' into table_a from rcxfjl group by zid,xh' exec(@sql) 2)在PB里将有购买记录的列改为”yes” for i=1 to dw_1.rowcount() for li_index=1 to long(dw_1.object.datawindow.column.count) if integer(dw_1.getitemstring(i,dw_1.describe('#' + string(li_index) + ".name")))>0 then dw_1.setitem(i,dw_1.describe('#' + string(li_index) + ".name"),"yes") end if next next 3)将处理好的数据直接导出到Excel中 4)将Excel表中的空格替换成”?”(在weka中?表示缺省值)

数据分析与挖掘在金融方面的应用

数据挖掘在操作风险的量化和管理中的应用 根据《新巴塞尔资本协议》()给出的定义,“操作风险是指由于不正确的内部操作流程、人员、系统或外部事件所导致的直接或间接损失的风险。”这一定义侧重于从操作风险的成因包括法律方面的风险,但将策略风险和声誉风险排除在外。随着世界经济和银行业的发展,多种可供分析的操作风险管理方法正在逐渐的形成,商业银行多年来一直试图对它进行一定程度的控制,定性并尝试测量这一风险,作为非金融机构的财务公司也不例外。在量化模型技术的推动下,操作风险量化测评和管理的技术获得了相当大的发展。操作风险管理能通过减少风险、改善服务质量和降低经营成本,从而形成一种竞争优势并在股东价值中得到相应体现。本文拟从数据分析与挖掘角度入手,对财务公司操作风险的量化测评和管理进行初步探讨和简要分析。 一、解决问题的整体思路 财务公司要实现科学且合理的对操作风险进行量化测评与管理,一般要进行以下几个步骤的工作:数据挖掘→数据分析→模型构建→模型检验。其具体思路如下图所示: 图:操作风险量化测评和管理的整体思路

分类梳理,明确其业务流程,找出关键节点,并在关键节点处科学设置风险监测指标,通过对风险监测指标的观测来纵向监控各业务模块的操作风险。需要注意的是,依据对操作风险模型构建的要求,财务公司在设置风险检测指标时,将这些指标划分为操作风险事件发生频率指标(以下简称为“频率指标”)和操作风险事件损失指标(以下简称为“损失指标”)。在完成风险指标设置的工作后,财务公司对上述指标进行横向分类,即按照人员、系统、流程和外部事件所引发的四类风险,将上述风险监测指标分别归类于七种表现形式:内部欺诈,外部欺诈,聘用员工做法和工作场所安全性,客户、产品及业务做法,实物资产损坏,业务中断和系统失灵,交割及流程管理。财务公司通

数据挖掘考试题目——关联分析

数据挖掘考试题目一一关联分析 一、10个选择 1. 以下属于关联分析的是( ) A. CPU 性能预测 B .购物篮分析 C.自动判断鸢尾花类别 D.股票趋势建模 2. 维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强 调了一个观点:大数据时代的到来, 们更应该注重数据中的相关关系, 下哪个算法直接挖掘( ) A. K-means C. 3. 置信度(confidence )是衡量兴趣度度量( A.简洁性 C.实用性 算法的加速过程依赖于以下哪个策略( A 抽样 C.缓冲 使我们无法人为地去发现数据中的奥妙,与此同时,我 而不是因果关系。其中,数据之间的相关关系可以通过以 Bayes Network Ap riori )的指标。 B .确定性 D.新颖性 ) B .剪枝 D.并行 ) B . D. 5.以下哪个会降低 Apriori 算法的挖掘效率( A 支持度阈值增大 C.事务数减少 算法使用到以下哪些东东( ) A.格结构、有向无环图 C.格结构、哈希树 7. 非频繁模式() A 其置信度小于阈值 C.包含负模式和负相关模式 B .项数减少 D.减小硬盘读写速率 B .二叉树、哈希树 D.多叉树、有向无环图 B .令人不感兴趣 D.对异常数据项敏感 8. 对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是( A. 3可以还原出无损的 1 C. 3与2是完全等价的 tree 在Apriori 算法中所起的作用是( A 存储数据 C.加速查找 10.以下不属于数据挖掘软件的是( A. SPSS Modeler C. Apache Spark B . D. ) B . D. )[注:分别以1、2、3代表之] 2可以还原出无损的1 2与1是完全等价的 查找 剪枝 B . D. Weka Knime 二、10个填空 1. 关联分析中表示关联关系的方法主要 有: 2. 关联规则的评价度量主要有: _______ 3. 关联规则挖掘的算法主要有: _______ 4. 购物篮分析中,数据是以 ___________ ____ 禾n _ ____ 禾n _ 的形式呈现。 5.一个项集满足最小支持度,我们称之为 _____________ o 6?—个关联规则同时满足最小支持度和最小置信度,我们称之为

大数据、数据分析和数据挖掘的区别

大数据、数据分析和数据挖掘的区别 大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断。具体分析如下: 1、大数据(big data): 指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产; 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。 2、数据分析:

是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 3、数据挖掘(英语:Data mining): 又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 简而言之: 大数据是范围比较广的数据分析和数据挖掘。 按照数据分析的流程来说,数据挖掘工作较数据分析工作靠前些,二者又有重合的地方,数据挖掘侧重数据的清洗和梳理。 数据分析处于数据处理的末端,是最后阶段。 数据分析和数据挖掘的分界、概念比较模糊,模糊的意思是二者很难区分。 大数据概念更为广泛,是把创新的思维、信息技术、统计学等等技术的综合体,每个人限于学术背景、技术背景,概述的都不一样。

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

数据挖掘考试题目——关联分析

一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

《大数据时代下的数据挖掘》试题和答案及解析

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

数据挖掘中关联规则挖掘的应用研究

数据挖掘中关联规则挖掘的应用研究 吴海玲,王志坚,许峰 河海大学计算机及信息工程学院,江苏南京(210098) 摘 要:本文首先介绍关联规则的基本原理,并简单概括其挖掘任务,然后说明关联规则的经典挖掘算法Apriori 算法,通过一个实例分析进一步明确关联规则在CRM 中的应用,最后展望了关联规则挖掘的研究方向。 关键词:数据挖掘,关联规则,Apriori 算法,CRM 引言 关联规则是表示数据库中一组对象之间的某种关联关系的规则,关联规则挖掘的主要对象是交易(Transaction)数据库。这种数据库的一个主要应用是零售业,比如超级市场的销售管理。条形码技术的发展使得数据的收集变得更容易、更完整,从而可以存储大量的交易资料。关联规则就是辨别这些交易项目之间是否存在某种关系。例如:关联规则可以表示“购买了商品A 和B 的顾客中有80%的人又购买了商品C 和D”。这种关联规则提供的信息可以用作商品目录设计、商场货架的布置、生产安排、具有针对性的市场营销等。 [1] 1 关联规则的基本原理 设I={i 1,i 2,……,i m }是项的集合,设任务相关的数据D 是数据库事务的集合,其中每个事务T 是项的集合,使得T I 。每一个事务有一个标识符,称作T ID 。设X 是一个项集,事务T 包含X 当且仅当X T 。关联规则是形如X Y 的蕴涵式,其中X I ,Y ?I ,并且X ∩Y =?。规则X Y 在事务集D 中成立,具有支持度s ,其中s 是D 中事务包含X ∪Y (即X 和Y 二者)的百分比,它是概率P (X ∪Y )。规则X Y 在事务集中具有可信度c ,如果D 中包含X 的事务同时也包含Y 的百分比c 。这是条件概率P (X Y ∣)。即是 ??????support(X ?Y)= P (X Y ∪) confidence(X ?Y)= P (X Y ∣) 同时满足最小支持度(minsup)和最小可信度阈值(minconf )的规则称作强规则[1]。 项的集合称为项集(itemset )。包含k 个项的项集成为k -项集,例如集合{computer, software }是一个2—项集。项集的出现频率是包含项集的事务数,简称为项集的频率。项集满足最小支持度minsup ,如果项集的出现频率大于或者等于minsup 与D 中事务总数的乘积。如果项集满足最小支持度,则称它为频繁项集(frequent itemset) [2]。 2 关联规则的发现任务 关联规则挖掘的问题就是要找出这样的一些规则,它们的支持度或可信度分别大于指定的最小支持度minsup 和最小可信度minconf 。因此,该问题可以分解成如下两个子问题[3]: 1.产生所有支持度大于或等于指定最小支持度的项集,这些项目集称为频繁项目集(frequent itemsets ),而其他的项目集则成为非频繁项目集(non-frequent itemsets ) 2.由频繁项集产生强关联规则。根据定义,这些规则必须满足最小支持度和最小可信度。 关联规则挖掘的问题的主要特征是数据量巨大,因此算法的效率很关键。目前研究的重点在第一步,即发现频繁项目集,因此第二步相对来说是很容易的。

基于大数据挖掘的虚拟身份关联分析算法模型的制作方法

本技术提供了一种基于大数据挖掘的虚拟身份关联分析算法模型,属于大数据挖掘技术领域。该方法包括获取电子串号信息和物理地址信息;对源数据进行清洗处理、规则过滤;并对处理后的数据进行属性分割、特征提取、指标计算;针对样本类别不平衡问题,调整不同类别训练样本;搭建Logistic Regression算法模型,以计算手机物理地址和电子串号之间关系的匹配度,实现虚拟身份的挖掘分析和关联匹配,本技术可以通过轨迹追查,确定犯罪轨迹,对犯罪嫌疑人实施跟踪和追捕,侦破案件,最终达到对犯罪的有效控制和打击。 技术要求 1.一种基于大数据挖掘的虚拟身份关联分析算法模型,其特征在于,包括以下步骤: S1:电子串号及物理地址数据预处理;分别对无线数据采集终端的电子串号和物理地址 的脏数据进行处理; S2:关联数据筛选及存储;将满足筛选规则的数据存储于数据库中; S3:样本特征构建及提取;对关联数据进行属性分割及结合,构建M个样本特征,并对特征数据进行降维处理,使样本变量维度变为N; S4:类别不平衡问题处理;采用Fisher判别法调整不同类别训练样本; S5:建立及优化电子串号与物理地址关联模型;根据算法建立模型,得出电子串号与物 理地址的匹配度。

2.根据权利要求1所述的基于大数据挖掘的虚拟身份关联分析算法模型,其特征在于,所述步骤S2中筛选规则具体步骤为: S201、将时间差范围内(即|t1-t2|<Δt,其中t1和t2分别表示电子串号和物理地址被采集到的时间)采集到的电子串号和物理地址数据中的无线数据采集终端经纬度字段进行匹配,若经纬度一致,则将此组电子串号和物理地址作为匹配对,并转入步骤S202;若不一致,则舍弃; S202、从预处理后的数据中分别取出匹配对相应的电子串号/物理地址、采集时间、经度和纬度等字段,满足以下条件的匹配对保留作为匹配组并存储:|d1-d2|N。 5.根据权利要求1所述的基于大数据挖掘的虚拟身份关联分析算法模型,其特征在于,所述步骤S4具体包括: S401、将特征提取后的统计数据样本分为正例和反例:当明确电子串号与某个物理地址存在匹配关系时,标记为正例(即类别为1);当明确电子串号与某个物理地址不存在匹配关系时,标记为反例(即类别为0); S402、样本类别标记后,不同类别的训练例数目差别较大,采用Fisher判别法对数量较多的类别进行过滤,减少因样本类别不平衡对分类器造成的负面影响,提高建模时分类的准确率以及模型假设对数据集的拟合度。 6.根据权利要求1所述的基于大数据挖掘的虚拟身份关联分析算法模型,其特征在于,所述步骤S5具体包括:

数据挖掘中的关联规则2

数据挖掘中的关联规则 程晓飞2009306202008 摘要: 近年来,数据挖掘己经引起了信息产业界的极大关注,这是快速增长的数据量和曰益贫乏的信息量之间矛盾运动的必然结果,对数据挖掘技术进行系统、深入、全面、详尽地研究是全球信息化发展的客观需要。本文对数据挖掘技术,尤其是关联规则数据挖掘技术进行了系统、深入、全面、详尽地分析和研究。 关键词:数据挖掘;关联规则;Apriori算法;基于划分的算法 1.什么是关联规则 在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事:"尿布与啤酒"的故事。 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。 数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算

相关主题
文本预览
相关文档 最新文档