当前位置:文档之家› 一阶电路的暂态响应

一阶电路的暂态响应

一阶电路的暂态响应
一阶电路的暂态响应

成绩

教师签字

通信工程学院

实验报告

实验题目:

实验三一介动态电路的暂态响应的研究

班级:通信工程专业 10 级 14 班

姓名一:曾旭龙学号: 52101409

姓名二:吴秀琼学号: 52101427

姓名三:陈光林学号: 52101407

实验日期: 2011 年 5 月 19 日

一阶电路的暂态响应的研究

曾旭龙吴秀琼陈光林徐峰

吉林大学通信工程学院通信工程系10级14

吉林大学通信工程学院电工电子实验中心

摘要:本文要通过进行一介RC电路对周期方波信号的响应的数据测量和分析,研究测量电路时间常数τ的方法,建立积分电路和微分电路的概念。

关键词:暂态响应电路时常数积分电路微分电路

0 引言电路的时常数τ是一阶电路的重要参数,测定电路时间常数是一阶电路暂态响应实验研究的重点和难点。因而研究一阶电路的暂态响应对于测量电路的时间常数有着十分重要的意义。

1 问题提出

2理论依据

2.1电容器的充电、放电

电容器是一种贮能元件,在带有电容器的电路中发生通断换接时,由于电容器贮能状态不能突变所以在电路中就产生了过渡过程。在直流电路中,电容器接通电源,在极板上积累电荷的过程称为充电;已充电的电容器通过电阻构成闭合回路使电荷中和消失的过程称为放电。

根据电路理论,在单一贮能元件组成的一阶电路中,过渡过程中的暂态电流与电压是按指数规律变化的。这一规律可以用下面的数字式表示,即

式中i c(0+)及U c(0+)是起始瞬间的电容电流及电压,i c(∞)及U c(∞)是电路稳定后的电容电流及电压。

图1电容器充放电电路

电容器充放电电路中电流、电压变化曲线分别如图3.4a.2(a)及图3.4a.2(b)所示。这曲线是由电路发生通断瞬间的起始状态向新的稳定状态过渡的指数曲线。其起始状态可根据换路定律确定,即在电路参数不变时,若电路发生换接,则电容器端电压不能突变,也就是在电路换接前后的瞬间是相等的,即

i c(0+)=i c (0_)

电路的时间常数τ,可以根据和计算,即τ=RC,τ用来表征过渡过程的长短。τ大过渡过程时间长,反之就短。若的单位为Ω,C 的单位为F,则τ的单位为s.τ可以从的变化曲线上求得。从曲线上任选

一点起算,每经过t=τ的时间,电流或电压就变化了起算值与稳态值之差的63.2%,即尚余36.8%需在以后过程中完成。或者可在起算点作指数曲线的切线,此切线与稳态值坐标线的交点与起算点之间的时间坐标差即为时间常数。根据上述两种方法可以在已知指数曲线上近似地确定时间常数数值,一般认为经过3τ-5τ的时间,过渡过程趋于结束。

图2 电容的充放电曲线

2.2 暂态电路的测量方法

对于线性网络,给出任意时间信号激励,其暂态响应可由冲击响应或者阶跃响应通过卷积或杜阿梅尔积分求得。冲击响应和阶跃响应可由网络输入端加上冲击信号或阶跃信号,利用示波器观察网络输出端电压响应求得。

2.3微分电路和积分电路

微分电路和积分电路是电容器充放电现象的一种应用,电路图如图;

图3

微分电路中当时间常数很小时,输出电压U R正比于输入电压U的微分。积分电路中当时间常数很大时,输出电压U C正比于输入电压u 的积分。

当输入电压u的波形为正负对称的矩形波时,微、积分电路输出电压波形如上图所示。设矩形波脉冲宽度为τP,改变τ和τP的比值,电容元件充放电的快慢就不同,输出电压的波形也就不同。当τ>>τP,电容器充电很慢,输出电压和输入电压u的波形很相近,随着τ和比值的减小,在电阻两端逐步形成正负尖脉冲输出如上图所示,因此微分电路必须满足两个条件(a)τ<<τP(一般τ<0.2τP), (b)从电阻两端输出。而积分电路应满足的条件是(a)τ>>τP(一般τ>5

τP),(b)从电容两端输出。上图b是积分电路的输出电压的波形, 由于τ>>τP,电容器缓慢充电,以后又经电阻缓慢放电,形成图示的锯齿波。时间τ越大,充放电越是缓慢,所得锯齿波电压的线性就越好。

图4脉冲波与锯齿波

2.4 一阶电路的暂态响应

求解含有储能元件电路的响应时,需用微分方程。当描述某一电路的方程是一阶微分方程时,称该电路为一阶电路,通常只含有一个储能元件。

2.4.1 一阶RC电路各种响应

零输入响应:指输入为零,初始状态不为零所引起的电路响应。零状态响应:指初始状态为零,而输入不为零所产生的电路响应。完全响应:指输入与初始状态均不为零时所产生的电路响应。

2.4.2响应波形的观察方法

①当时常数特别大时,可以利用慢扫描长余辉示波器进行观察。

②当时常数小,过程变化快时,直接观察单次过程很困难。常利用周期方波信号做激励,只需保证方波的周期T满足T/2>5t,即在方波的半个周期内暂态过程基本结束,就可将单次过程变为周期过程,这样用示波器观察就很方便了。

2.4.3 时常数的测量

一阶电路的暂态响应均按照指数曲线增长或衰减,而指数曲线有规律:t=0时电压有0开始上升,t=∞时电压上升至U0(实际中此过程只需3-5倍时常数)。指数曲线的特点是:电压由0开始上升至U0/2所经历的时间Δt近似等于0.69τ。这说明在测量时常数τ时电压不一定要用0值作为起始点,指数曲线上任一点均可作为起始点。利用上述规律可以方便地在响应波形上测出电路时常数τ,同时也可用此规律来画波形。

3 实验器材

实验板、GDS-1000数字示波器、YB-1634功率函数发生器、电阻箱、电容箱、导线若干。

4 实验内容

4.1

①用示波器观察并记录方波输入时的U p波形。

将电路按如图5所示连接:

图5

将电阻调至1045Ω,电容调至0.01μF。将功率函数发生器,电阻箱R,电容箱C串联。将示波器的Y1通道并联在路端。按照先示波器后信号源的顺序接通电路,调整使信号源发出一定频率和振幅的方波。设计表格,记录以下数据:U P、T、T/2、f 。观察示波器并记录波形。

②用示波器观察并记录方波输入时的U R波形。

将电路如图6连接:

图6

记录以下数据:U R、T、T/2、f 。观察示波器并记录波形。

③用示波器观察并记录方波输入时的U C波形。

将电路如图7连接:

图7

记录以下数据:U c、T、T/2、f 。观察示波器并记录波形。

4.2积分电路和微分电路的研究

①积分电路

按照图8连接电路:

图8

将电阻调至7045Ω,电容调至1μF。通过示波器观察并记录波形,测出U P。

②微分电路

按照图9连接电路:

图9

观察示波器并记录波形,测出U P值和时常数τ。

5 实验数据整理

U P波形图:

图10

U R波形图:

图11

U C波形图:

图12

微分电路波形图:

图13

积分电路波形图:

图14

6 误差分析及优化设计

由于仪器本身、所处环境以及实验操作人员操作技能等原因影响,从而造成一定的实验误差,下面将联系实际,并通过理论计算,对本次试验的测量进行误差分析。

6.1 原理产生的误差

①本实验所采用的激励信号为对称,此信号具有极其丰富的频率分量,当这样的信号通过线性系统时,若系统的频率响应特性不满足无失真传输的条件,那么方波中的某些频率分量必然被抑制,造成输出信号与输入信号的不同;系统频率响应特性不同被抑制的频率亦会不同。

②微分电路的时常数为T=RC,若输入的方波的脉冲τ远小于电路的时常数T,则输出的波形近似方波。当方波通过高通率波器时,基波及低次谐波分量将受到衰减,从而产生平顶失真;而且RC越小失真越大,即波形越尖;反之波形失真小,波形教平坦。

③积分电路的时常数为T=RC,若输入的方波脉冲宽τ远大于电路的时常数T,则输出的波形近似方波;若方波的脉冲宽远小于电路时常数,则输出的精度大大降低,波形接近三角形。当方波通过低通滤波器时,高次谐波分量将受到衰减,因而输出信号中只有低频分量,因此输出波形的前沿变倾斜;而且RC越大,前沿倾斜越大,即波形失真越大;反之波形失真越小,波形较接近方波。

6.2 实验器材引起的误差

①本实验用到的信号源不属于精密仪器,其在制造工艺和设计原理上可能存在不足,对实验结果造成影响。如当把信号源输出电压调至的1.00V时,表盘上的电压示数在0.97V-1.18V之间波动。

②实验中的电阻箱和电容箱较旧,在取值上存在误差。导线等器件电阻值的影响。

7 结论

通过对一阶电路的暂态响应的研究,对比各种响应曲线及所求得的时常数,从微分电路响应曲线中求得的时常数τ。

参考文献

(1)吉林大学内部教材《电路、信号与系统实验指导书》

(2)人民邮电出版社林梓主编的《电路分析》

(3)高等教育出版社邱关源主编《电路(第四版)》

(4)https://www.doczj.com/doc/2b2207491.html,/view/cb7ad94733687e21af45a930.html

(5)https://www.doczj.com/doc/2b2207491.html,/dgdzjs/coursebase/03/0304/ssjj/04/dgdzjs-ssjj -040301.ppt

(6)https://www.doczj.com/doc/2b2207491.html,/p-98636880540.html

(7)https://www.doczj.com/doc/2b2207491.html,/view/fcb688222f60ddccda38a0ec.html

https://www.doczj.com/doc/2b2207491.html,/view/f0c331ea19e8b8f67c1cb942.html

浙江大学实验报告:一阶RC电路的瞬态响应过程实验研究

三墩职业技术学院实验报告 课程名称:电子电路设计实验 指导老师: 成绩:__________________ 实验名称: 一阶RC 电路的瞬态响应过程实验研究 实验类型:探究类同组学生姓名:__ 一、实验目的 二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……) 四、主要仪器设备 五、实验步骤与过程 六、实验调试、实验数据记录 七、实验结果和分析处理 八、讨论、心得 一、实验目的 1、熟悉一阶RC 电路的零状态响应、零输入响应过程。 2、研究一阶RC 电路在零输入、阶跃激励情况下,响应的基本规律和特点。 3、学习用示波器观察分析RC 电路的响应。 4、从响应曲线中求RC 电路的时间常数。 二、实验理论基础 1、一阶RC 电路的零输入响应(放电过程) 零输入响应: 电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的电路响应。 (实际上是电容器C 的初始电压经电阻R 放电过程。) 在图1中,先让开关K 合于位置a ,使电容C 的初始电压值0)0(U u c =-,再将开关K 转到位置b 。 电容器开始放电,放电方程是 图1 ) 0(0≥=+t dt du RC u C C

可以得出电容器上的电压和电流随时间变化的规律: 式中τ=RC 为时间常数,其物理意义 是衰减到1/e (36.8%))0(u c 所需要的时间,反映了电路过渡过程的快慢程度。τ图2 图2 2电路的零状态响应(充电过程) 所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。RC 关K 可以得出电压和电流随时间变化的规律: 式中τ=RC 为时间常数,其物理意义是由初始值上升至稳态值与初始值差值的63.2%处所需要的时间。同样可以从响应曲线中求出τ,如图3。 ) 0()0()(0≥-=-=- - - t e R U R e u t i t RC t C C τ ) (u t C ) 0()0()(0≥==- --t e U e u t u t RC t C C τ ()(0) t t S S RC C U U i t e e t R R τ--==≥()11(0) t t RC C S S u t U e U e t τ --????=-=-≥ ? ? ????

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告 1.实验摘要 1、研究RC电路的零输入响应和零状态响应。用示波器观察响应过程。电路参数:R=100K、C=10uF、Vi=5V 2.从响应波形图中测量时间常数和电容的充放电时间 2.实验仪器 5V电源,100KΩ电阻,10uF电容,示波器,导线若干 2.实验原理 (1)RC电路的零输入响应和零状态响应 (i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时,电容电压uc(0)称为电路的初始状态。 (ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 (iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 (iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方

波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法: 用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t. (2)测量电容充放电时间的电路图 如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A. 4实验步骤和数据记录 (i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。 (ii)用示波器测量电容两端的电压,示波器的测量模式调整为追踪。(iii)打开电源开关,将开关和电压源端相接触,使电容充电,用示

一阶电路的暂态响应

成绩 教师签字 通信工程学院 实验报告 实验题目: 实验三一介动态电路的暂态响应的研究 班级:通信工程专业 10 级 14 班 姓名一:曾旭龙学号: 52101409 姓名二:吴秀琼学号: 52101427 姓名三:陈光林学号: 52101407 实验日期: 2011 年 5 月 19 日

一阶电路的暂态响应的研究 曾旭龙吴秀琼陈光林徐峰 吉林大学通信工程学院通信工程系10级14 吉林大学通信工程学院电工电子实验中心 摘要:本文要通过进行一介RC电路对周期方波信号的响应的数据测量和分析,研究测量电路时间常数τ的方法,建立积分电路和微分电路的概念。 关键词:暂态响应电路时常数积分电路微分电路 0 引言电路的时常数τ是一阶电路的重要参数,测定电路时间常数是一阶电路暂态响应实验研究的重点和难点。因而研究一阶电路的暂态响应对于测量电路的时间常数有着十分重要的意义。 1 问题提出 2理论依据 2.1电容器的充电、放电 电容器是一种贮能元件,在带有电容器的电路中发生通断换接时,由于电容器贮能状态不能突变所以在电路中就产生了过渡过程。在直流电路中,电容器接通电源,在极板上积累电荷的过程称为充电;已充电的电容器通过电阻构成闭合回路使电荷中和消失的过程称为放电。 根据电路理论,在单一贮能元件组成的一阶电路中,过渡过程中的暂态电流与电压是按指数规律变化的。这一规律可以用下面的数字式表示,即

式中i c(0+)及U c(0+)是起始瞬间的电容电流及电压,i c(∞)及U c(∞)是电路稳定后的电容电流及电压。 图1电容器充放电电路 电容器充放电电路中电流、电压变化曲线分别如图3.4a.2(a)及图3.4a.2(b)所示。这曲线是由电路发生通断瞬间的起始状态向新的稳定状态过渡的指数曲线。其起始状态可根据换路定律确定,即在电路参数不变时,若电路发生换接,则电容器端电压不能突变,也就是在电路换接前后的瞬间是相等的,即 i c(0+)=i c (0_) 电路的时间常数τ,可以根据和计算,即τ=RC,τ用来表征过渡过程的长短。τ大过渡过程时间长,反之就短。若的单位为Ω,C 的单位为F,则τ的单位为s.τ可以从的变化曲线上求得。从曲线上任选

一阶RC电路的暂态响应

一阶R C电路的暂态 响应

专业:电子信息技术及仪器 姓名:__黄云焜__________ 实验报告 学号: 3100100407_______课程名称:__电路原理实验______指导老师:__ 熊素铭______成绩:__________________实验名称:_一阶RC电路的暂态响应____实验类型:________________同组学生姓名: __________ 一、实验目的和要求(必填)二、实验内容和原理(必填 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应和全响应。 2、研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。 3、掌握积分电路和微分电路的基本概念。 4、研究一阶动态电路阶跃响应和冲激响应的关系。 5、从响应曲线中求出RC电路时间常数τ。 二、实验原理 1.电路的过渡过程

2.一阶RC 电路的零输入响应: 激励(电源)为零,由初始储能引起的响应(放电过程) 1)求RC电路时间常数τ 3.一阶RC 电路的零状态响应: 储能元件初始能量为零,在激励(电源)作用下产生的 响应。 1)求RC电路时间常数τ 4.一阶RC 电路的全响应: 非零起始状态的电路受到外加激励所引起的响应。

5. 一阶RC 电路的方波响应: 从本质上看,方波是以相同的时间间隔,不停开关的电压(或者不断为高低值)。 6.微分电路和积分电路 1)微分电路:如图(1)RC电路,当输出电压取自电阻两端时,对于高频信号,可用作耦合 电路,而对于低频信号则可实现微分运算。 2) 积分电路 :如图(2)RC电路,当输出电压取自电容两端时,对于高频信号,可实现积分运算。 图(1)图(2) 7.冲激响应、阶跃响应及其关系:阶跃响应是阶跃函数激励下的零状态响应;冲激响应 是冲激函数激励下的零状态响应;冲激响应是阶跃响应的导数;

一阶电路和二阶电路的动态响应.

一阶电路和二阶电路的动态响应 一、实验目的 1、掌握一阶电路的动态响应特性测试方法 2、掌握Multisim 软件中函数发生器、示波器和波特图仪的使用方法 3、深刻理解和掌握零输入响应、零状态响应及完全响应 4、深刻理解欠阻尼、临界、过阻尼的意义 5、研究电路元件参数对二阶电路动态响应的影响 6、掌握Multisim 软件中的Transient Analysis 等仿真分析方法二、实验原理 1、一阶电路的动态响应 电路的全响应:u c (t=U 0e -t/RC +U s (1-e -t/RC (t>=0 (1零输入响应 u c (t=U 0e -t/RC (t>=0 输出波形单调下降。当t=τ=RC 时, u c (τ=U 0/e=0.368U 0,τ成为该电路的时间常数。 (2零状态响应 u c (t=U s (1-e -t/RC u(t 电容电压由零逐渐上升到U s ,电路时间常数τ=RC 决定上升的快慢。 2、用二阶微分方程描述的动态电路称为二阶电路。图所示的线性RLC 串联电路是一个典型的二阶电路。定义:衰减系数(阻尼系数L R 2= α 自由振荡角频率(固有频率LC 10=ω (1零输入响应

动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 u L t m U 0 ① C L R 2>,响应是非振荡性的,称为过阻尼情况。 响应曲线如图所示②C L R 2 = ,响应临界振荡,称为临界阻尼情况。响应曲线如 ③C L R 2<,响应是振荡性的,称为欠阻尼情况。响应曲线如图 U 0 二阶电路的欠阻尼过程 ④当R =0时,响应是等幅振荡性的,称为无阻尼情况。响应曲线如图 t 二阶电路的无阻尼过程

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

实验4 二阶电路的动态响应

二阶电路的动态响应 一、实验原理 RLC 串联二阶电路 用二阶微分方程描述的动态电路称为二阶电路。上图所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC (4-1) 初始值为 C I C i dt t du U u L t c c 0 00)0()()0(== =-=-- 求解该微分方程,可以得到电容上的电压u c (t )。 再根据:dt du c t i c c =)( 可求得i c (t ),即回路电流i L (t )。 式(4-1)的特征方程为:01p p 2=++RC LC 特征值为:2 0222,11)2(2p ωαα-±-=-±-=LC L R L R (4-2) 定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 10= ω 由式4-2 可知,RLC 串联电路的响应类型与元件参数有关。 1.零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图4.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。 图4.2 RLC 串联零输入响应电路 图4.3 二阶电路的过阻尼过程 u L t m U 0

(1) C L R 2>,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--= t ≥0 响应曲线如图4.3所示。可以看出:u C (t)由两个单调下降的指数函数组成, 为非振荡的过渡过程。整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流 有极大值。 (2)C L R 2=,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 响应曲线如图4.4所示。 图4.4 二阶电路的临界阻尼过程 (3) C L R 2 <,响应是振荡性的,称为欠阻尼情况。 电路响应为 t e L U t i t e U t u d t d d t d C ωωβωωωααsin )(),sin()(000 --= +== t ≥0 其中衰减振荡角频率 2 2 2 0d 2L R LC 1??? ??-= -=αωω , α ωβd arctan = 响应曲线如图4.5所示。

(电路分析)一阶电路的全响应

一阶电路的全响应 一阶电路的全响应 一、全响应 全响应 一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。 图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。时开关闭合,现讨论时电路响应的变化规律。 时,响应的初始值为 时,响应的稳态值为 用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应 和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。 图5.5-1(b)中,零输入响应为 图5.5-1(c)中,零状态响应为

根据叠加定理,图5.5-1(a)电路的全响应为 用表示全响应,表示响应的初始值,表示稳态值。 全响应的变化规律 1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。 2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。 3、当时,即初始值等于稳态值,则全响应。电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法 全响应的三要素 初始值 稳态值 时间常数 例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。 解:欲求电容电流,只要求出电容电压即可。 1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。由换路定则得初始状态 2、确定电容电压的稳态值。 作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压 则电容电压的稳态值为 3、求时间常数τ。 求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ 所以,时间常数为 4、求全响应。 电路换路后的电容电压为 电容电流为

二一阶电路的瞬态响应

实验二 一阶电路的瞬态响应 一 实验目的 1 用万用表观察时间常数τ较大的RC 串联电路接通直流电压的瞬态响应。熟悉用万 用表判别较大电容好坏的方法。 2 用示波器观察和测定RC 电路的阶跃响应和时间常数τ。 3 了解时间常数对响应波形的影响及积分、微分电路的特点。 二 原理说明 1 用万用表观察大时间常数的RC 串联电路接通直流电压的瞬态响应。 如上图所示,虚线框内为万用表的欧姆档等效电路,它由电池,中值电阻r 和电流表G 组成。当万用表黑、红表笔分别接电解电容的正、负极时,就构成了RC 串联电路接通直流电压的情况,而表头指针的偏转就反映了电路响应电流的大小(满度电流I=v/r )。当将电容的两个端点短路,即使电容的初始电压为零 0)0(=C V ,则电容两端的电压为 )1(/τt C e V V --= 电路中电流为 τ /t e r V i -= 其中rc =τ是这个电路的时间常数,若从下图所示响应电流随时间变化的曲线上,任 意选两点P (i 1,t 1)和Q (i 2, t 2) 则由 τ /11t e r V i -= τ/22t e r V i -= 得 τ/)(ln 122 1t t i i -= 于是,可得时间常数τ的关系式 ) /ln(211 2i i t t -= τ 若取 2/12i i = 则 7 .01 2t t -= τ 这样,只要从某点电流值i 1开始计时到i 1/2值所经历的时间除以0.7即为电路的时间常数τ。 图2-1 万用表的欧姆档检查电解点容等效电路 图2-2 点容器接通直流电压时响应 电流

当改变万用表欧姆档的档值时,其中值电阻值也随之改变,即电路的时间常数τ也随之改变,则瞬态响应所经历的时间也随之改变。当被测电容很小时,由于τ太小和表针的惰性,表针还未启动瞬态响应过程已经结束。所以,当电容量小于0.01uF 时,用万用表欧姆档还不能观察到电路的瞬态响应过程,且也只能在R ×10K 档(r 中=240K )观察到表针有摆动的现象,表针未偏转至满度值就返回。 利用上述原理就可用万用表来判别大于0.01uF 的电容器的好坏,若表针不摆动或偏转后不返回,则说明电容器开路或短路。若表针不返回至“∞”处,则说明电容器漏电。 2 积分电路和微分电路 如图所示为一阶RC 串联电路图。 )(t Vs 是周期为T 的方波信号, 设0)0(=C V 则 dt t V RC dt R t V C dt t i C t V R R C ???=== )(1 )(1)(1)( 当时间常数RC =τ很大,即τ》T 时,在方波的激励下,C V 上冲得的电压远小于R V 上的电压,即)(t V R 》)(t V C 因此 )()(t V t Vs R ≈ 所以 dt t V RC t V S C ? ≈ )(1 )( 上式表明,若将)(t V C 作为输出电压,则)(t V C 近似与输出电压)(t Vs 对时间的积分成正比。我们称此时的RC 电路为积分电路,波形如下 如果输出电压是电阻R 上的电压V R (t )则有 dt t dV RC t i R t V C R ) ()()(? =?= V S V 图2-3 一阶RC 串联实验电路图

一阶电路和二阶电路的动态响应

实验四 一阶电路和二阶电路的动态响应 一、 实验目的 (1) 理解零输入响应、零状态响应和完全响应 (2) 理解欠阻尼、临界和过阻尼的意义和条件 二、 实验原理 用二阶微分方程描述的动态电路称为二阶电路。图所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC 1. 零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图6.2所示,设电容已经充电,其电压为U 0,电感的初始 电流为0。 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: 图6.2 RLC 串联零输入响应电路 图6.3 二阶电路的过阻尼过程 u L t m U 0

) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---= --= 响应曲线如图6.3所示。可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的过渡过程。整个放电过程中电流为正值, 且 当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 响应曲线如图6.4所示。 图6.4 二阶电路的临界阻尼过程 (3) C L R 2<,响应是振荡性的,称为欠阻尼情况。 电路响应为 t e L U t i t e U t u d t d d t d C ωωβωωωααsin )(),sin()(000 --= +==t ≥0 其中衰减振荡角频率 2 220d 2L R LC 1?? ? ??-= -=αωω , α ωβd arctan = 响应曲线如图6.5所示。

浙江大学实验报告:一阶RC电路的瞬态响应过程实验研究

三墩职业技术学院实验报告课程名称:电子电路设计实验指导老师:成绩:__________________ 实验名称:一阶RC电路的瞬态响应过程实验研究实验类型:探究类同组学生姓名:__ 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、 3.3完整的实验电路……) 六、实验调试、实验数据记录七、实验结果和分析处理 八、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应过程。 2、研究一阶RC电路在零输入、阶跃激励情况下,响应的基本规律和特点。 3、学习用示波器观察分析RC电路的响应。 4、从响应曲线中求RC电路的时间常数。 二、实验理论基础 1、一阶RC电路的零输入响应(放电过程) 零输入响应:

电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的电路响应。 (实际 上是 电容器C 的 初始电压经电阻R 放电过程。) 在图1中,先让开关K 合于位置a ,使电容C 的初始电压值0)0(U u c =-,再将开关K 转到位置b 。 电容器开始放电,放电方程是 可以得出电容器上的电压和电流随时间变化的规律: 衰减到1/e (36.8%))0(u c 所需要的 式中τ=RC 为时间常数,其物理意义是 时间,反映了电路过渡过程的快慢程度。τ越大,暂态响应所持续的时间越长,即过渡过程的时间越长;反之,τ越小,过渡过程的时间越短。时间常数可以通过相 应的衰减曲线来反应,如图2。由于经过5τ时间后,已经衰减到初态的1%以 下,可以认为经过5τ时间,电容已经放电完毕。 图2 2、一阶RC 电路的零状态响应(充电过程) 所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。一阶RC 电路在阶跃信号激励下的零状态响应实际上就是直流电源经电阻R 向C 充电的过程。在图1所示的一阶电路中,先让开关K 合于位置b ,当t = 0时,将开关K 转到位置a 。 电容器开始充电,充电方程为 图1 ) 0(0≥=+t dt du RC u C C ) 0()0()(0≥- =- =---t e R U R e u t i t RC t C C τ ) (u t C )0()0()(0≥==- - -t e U e u t u t RC t C C τ )(u t C 装 订

第三章----电路的暂态分析讲课教案

第三章电路的暂态分析 一、内容提要 本章首先阐述了电路瞬变过程的概念及其产生的原因,指出了研究电路瞬变过程的目的和意义。其次介绍换路定律及电路中电压和电流初始值的计算方法。第三着重推荐用“三要素法”分析一阶RC、RL电路瞬变过程的方法。 二、基本要求 1、了解性电路的瞬变过程的概念及其产生的原因; 2、掌握换路定律,学会确定电压和电流的初始值; 3、掌握影响瞬变过程快慢的时间常数的物理意义; 4、掌握影响巡边过程快慢的时间常数的物理意义; 5、学会对RC和RL电路的瞬变过程进行分析。 三、学习指导 电路的暂态分析,实际上就是对电路的换路进行分析。所谓换路是电路由一个稳态变化到另一个稳态,分析的重点是对含有储能元件的电路而言,若换路引起了储能元件储存的能量所谓变化,则由于能

量不能突变,这一点非常重要,次之电路的两个稳态间需要暂态过程进行过渡。 在直流激励下,换路前,如果储能元件储能有能量,并设电路已处于稳态,则在-=0t 的电路中,电容C 元件可视为开路,电感L 元 如果储能元件没有储能(00L C ==W W 或)只能00L C ==i u 或,因此,在-=0t 和+=0t 的电路中,可将电容元件短路,电感元件开路。 特别注意:“直流激励”,“换路前电路已处于稳态”及储能元件有无可能储能。 对一阶线性电路,求解暂态过程的方法及步骤 1、经典法 其步骤为: (1)按换路后的电路列出微分方程; (2)求微分方程式的特解,即稳态分量; (3)求微分方程式的补函数,即暂态分量 (4)按照换路定律确定暂态过程的初始值,定出积分常数。 对于比较复杂的电路,有时还需要应用戴维南定律或诺顿定理将换路后的电路简化为一个简单的电路,而后再利用上述经典法得出的式子求解,其步骤如下: (1)将储能元件(C或L)划出,而将其余部分看做一个等效电源,组成一个简单电路; (2)求等效电源的电动势(或短路电流)和内阻;

一阶电路响应电路实验报告

一个简单的RC串联电路,在方波序列脉冲的重复激励下若满足t=RC< > T/2, 则该RC电路称为积分电路。因为此时电路的输出电压uc与输入电压ui的积分成正比。利用积分电路可以将方波转变成三角 波。 三. 实验设备 电阻,周期方波激励,电容 四. 实验内容及数据 4.1 调节示波器输出电压为5Vpp、f=2KHz的方波。

4.2 令R= 1KQ,C= 0.01μF,组成如图(4)所示的微分电路。在同样的方波激励信号作用下,观测并描绘响应的波形,测定时间常数τ。分别减小R或C的值,定性地观察对响应的影响。 4.2.1图像: 4.2.2测定时间常数τ: 由实验原理可知,当时,,对图像测量可知 由图像测量得τ=10.1

4.2.3.1减小R至500Ω: 由图像可知τ小于10,τ随着R减小而减小4.2.3.2 减小C至5nF: 由图像可知τ小于10,τ随着C减小而减小

4.3令R= 1KQ,C= 0.033μF,组成如图(5)所示的积分电路。观察并描绘响应的波形,测定时间常数τ。分别增大R或C的值,定性地观察对响应的影响。 4.3.1 图像: 4.3.2测定时间常数τ: 由实验原理可知,当时,,对图像测量可知 由图像测量得τ=32

4.3.3.1减小R至500Ω: 由图像可知τ小于32,τ随着R减小而减小4.3.3.2 减小C至15nF: 由图像可知τ小于32,τ随着C减小而减小

二阶电路的动态响应

实验三:二阶电路的动态响应【实验目的】 1.学习用实验的方法来研究二阶动态电路的响应。 2.研究电路元件参数对二阶电路动态响应的影响。 3.研究欠阻尼时,元件参数对α和固有频率的影响。 研究RLC串联电路所对应的二阶微分方程的解与元件参数的关系。 【实验原理】 用二阶微分方程描述的动态电路称为二阶电路。图6.1所示的线性RLC串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2 = + + c c c u dt du RC dt u d LC(1)初始值为 C I C i dt t du U u L t c c ) 0( )( ) 0( = = = - = - - 求解该微分方程,可以得到电容上的电压u c(t)。 再根据: dt du c t i c c = )(可求得i c(t),即回路电流i L(t)。 式(1)的特征方程为:0 1 p p2= + +RC LC 特征值为:

2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (2) 定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 10=ω 由式2可知,RLC 串联电路的响应类型与元件参数有关。 1.零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 设电容已经充电,其电压为U 0,电感的初始电流为0。 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--= 整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 (3) C L R 2 <,响应是振荡性的,称为欠阻尼情况。 电路响应为

RC一阶电路的响应测试实验内容

实验五 RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及全响应。 2. 掌握有关微分电路和积分电路的概念。 3. 学会时间常数τ的测定方法。 4. 进一步学会用示波器观测波形。 二、原理说明 图5.1所示的矩形脉冲电压波u i可以看成是按照一定规律定时接通和关断的直流电压源U。若将此电压u i加在RC串联电路上(见图5.2),则会产生一系列的电容连续充电和放电的动态过程,在u i的上升沿为电容的充电过程,而在u i的下降沿为电容的放电过程。它们与矩形脉冲电压u i的脉冲宽度t w及RC串联电路的时间常数τ有十分密切的关系。当t w不变时,适当选取不同的参数,改变时间常数τ,会使电路特性发生质的变化。 图5.1 矩形脉冲电压波形图5.2 RC串联电路图 1. RC一阶电路的零状态响应 所有储能元件初始值为0的电路对于激励的响应称为零状态响应。电路的微分方程为:,其解为,式中,τ=RC为该电路的时间常数。 2. RC一阶电路的零输入响应 电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。电路达到稳态后,电容器经R放电,此时的电路响应为零输入响应。电路的微分方程为:,其解为。RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图5.3所示),其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 方法一:在已知电路参数的条件下,时间常数可以直接由公式计算得出,τ=RC。 方法二:对充电曲线(零状态响应),电容的端电压达到最大值的(约0.632)倍时所需要的时间即是时间常数τ。如图5.3(a)所示,用示波器观测响应波形,取上升曲线中波形幅值的0.632倍处所对应的时间轴的刻度,计算出电路的时间常数: 其中,扫描时间是示波器上X轴扫描速度开关“t/div”的大小。是X轴上O、P两点之间占有的格数。而对放电曲线(零输入响应),时间常数是电容的端电压下降到初值的,即约0.368倍时所需要的时间,如图5.3(b)所示。 (a) 零状态响应(b) 零输入响应 图5.3 时间常数τ的测定 方法三:利用时间常数的几何意义求解。在图5.4中,取电容电压u c的曲线上任意一点A,通过A点作切线AC,则图中的次切距

一阶电路的全响应与三要素

§5.4 一阶电路的全响应与三要素 在上两节中分别研究了一阶电路的零输入响应和零状态响应,电路要么只有外激励源的作用,要么只存在非零的初始状态,分析过程相对简单。本节将讨论既有非零初始状态,又有外激励源共同作用的一阶电路的响应,称为一阶电路的全响应。 5.4.1 RC 电路的全响应 电路如图5-9所示,将开关S 闭合前,电容已经充电且电容电压0)0(U u c =-,在t=0时将开关S 闭合,直流电压源S U 作用于一阶RC 电路。根据KVL ,此时电路方程可表示为: C u 图 5-19 一阶RC 电路的全响应 S C C U u t u RC =+d d (5-19) 根据换路原则,可知方程(5-19)的初始条件为 0)0()0(U u u C C ==-+ 令方程(5-9)的通解为 C C C u u u ''+'= 与一阶RC 电路的零状态响应类似,取换路后的稳定状态为方程的特解,则 S C U u =' 同样令方程(5-9)对应的齐次微分方程的通解为τt C Ae u - =''。其中RC =τ为电路的时间常数,所以有 τ t S C Ae U u -+= 将初始条件与通解代入原方程,得到积分常数为 S U U A +=0 所以电容电压最终可表示为 τ t S S c e U U U u - -+=)(0 (5-20) 电容充电电流为 e t S C R U U t u C i τ--==0d d 这就是一阶RC 电路的全响应。图5-20分别描述了s U ,0U 均大于零时,在0U U s >、

0=s U 、0U U s <三种情况下c u 与i 的波形。 (a) (b) 图5-20 C u ,i 的波形图 将式(5-20)重新调整后,得 )1(0ττ t S t C e U e U u - --+= 从上式可以看出,右端第一项正是电路的零输入响应,第二项则是电路的零状态响应。显然,RC 电路的全响应是零输入响应与零状态响应的叠加,即 全响应 = 零输入响应 + 零状态响应 研究表明,线性电路的叠加定理不仅适用于RC 电路,在RC 电路的分析过程中同样适用,同时,对于n 阶电路也可应用叠加定理进行分析。 进一步分析式(5-20)可以看出右端第一项是电路微分方程的特解,其变化规律与电路外加激励源相同,因此被称之为为强制分量;式(5-20)右端第二项对应于微分方程的通解,其变化规律与外加激励源无关,仅由电路参数决定,称之为自由分量。所以,全响应又可表示为强制分量与自由分量的叠加,即 全响应 = 强制分量 + 自由分量 从另一个角度来看,式(5-20)中有一部分随时间推移呈指数衰减,而另一部分不衰减。显然,衰减分量在∞→t 时趋于零,最后只剩下不衰减的部分,所以将衰减分量称为暂态分量,不衰减的部分称为稳态分量,即 全响应 = 稳态分量 + 暂态分量 5.4.2 三要素法 一阶电路都只会有一个电容(或电感元件),尽管其它支路可能由许多的电阻、电源、控制源等构成。但是将动态元件独立开来,其它部分可以看成是一个端口的电阻电路,根据戴维南定理或诺顿定理可将复杂的网络都可以化成图5-21所示的简单电路。下面介绍的三要素法对于分析类复杂一阶电路相当简便。 C u +- C u + - C u (a) (b)

二阶电路的动态响应实验报告

二阶电路的动态响应实验报告 一、实验目的: 1. 学习用实验的方法来研究二阶动态电路的响应。 2. 研究电路元件参数对二阶电路动态响应的影响。 3. 研究欠阻尼时,元件参数对α和固有频率的影响。 4. 研究RLC 串联电路所对应的二阶微分方程的解与元件参数的关系。 二、实验原理: 图1.1 RLC 串联二阶电路 用二阶微分方程描述的动态电路称为二阶电路。图1.1所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC (1-1) 初始值为 C I C i dt t du U u L t c c 0 00 )0()()0(== =-=-- 求解该微分方程,可以得到电容上的电压u c (t )。 再根据:dt du c t i c c =)( 可求得i c (t ),即回路电流i L (t )。 式(1-1)的特征方程为:01p p 2 =++RC LC 特征值为:2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (1-2)

定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 1 0= ω 由式1-2 可知,RLC 串联电路的响应类型与元件参数有关。 1. 零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图1.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。 图1.2 RLC 串联零输入电路 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---= --= 图1.3 RLC 串联零输入瞬态分析 响应曲线如图1.3所示。可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的 过渡过程。整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为

一阶RC电路的暂态响应

专业:电子信息技术及 仪器 实验报告 姓名:__黄云焜课程名称:__电路原理实验______指导老师:__ 熊素铭______成绩:__________________ 实验名称:_一阶RC电路的暂态响应____实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应和全响应。 2、研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。 3、掌握积分电路和微分电路的基本概念。 4、研究一阶动态电路阶跃响应和冲激响应的关系。 5、从响应曲线中求出RC电路时间常数τ。 二、实验原理 1.电路的过渡过程

2.一阶RC 电路的零输入响应: 激励(电源)为零,由初始储能引起的响应(放电过程) 1)求RC电路时间常数τ 3.一阶RC 电路的零状态响应: 储能元件初始能量为零,在激励(电源)作用下产生的响 应。

1)求RC电路时间常数τ 4.一阶RC 电路的全响应: 非零起始状态的电路受到外加激励所引起的响应。 5.一阶RC 电路的方波响应: 从本质上看,方波是以相同的时间间隔,不停开关的电压(或 者不断为高低值)。

6.微分电路和积分电路 1)微分电路:如图(1)RC电路,当输出电压取自电阻两端时,对于高频信号,可用作耦合电 路,而对于低频信号则可实现微分运算。 2)积分电路:如图(2)RC电路,当输出电压取自电容两端时,对于高频信号,可实现积分运 算。 图(1)图(2) 7.冲激响应、阶跃响应及其关系:阶跃响应是阶跃函数激励下的零状态响应;冲激响应 是冲激函数激励下的零状态响应;冲激响应是阶跃响应的导数; 三、实验内容及数据记录分析 1.利用DG08动态电路板上的R、C元件组成RC充、放电电路,在示波器上观察零输入响 应、零状态响应和全响应曲线,测取电路时间常数τ(与理论值比较)。

相关主题
文本预览
相关文档 最新文档