当前位置:文档之家› 耗散结构理论

耗散结构理论

耗散结构理论
耗散结构理论

耗散结构

耗散结构

dissipative structures

比利时的普里戈金(I. Prigogine)从研究偏离平衡态热力学系统的输送过程入手,深入讨论离开平衡态不远的非平衡状态的热力学系统的物质、能量输送过程,即流动的过程,以及驱动此过程的热力学力,并对这些流和力的线性关系做出了定量描述,指出非平衡系统(线性区)演化的基本特征是趋向平衡状态,即熵增最小的定态。这就是关于线性非平衡系统的“最小熵产生定理”,它否定了线性区存在突变的可能性。

普里戈金在非平衡热力学系统的线性区的研究的基础上,又开始探索非平衡热力学系统在非线性区的演化特征。在研究偏离平衡态热力学系统时发现,当系统离开平衡态的参数达到一定阈值时,系统将会出现“行为临界点”,在越过这种临界点后系统将离开原来的热力学无序分支,发生突变而进入到一个全新的稳定有序状态;若将系统推向离平衡态更远的地方,系统可能演化出更多新的稳定有序结构。普里戈金将这类稳定的有序结构称作“耗散结构”。从而提出了关于远离平衡状态的非平衡热力学系统的耗散结构理论(1969年)。

耗散结构理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。

在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大而达到有序。偏离平衡态的开放系统通过涨落,在越过临界点后“自组织”成耗散结构,耗散结构由突变而涌现,其状态是稳定的。耗散结构理论指出,开放系统在远离平衡状态的情况下可以涌现出新的结构。地球上的生命体都是远离平衡状态的不平衡的开放系统,它们通过与外界不断地进行物质和能量交换,经自组织而形成一系列的有序结构。可以认为这就是解释生命过程的热力学现象和生物的进化的热力学理论基础之一。

在生物学,微生物细胞是典型的耗散结构。在物理学,典型的例子是贝纳特流。广义的耗散结构可以泛指一系列远离平衡状态的开放系统,它们可以是力学的、物理的、化学的、生物学的系统,也可以是社会的经济系统。耗散结构理论的提出,对于自然科学以至社会科学,已经产生或将要产生积极的重大影响。耗散结构理论促使科学家特别是自然科学家开始探索各种复杂系统的基本规律,开始了研究复杂性系统的攀登。

远离平衡态的开放系统,通过与外界交换物质和能量,可能在一定的条件下形成一种新的稳定的有序结构。

典型的例子是贝纳特流。在一扁平容器内充有一薄层液体,液层的宽度远大于其厚度,从液层底部均匀加热,液层顶部温度亦均匀,底部与顶部存在温度差。当温度差较小时,热量以传导方式通过液层,液层中不会产生任何结构。但当温度差达到某

一特定值时,液层中自动出现许多六角形小格子,液体从每个格子的中心涌起、从边缘下沉,形成规则的对流。从上往下可以看到贝纳特流形成的蜂窝状贝纳特花纹图案。这种稳定的有序结构称为耗散结构。类似的有序结构还出现在流体力学、化学反应以及激光等非线性现象中。

耗散结构的特征是:①存在于开放系统中,靠与外界的能量和物质交换产生负熵流,使系统熵减少形成有序结构。耗散即强调这种交换。对于孤立系统,由热力学第二定律可知,其熵不减少,不可能从无序产生有序结构。②保持远离平衡态。贝纳特流中液层上下达到一定温度差的条件就是确保远离平衡态。③系统内部存在着非线性相互作用。在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大,达到有序。

比利时的普里高津、德国的哈肯、日本的久保-铃木等学派对远离平衡态的耗散结构理论的建立与发展作出重要贡献。但理论尚属初级阶段,有待于发掘新的概念、规律和数学工具。耗散结构理论已用于研究流体、激光等系统、核反应过程,生态系统中的人口分布,环境保护问题,乃至交通运输、城市发展等课题。

耗散结构理论

耗散结构理论是指用热力学和统计物理学的方法,研究耗散结构形成的条件、机理和规律的理论。

耗散结构理论的创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面的贡献,他荣获了1977年诺贝尔化学奖。普里戈金的早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础。普里戈金以多年的努力,试图把最小熵产生原理延拓到远离平衡的非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别。以普里戈金为首的布鲁塞尔学派又经过多年的努力,终于建立起一种新的关于非平衡系统自组织的理论──耗散结构理论。这一理论于1969年由普里戈金在一次“理论物理学和生物学”的国际会议上正式提出。

耗散结构理论提出后,在自然科学和社会科学的很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响。著名未来学家阿尔文·托夫勒在评价普里戈金的思想时,认为它可能代表了一次科学革命。

耗散结构理论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变。

(1)远离平衡态

远离平衡态是相对于平衡态和近平衡态而言的。平衡态是指系统各处可测的宏观物理性质均匀(从而系统内部没有宏观不可逆过程)的状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内能的增量等于系统所吸收的热量减去系统对外所做的功;热力学第二定律:dS/dt>=0,即系统的自发运动总是向着熵增加的方向;和波尔兹曼有序性原理:pi=e-Ei/kT,即温度为T的系统中内能为Ei的子系统的比率为pi.

近平衡态是指系统处于离平衡态不远的线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理。前者可表述为:Lij=Lji,即只要和不可逆过程i相应的流Ji受到不可逆过程j的力Xj的影响,那么,流Ji也会通过相等的系数Lij受到力Xi的影响。后者意味着,当给定的边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)的态。

远离平衡态是指系统内可测的物理性质极不均匀的状态,这时其热力学行为与用最小熵产生原理所预言的行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出的,系统走向一个高熵产生的、宏观上有序的状态。

(2)非线性

系统产生耗散结构的内部动力学机制,正是子系统间的非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新的耗散结构分支上。

(3)开放系统

热力学第二定律告诉我们,一个孤立系统的熵一定会随时间增大,熵达到极大值,系统达到最无序的平衡态,所以孤立系统绝不会出现耗散结构。那么开放系统为什么会出现本质上不同于孤立系统的行为呢?其实,在开放的条件下,系统的熵增量dS 是由系统与外界的熵交换deS和系统内的熵产生diS两部分组成的,即:dS=deS+diS 热力学第二定律只要求系统内的熵产生非负,即diS>=0,然而外界给系统注入的熵deS可为正、零或负,这要根据系统与其外界的相互作用而定,在deS<0的情况下,只要这个负熵流足够强,它就除了抵消掉系统内部的熵产生diS外,还能使系统的总熵增量dS为负,总熵S减小,从而使系统进入相对有序的状态。所以对于开放系统来说,系统可以通过自发的对称破缺从无序进入有序的耗散结构状态。

(4)涨落

一个由大量子系统组成的系统,其可测的宏观量是众多子系统的统计平均效应的反映。但系统在每一时刻的实际测度并不都精确地处于这些平均值上,而是或多或少有些偏差,这些偏差就叫涨落,涨落是偶然的、杂乱无章的、随机的。

在正常情况下,由于热力学系统相对于其子系统来说非常大,这时涨落相对于平均值是很小的,即使偶尔有大的涨落也会立即耗散掉,系统总要回到平均值附近,这些涨落不会对宏观的实际测量产生影响,因而可以被忽略掉。然而,在临界点(即所谓阈值)附近,情况就大不相同了,这时涨落可能不自生自灭,而是被不稳定的系统放大,最后促使系统达到新的宏观态。

当在临界点处系统内部的长程关联作用产生相干运动时,反映系统动力学机制的非线性方程具有多重解的可能性,自然地提出了在不同结果之间进行选择的问题,在这里瞬间的涨落和扰动造成的偶然性将支配这种选择方式,所以普里戈金提出涨落导致有序的论断,它明确地说明了在非平衡系统具有了形成有序结构的宏观条件后,涨落对实现某种序所起的决定作用。

(5)突变

阈值即临界值对系统性质的变化有着根本的意义。在控制参数越过临界值时,原来的热力学分支失去了稳定性,同时产生了新的稳定的耗散结构分支,在这一过程中系统从热力学混沌状态转变为有序的耗散结构状态,其间微小的涨落起到了关键的作用。这种在临界点附近控制参数的微小改变导致系统状态明显的大幅度变化的现象,叫做突变。耗散结构的出现都是以这种临界点附近的突变方式实现的。

一座城市不断有人外出和进入,生产的产品和原料也要川流不息地运人及运出。这种与外界环境自由地进行物质、能量和信息交换的系统,称为开放系统。当开放系统内部某个参量的变化达到一定阈值时,它就可能从原来无序的混乱状态,转变为一种在时间上、空间上和功能上的有序状态,即耗散结构。如一壶水放在火炉上,水温逐渐升高,但水开后水蒸气不断蒸发,壶中的水和空气就形成了一个开放系统,带走了火炉提供的热量,水温不再升高,达到了一种新的稳定状态。

耗散结构理论中的“开放”是所有系统向有序发展的必要条件。如一个企业只有开放才能获得发展,这种开放不仅是输出产品,输入原料,而且涉及人才、技术和管理等方面。不断引进入才和技术,不断更新设备,才能使企业充满生机和活力。

发现

耗散结构理论是由I·Prigogine(1917——)在1969年首次提出的一种新型的理论。并于1977年获得诺贝尔化学奖。

【耗散结构理论与医学】

1 人体能够形成和保持耗散结构

耗散结构,是普利高津在研究不违背热力学第二定律情况下,如何阐明生命系统自身的进化过程时提出的新概念。什么是耗散结构?用通俗的话来讲,就是一个远离平衡的包含有多组分多层次的开放系统,在外界条件变化达到一定阈值时,经“涨落”的触发,量变可能引起质变;系统通过不断与外界进行物质和能量交换,在耗散过程中产生负熵

流,就可能从原来的无序状态转变为一种时间、空间或功能的有序状态。这种非平衡态下形成的新的有序结构,就是耗散结构。

普利高津本人曾对耗散结构形成的条件,作过简单通俗的说明。他写道:“生物和社会组织包含着一种新型的结构,……社会和生物的结构的一个共同特征是它们产生于开放系统,而且这种组织只有与周围环境的介质进行物质和能量的交换才能维持生命力。然而,只是一个开放系统并没有充分的条件保证实现这种结构。只有在系统保持“远离平衡”和在系统内的不同元素之间存在着“非线性”的机制的条件下,耗散结构才能实现”[1]。显然,人既有生物的属性,又有社会的属性,人的生命过程既参与生物运动,也参与社会运动,更具备形成耗散结构的条件。

首先,生命的本质在于运动。人体是一个远离平衡的系统,它需要保持动态平衡才能存在。平衡就意味着生命的终止。兴奋和抑制、收缩和舒张平衡了,心跳也就停止了。动脉、静脉各部分血压平衡了,毛细血管有效过滤压等于零,物质交换也就没有了。细胞内液与外液中的Na+、K+的浓度是非平衡的,神经细胞膜内K+浓度为膜外30倍,膜外Na+浓度为膜内12倍,这种离子浓度非平衡,对细胞的兴奋及机能是必要的。如果离子浓度平衡,生物电就消失,细胞功能也就丧失。其次,人体又是一个包含有多子系统多层次的复杂开放系统。从横向看,包括骨胳、肌肉、神经、消化、呼吸、泌尿生殖系统等子系统。从纵向看,包括群体、个体、器官、组织、细胞、亚细胞、分子、量子等层次。此外,还有与上述要求有关又自成一体的免疫系统,等等。而且各子系统之间、各层次之间存在着复杂的联系和相互作用。人既要吃、喝、吸气,又要拉、撤、呼气,因而是一个开放系统。机体走向封闭,就会生病甚至死亡。中医所说“不通则痛”就是这个道理。再次,人体内各元素之间存在非线性机制。所谓非线性,是指引起系统处于非平衡状态的复杂过程的,主要不是逐步演变的扩散型,而是产生突变(或质变)的化学反应型。人体生理病理转化过程中,存在大量通过爆发性涨落而摆脱连续性的情况。即使是最简单的细胞中,正常的新陈代谢也要引起无数个偶合的化学反应;新陈代谢还要有特定的酶。因此,正常人体是离不开非线性机制的。最后,人体生命现象中,还大量存在时间节律和周期行为。所以,人体能够形成和保持耗散结构。

生命不仅仅表现为终究要死亡,要从有序走向无序,而且在于它要努力避免很快地衰退为惰性的平衡。因此,从某种意义上说,人体时刻都处在有序无序有序的转化过程中。在正常生理过程,机体内部借助新陈代谢的作用,把细胞或机体中陈旧、多余的或有害的物质分解,把衰老、垂死的或受伤的组织成分拆除,释放其中的能量,使机体内部有序结构不断遭到破坏,这可以说是人体自身产生的正熵,由于正熵存在,机体由有序

趋向无序。但与此同时,机体又通过合成代谢,从外界吸收物质和能量,引进负熵,建造自身结构所需要的组织成分,以替代被拆除的组织成分,产生新的更高层次的有序状态,

使无序趋向有序,从而使机体保持正常的生命活动。机体这种相对稳定有序是通过自身调控机制实现的。一旦致病因素造成调控机制混乱,机体与外界进行物质、能量、信息交换发生障碍,系统内正熵增加,有序性遭到破坏,积累到一定的阈值,经涨落触发,就会从有序变为无序,这就是病态。疾病的医治实际上是通过强化输入负熵流防止输

入正熵,并促进机体远离平衡以达到系统熵增为负或正熵不大的低熵有序状态,从而消除疾病,转为健康。

2 耗散结构理论对医学的启示

耗散结构理论试图认识自组织的机制和规律,即有序和无序相互转化的机制和条件问题。“医学是认识、保持和增强人类健康,预防和治疗疾病,促使机体康复的科学知识体系和实践活动”[2]。其首要任务是认识健康和疾病转化的机制和条件问题。因而,二者是一致的。前者对后者必定具有启迪和借鉴作用。

2.1 耗散结构理论可以深刻揭示人体的统一性及其与外界因素的统一性,为医学模式转变提供理论依据。因为,这一理论用整体观研究生命现象,并且认为只有开放的、能与外界进行物质、能量、信息交换的系统,才能形成稳定的有序结构。人体正是这样的系统。但是,传统生物医学模式忽视了人的社会性和心理因素的影响,对生理病理过程的考察往往带有封闭或半封闭性质,而且使用的是脱离整体联系发展的孤立、静止研究方法。这就使得它不可能正确反映和解决作为开放系统的人体稳定、有序、健康问题,因而不可避免地要被新的医学模式所代替。所以,医务工作者掌握耗散结构观点,首先有助于实现从生物医学向生物、心理、社会医学模式转变。其次,有助于临床工作中,系统整体思维和全方位立体思维的形成和运用。此外,人体有序、健康的形成和保持,实际上是多组分多层次的人体系统为主体和物质基础,以与外界交换所得能量为动力,以来自内部信息为指令,以神经体液为调控手段,以时空或功能有序为目标的

自组织过程。因此,耗散结构理论的提出,使系统科学方法变得更加完善,其应用于人体生理病理过程的解释,必将进一步推动现代医学的发展。

2.2 耗散结构理论提出“非平衡是有序之源”的观点,对纠正“平衡有序”观念和贯彻积极治疗,推动有关非平衡区生命稳定有序的研究,对搞好防病治病有着重要意义。

非平衡,不是不平衡,也不是平衡,而是巨涨落前的远离平衡态,是处于失稳临界点

附近没有超过临界点的稳态。与此相对应,失稳包括两方面,一是因平衡变为不平衡而失稳,如细胞外液pH值过高过低将导致碱中毒或酸中毒。二是不平衡趋向平衡而失稳,如细胞外液钾浓度增高,而致高血症;各种组织中较特异酶谱由区别而趋向一致性,意

味着癌症出现。所以,现代医学强调的是动态平衡。然面,我们许多医务工作者在实践中,努力纠正不平衡的同时,往往不自觉地走向另一极端追求平衡。而且忽视了心理,社会动态平衡对健康的意义,这对实践是有害的。实践告诉我们,难治性心力衰竭一类顽症之所以难治,就在于只引入负熵流(即各种改善心衰的措施,包括药物等)并不一定能刺激机体达到临界点,要使机体完成“无序→有序”的跃进,必须使机体远离平衡即机体要有相当的自身活力和抵抗力,通过涨落达到临界点才能使新的跃进完成,使机体从无序状态恢复到有序状态。所以,我们必须注意,治疗中不能单纯依靠药物等一系列外来因素的作用,还必须大力提高患者的整体机能,包括非药物的心理治疗,排除影响机体

机能恢复的各种干扰[3]。

同时,耗散结构理论的提出,推动医学工作者进一步从各方面探索处于非平衡区生命系统稳定、有序、健康的维持问题。诸如什么是稳态?有什么抗干扰的特性?失稳的临界点在哪里?在什么条件下,通过什么方式,人体有序变无序,稳态变失稳?在失稳、生

病后在什么条件下,通过什么方式恢复稳态、健康?等等。这对提高医疗卫生工作质量无疑是有益的。例如,布鲁塞尔学派对肿瘤免疫的研究,就属于抗干扰特性研究的一部分。该派倾向于细胞免疫起主要作用。体外实验表明,效应细胞每次可以与一个或几个肿瘤细胞结合然后分解为原来形式的效应细胞和失去复制能力的死亡肿瘤细胞。布鲁塞尔学派为此建立起肿瘤生长的数学模型。在对这一模式的求解中,它给出何种条件肿瘤会长大或抑制,即在某些条件下,小于临界大小的肿瘤将消失,大于临界大小的

肿瘤则长大。在另一些条件下,埋没肿瘤中的正常组织若大于一定临界大小时会不断长大,从而摆脱癌状态,反之若该正常组织过小则会为肿瘤组织所吞没。该模型给出的肿瘤细胞数的时间振荡行为与临床观察一致”[4]。这样的探讨,对临床上因势利导防治肿瘤就很有价值。又如,临界点问题,不但研究稳态的生物(或理化)临界点,而且研究心理、社会临界点,以及对临界值随年龄、性别,特别是作用因素的量与时间两者关系所决定的个体适应与不适应之间的差异,这些对医学理论和实践都有着十分重要的意义。此外,掌握“非平衡是有序之源”的观点,还有助于动态思维的形成。

2.3 “非线性”理论对医学实践有着重要的启迪和借鉴作用。系统的不同元素之间存在着非线性机制,是耗散结构形成的重要条件之一。多组分多层次的开放系统只有处于远离平衡的非线性区,才有可能经涨落的触发,从无序突变为稳定的有序的时空结构。非线性区有两个特征:一是突变、飞跃的临界点所在,二是存在可逆和不要逆的两种不同趋势。因此,掌握非线性区对医疗实践的意义是不容忽视的。例如,在每一个正常子宫颈粘膜上皮细胞中46个染色体,当细胞中染色体数量略有增加或减少,并出现畸形时,正常细胞就变成了间变细胞。间变阶段是正常细胞向癌变细胞转变的中间阶段,亦即非线性区,它存在着可逆和不可逆两种趋势。如经过积极治疗,染色体数量恢复正常,“间变”就消失,变成正常细胞;如遇到延缓治疗或治疗不当等种种不利条件,染色

体数量就会剧增,若每个细胞中的染色体增至六十到九十个时,间变就发生癌变。所以认识到这一点,定期检查,早期发现间变细胞,就可以采取措施,阻止间变向癌变发展,预防宫预癌发生。医务工作者必须树立防重于治的思想,努力掌握各种疾病的非线性区,把好病理性质变这道最后防线。

耗散结构理论关于生命系统进化过程中的非线性涨落的作用,与医学实践中生理和病理相互转化中涨落的作用有所不同(前者是单向的、积极的;后者是双向的,利弊兼有的)。但可以启发医务工作者在实践中,因势利导,尽可能防止和减少涨落的破坏作用,充分利用其积极作用,更好地防病治病。耗散结构理论指出:“生命的保持和发育是跟大量的化学反应和运转现象分不开的。是由许多高度非线性的复杂因素,如激活、抑制、直接的自身催化等连锁制约的”[5]。这就告诉我们,尽管研究病因要从生物、理化、心理、社会等多方面着手;认识疾病的本质要从各个层次上进行探索,但作为生命有机体的线性机制,首先存在于微观层次中,并主要通过微观层次表现出来。因此,我们无论考察生理向病理转化,还是病理向生理复归的量变质变过程,都应把重点放在微观层次上,坚持微观深层导向性。这不是回到片面强调理化指标为依据,着重分析的还原论老路上去,而是要走向综合兼容辩证还原的新思维方式。

综上所述,耗散结构理论可以为医学提供启迪和借鉴作用。诚然,不应夸大它的作用。只有把它与系统科学方法的其他理论(系统论、信息论、控制论、协同论、超循环论、突变论等)结合起来,才能充分发挥其应有的作用。

自组织与耗散结构

--摘自:方舟冲浪

自组织现象是指自然界中自发形成的宏观有序现象。在自然界中这种现象是大量存在的,理论研究较多的典型实例如:贝纳德(Bé nard)流体的对流花纹,贝洛索夫-扎鲍廷斯基(Belousov-Zhabotinsky)化学振荡花纹与化学波,激光器中的自激振荡等。自组织理论除耗散结构理论外,还包括协同学、超循环理论等,它们力图沟通物理学与生物学甚至社会科学,对时间本质问题等的研究有突破性进展,在相当程度上说明了生物及社会领域的有序现象。

耗散结构是自组织现象中的重要部分,它是在开放的远离平衡条件下,在与外界交换物质和能量的过程中,通过能量耗散和内部非线性动力学机制的作用,经过突变而形成并持久稳定的宏观有序结构。

耗散结构理论的创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面的贡献,他荣获了1977年诺贝尔化学奖。普里戈金的早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础。普里戈金以多年的努力,试图把最小熵产生原理延拓到远离平衡的非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别。以普里戈金为首的布鲁塞尔学派又经过多年的努力,终于建立起一种新的关于非平衡系统自组织的理论──耗散结构理论。这一理论于1969年由普里戈金在一次“理论物理学和生物学”的国际会议上正式提出。

耗散结构理论提出后,在自然科学和社会科学的很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响。著名未来学家阿尔文·托夫勒在评价普里戈金的思想时,认为它可能代表了一次科学革命。

耗散结构理论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结

构”(dissipative structure)。[5]可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变。

(1)远离平衡态

远离平衡态是相对于平衡态和近平衡态而言的。平衡态是指系统各处可测的宏观物理性质均匀(从而系统内部没有宏观不可逆过程)的状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内

能的增量等于系统所吸收的热量减去系统对外所做的功;热力学第二定律:dS/dt>=0,即系统的自发运动总是向着熵增加的方向;和波尔兹曼有序性原理:p i=e-Ei/kT,即温度为T的系统中内能为E i的子系统的比率为p i.

近平衡态是指系统处于离平衡态不远的线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理。前者可表述为:L ij=L ji,即只要和不可逆过程i相应的流J i受到不可逆过程j的力X j 的影响,那么,流J i也会通过相等的系数L ij受到力X i的影响。后者意味着,当给定的边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)的态。

远离平衡态是指系统内可测的物理性质极不均匀的状态,这时其热力学行为与用最小熵产生原理所预言的行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出的,系统走向一个高熵产生的、宏观上有序的状态。

(2)非线性

系统产生耗散结构的内部动力学机制,正是子系统间的非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新的耗散结构分支上。

(3)开放系统

热力学第二定律告诉我们,一个孤立系统的熵一定会随时间增大,熵达到极大值,系统达到最无序的平衡态,所以孤立系统绝不会出现耗散结构。那么开放系统为什么会出现本质上不同于孤立系统的行为呢?其实,在开放的条件下,系统的熵增量dS是由系统与外界的熵交换d e S和系统内的熵产生d i S两部分组成的,即:dS=d e S+d i S

热力学第二定律只要求系统内的熵产生非负,即d i S>=0,然而外界给系统注入的熵d e S可为正、零或负,这要根据系统与其外界的相互作用而定,在d e S<0的情况下,只要这个负熵流足够强,它就除了抵消掉系统内部的熵产生d i S外,还能使系统的总熵增量dS为负,总熵S减小,从而使系统进入相对有序的状态。所以对于开放系统来说,系统可以通过自发的对称破缺从无序进入有序的耗散结构状态。

(4)涨落

一个由大量子系统组成的系统,其可测的宏观量是众多子系统的统计平均效应的反映。但系统在每一时刻的实际测度并不都精确地处于这些平均值上,而是或多或少有些偏差,这些偏差就叫涨落,涨落是偶然的、杂乱无章的、随机的。

在正常情况下,由于热力学系统相对于其子系统来说非常大,这时涨落相对于平均值是很小的,即使偶尔有大的涨落也会立即耗散掉,系统总要回到平均值附近,这些涨落不会对宏观的实际测量产生影响,因而可以被忽略掉。然而,在临界点(即所谓阈值)附近,情况就大不相同了,这时涨落可能不自生自灭,而是被不稳定的系统放大,最后促使系统达到新的宏观态。

当在临界点处系统内部的长程关联作用产生相干运动时,反映系统动力学机制的非线性方程具有多重解的可能性,自然地提出了在不同结果之间进行选择的问题,在这里瞬间的涨落和扰动

造成的偶然性将支配这种选择方式,所以普里戈金提出涨落导致有序的论断,它明确地说明了在非平衡系统具有了形成有序结构的宏观条件后,涨落对实现某种序所起的决定作用。

(5)突变

阈值即临界值对系统性质的变化有着根本的意义。在控制参数越过临界值时,原来的热力学分支失去了稳定性,同时产生了新的稳定的耗散结构分支,在这一过程中系统从热力学混沌状态转变为有序的耗散结构状态,其间微小的涨落起到了关键的作用。这种在临界点附近控制参数的微小改变导致系统状态明显的大幅度变化的现象,叫做突变。耗散结构的出现都是以这种临界点附近的突变方式实现的。

比利时布鲁塞尔学派领导人普里高京于1967年在第一届理论物理与生物学国际会议上发表了名为《结构、耗散和生命》的论文,正式提出了耗散结构理论。普里高京因此获得了诺贝尔奖。

耗散结构理论指出:一个开放系统(无论是力学的、物理的、化学的还是生物的乃至社会的经济的系统)处在远离平衡态的非线性区域,当系统的某个参数变化到达一定的的临界值(阈值)时,通过涨落,系统发生突变,即非平衡相变,其状态可能从原来的混乱无序的状态转变到一种在时间上、空间上或功能上有序的新状态,这种新的有序结构(耗散结构)需要系统不断的与外界交换物质和能量才能得以维持并保持一定的稳定性,且不会因外界的微小扰动而消失。

耗散结构有四个条件:(1)系统必须是开放的,(2)系统必须处于远离平衡态,(3)系统内部存在非线性的相互作用,(4)涨落导致有序。

自然界的生物种类极其繁多,形态各异,功能复杂,构成了绚丽多彩的生物世界。同时生物界也是自然界中最富有生气和最具神秘感的领域。孤立系统不能产生有序结构,因为根据热力学第二定律,孤立系统的熵是永不减少的。因此耗散结构一定产生于开放系统,必须存在由环境流向系统的负熵流,而且能够抵消掉系统自身的熵增,才能使系统的熵减小,有序度增加。玻尔兹曼原理虽对解释平衡结构是成功的,却无法用来说明非平衡的有序结构,对于平衡态系统各个微观组态是等概率出现的,对于生物体,它是由分子、细胞、组织、器官、个体、群体按各种要求与层次组成的,在各层次上都表现出有序性,因此自组织现象(尤其是生命现象)只能在远离平衡态的条件下生存。因此普里高京认为,非平衡是有序之源。从系统内部组织的相互作用和动力学行为来看,能形成耗散结构的系统以及其演化过程所服从的动力学方程都是非线性的。在一些自组织现象如贝纳德流、激光、化学振荡的出现都是伴随着对称性破缺的突变现象,这些系统经历对称性破缺形成时空有序结构是自发进行的。涨落是指系统中某个变量和行为对平均值所发生的偏离,它使系统离开了原来的状态或轨道。对稳定系统来说,涨落是一种干扰,它引起系统的无序,这时系统有抗干扰能力,迫使涨落衰减,如果系统处在不稳定的临界状态,小的涨落不仅不会衰减,反而会被放大,驱动系统从不稳定状态跃迁到一个新的有序状态。这就是耗散结构强调的“涨落导致有序”。

普里高京学派认为,自组织是这样形成的:首先是系统内部的功能(即系统内部所包含的非线性、自催化、反馈机制等),由于这种功能,当系统离开平衡时,其无序状态会失去稳定性,另一方面是时空或功能结构,当无序状态失稳时,系统的功能所容许的有序结构是稳定的,最后一方面是涨落,当无序状态失稳后,涨落扮演了扰动的角色,促使系统从无序状态跃迁到有序状态。

总之,所谓自组织过程是指系统内部具有一定功能的开放系统在远离平衡态时,因其无序状态的失稳,在系统内部涨落的驱动下转变为宏观尺度上稳定的时间、空间或功能结构的过程。形成的结构称作耗散结构,它必须在系统不断与外界交流物质、能量的条件下才能维持。自组织必定是由系统内部的功能而自发形成的,外界之提供一定的条件而不进行直接的干预与安排。

自然界的美、自然界的结构与和谐性不是上帝创造的,而是自组织的结果。在研究结构起源时有两种趋势,一是着眼个体,将万物分解为基本的单元,如将晶体分解为分子、原子、原子核、电子、中子、质子、夸

克等,或将生物体分解为器官、组织、细胞、细胞膜、细胞核、分子、原子等,这种方法取得了巨大的成功。另一种趋势是强调事物的整体性,即亚里士多德强调的整体大于部分的总和,即研究系统各部分的联系与相互作用对整体的影响,这种方法正在迅速发展。

谈到这里,也许许多人会对世界的复杂性有了一定程度的认识,也似乎在告诉我们,任何宏观物质都是极为复杂的,那种在数学上的理想化方程与物理上的理想化模型一定会或多或少的与事实存在偏差。然而,实验再一次证明,理想化模型在现实世界里的确是存在的,而且一度成为科学前沿,经久不衰,并有几位研究者获得了诺贝尔奖……

耗散结构(dissipative structure) 关于“耗散结构”的理论是物理学中非平衡统计的一个重要新分支,是由比利时科学家伊里亚·普里戈津(I.Prigogine)于20世纪70年代提出的,由于这一成就,普里戈津获1977年诺贝尔化学奖。差不多是同一时间,西德物理学家赫尔曼·哈肯(H.Haken)提出了从研究对象到方法都与耗散结构相似的“协同学”(Syneraetics),哈肯于1981年获美国富兰克林研究院迈克尔逊奖。现在耗散结构理论和协同学通常被并称为自组织理论。我们首先从几个例子看一下究竟什么是耗散结构。天空中的云通常是不规则分布的,但有时蓝天和白云会形成蓝白相间的条纹,叫做天街,这是一种云的空间结构。容器装有液体,上下底分别同不同温度的热源接触,下底温度较上底高,当两板间温差超过一定阈值时,液体内部就会形成因对流而产生的六角形花纹,这就是著名的贝纳德效应,它是流体的一种空间结构。在贝洛索夫—一萨波金斯基反应中,当用适当的催化剂和指示剂作丙二酸的溴酸氧化反应时,反应介质的颜色会在红色和蓝色之间作周期性变换,这类现象一般称为化学振荡或化学钟,是一种时间结构。在某些条件下这类反应的反应介质还可以出现许多漂亮的花纹·,此即萨波金斯基花纹,它展示的是一种空间结构。在另外一些条件下,萨波金斯基花纹会成同心圆或螺旋状向外扩散,象波一样在介质中传播,这就是所谓化学波,这是一种时间一一空间结构。诸如此类的例子很多,它们都属于耗散结构的范畴。为了从各不相同的耗散结构实例中找出其本质的特征和规律,普里戈津学派研究了非平衡热力学,继承和发展了前人关于物理学中相变的理论,运用了当代非线性微分方程以及随机过程的数学知识,揭示出耗散结构有如下几方面的基本特点。

首先,产生耗散结构的系统都包含有大量的系统基元甚至多层次的组分。贝纳德效应中的液体包含大量分子。天空中的云包含有由水分子组成的水蒸气、液滴,水晶和空气,因而是含有多组分多层次的系统。至于贝洛索夫——萨波金斯基反应,其中不仅含有大量分子原子和离子,并且有许多化学成分。不仅如此,在产生耗散结构的系统中,基元间以及不同的组分和层次间还通常存在着错综复杂的相互作用,其中尤为重要的是正反馈机制和非线性作用。正反馈可以看作自我复制自我放大的机制,是“序”产生的重要因素,而非线性可以使系统在热力学分支失稳的基础上重新稳定到耗散结构分支上。

第二,产生耗散结构的系统必须是开放系统,必定同外界进行着物质与能量的交换。天街中的云一定会和周围的大气和云进行物质交并和外界进行能量交换。如欲维持贝洛索夫一萨波金斯基反应中的时间、空间,时间——空间结构,则需不断地向进行反应的容器中注入所需的化学物质,这正是系统与外界的物质交换。耗散结构之所以依赖于系统开放,是因为根据热力学第二定律,一个孤立系统的熵要随时间增大直至极大值,此时对应最无序的平衡态,也就是说孤立系统绝对不会出现耗散结构。而开放系统可以使系统从外界引入足够强的负熵流来抵消系统本身的熵产生而使系统总熵减少或不变,从而使系统进入或维持相对有序的状态。

第三,产生耗散结构的系统必须处于远离平衡的状态。为了简单说朋问题,先举一个有关平衡状态的例子。假定暖水瓶是完全隔热的,里边放入温水,盖上瓶塞,其中的水不再受外界任何影响,最后水就进入一种各处温度均匀,没有宏观流动和翻滚且不再随时间改变的状态,叫平衡态,相应的结构称为平衡结构。根

据热力学理论,在这种状态下是不可能出现任何耗散结构的。如果把瓶塞打开,用细棒搅拌瓶中的水,这时系统内发生翻滚流动,脱离平衡态。但若重新盖上瓶塞,经过足够长时间,系统又将不可避免的驰豫到新的平衡态,仍不会有耗散结构。这表明系统虽走出了平衡态,但离开平衡态不够“远”。要想使系统产生耗散结构,就必须通过外界的物质流和能量流驱动系统使它远离平衡至一定程度,至少使其越过非平衡的线性区,即进入非线性区。最明显的例子是贝纳德效应,若上下温差很小,不会出现六角形花纹,表明系统离开平衡态不够远。待温差达到一定程度,即离开平衡态足够远,才发生贝纳德对流。这里强调指出,耗散结构与平衡结构有本质的区别。平衡结构是一种“死”的结构,它的存在和维持不依赖于外界、而耗散结构是个“活”的结构,它只有在非平衡条件下依赖于外界才能形成和维持。由于它内部不断产生熵,就要不断地从外界引入负熵流,不断进行“新陈代谢”过程,一旦这种“代谢”条件被破坏,这个结构就会“窒息而死”。所有自然界的生命现象都必须用第二种结构来解释。

第四,耗散结构总是通过某种突变过程出现的,某种临界值的存在是伴随耗散结构现象的一大特征,如贝纳德对流,激光,化学振荡均是系统控制参量越过一定阈值时突然出现的。最后,耗散结构的出现是由于远离平衡的系统内部涨落被放大而诱发的。什么是涨落呢?举个例子,密闭容器内的气体,如果不受周围环境的影响或干扰,就会像前面所说的那样达到平衡态,不难想象,这时容器内各处气体的密度是均匀的。然而由于大量气体分子作无规则热运动而且相互碰撞,可能某瞬时容器内某处的密度略微偏大,另一瞬时又略微偏小,即密度在其平均值上下波动。这种现象就叫涨落。如果仅限于讨论处于平衡态气体内部的涨落,意义并不十分大。虽然无规则运动和碰撞的存在将不时产生相对于平衡的偏差。但由于同样的原因这种偏差又不断地平息下去,从而平衡得以维持。在远离平衡时,意义就完全不同了,微小的涨落就能不断被放大使系统离开热力学分支而进入新的更有序的耗散结构分支。涨落之所以能发挥这么大的作用是因为热力学分支的失稳已为这一切准备好了必要的条件,涨落对系统演变所起的是一种触发作用。

综述以上各点概括起来说,所谓耗散结构就是包含多基元多组分多层次的开放系统处于远离平衡态时在涨落的触发下从无序突变为有序而形成的一种时间,空间或时间——空间结构。耗散结构理论的提出对当代哲学思想产生了深远的影响,该理论引起了哲学家们的广泛注意。在耗散结构理论创立前,世界被一分为二:其一是物理世界,这个世界是简单的、被动的、僵死的,不变的可逆的和决定论的量的世界;另一个世界是生物界和人类社会,这个世界是复杂的、主动的、活跃的、进化的,不可逆和非决定论的质的世界。物理世界和生命世界之间存在着巨大的差异和不可逾越的鸿沟,它们是完全分离的,从而伴随而来的是两种科学,两种文化的对立。而耗散结构理论则在把两者重新统一起来的过程中起着重要的作用。耗散结构理论极大地丰富了哲学思想,在可逆与不可逆,对称与非对称,平衡与非平衡,有序与无序、稳定与不稳定,简单与复杂,局部与整体,决定论和非决定论等诸多哲学范畴都有其独特的贡献。耗散结构理论可以应用于研究许多实际现象。上面所谈的“天街、贝纳德效应以及贝洛索夫——萨波金斯基反应分别属于物理和化学范畴,值得提到的是在生命现象中也包含有多层次多组分,例如从种群、个体、器官、组织、细胞以及于生物分子,各层次间以及同一层次的各种组分间存在着更为复杂的相互作用。生命系统需要新陈代谢,因而必定是开放系统。再者生命系统必然是远离平衡的。因此生命系统成为耗散结构理论应用的对象是十分自然的。这方面目前取得较多进展的有动物体内释放能量的生化反应糖酵解的时间振荡,还有关于肿瘤免疫监视的问题以及一些生态学中的问题。

从广义讲,人类社会也是远离平衡的开放系统。因此,像都市的形成发展,城镇交通,航海捕鱼,教育经济问题等社会经济问题也可作为耗散结构理论应用的领域。耗散结构理论自提出以来,一直在理论和实际应用两个方面同时拓展,今后的发展也可望顺着这个路子往下走。因为并非一切远离平衡的复杂性开放系统的行为都可以归纳为耗散结构,所以,作为更高层次的一般研究复杂系统的系统科学的一个分支理论,面对纷繁复杂的实际世界,其未来充满挑战,也面对机会,可谓任重道远。

耗散结构理论的自组织方法论研究

耗散结构理论的自组织方法论研究 论文标题:耗散结构理论的自组织方法论研究 论文作者吴彤 论文关键词耗散结构/耗散结构理论特征概念/耗散结构概念方法论,论文来源科学技术 与辩证法,论文单位太原,点击次数452,论文页数19~24页1999年1999月论文免费下载https://www.doczj.com/doc/2b18056545.html,/paper_90071101/ 本文研究和区分了耗散结构创始人创立耗散结构的方法与研究耗散结构的方法:建立了耗散结构概念方法论的方法程序。 普里戈金创立了耗散结构理论,今天看来,这个理论在解决什么情况或条件下可以、可能出现耗散结构的问题具有重要的方法论意义。更宽泛地说,该理论在运用何种方法可以判断一个体系可以从无序的状态自发地、自主地演化成为有序结构方面,作出了重要贡 献。 以往,在研究自组织方法论本来不多的国内文献中,常常把两个方面的东西混同起来。即,第一,把自组织的方法与它对唯物辩证法的意义混同起来,用对唯物辩证法的意义代替对自组织的方法的分析;第二,把自组织理论创始人建立理论的方法与理论寻找和发现自组织系统建立、发展的方法混同起来。例如有的同志在文中,仅仅讨论自组织方法论的意义与作用,而没有讨论什么是自组织方法论。似乎什么是自组织方法论已经被确切了解和掌握,不用讨论。然而他们关于自组织方法论的意义讨论却很泛泛,只是在那里谈自组织方法对唯物辩证法有何意义之纭纭。(注:见艾众:“自组织理论方法论”,《天府新论》,1991年第6期。)有鉴于此,本文将对耗散结构理论创始人建立耗散结构理论的方法、耗散结构理论的“发现”(其实是研究什么条件下可以出现)、“耗散结构”方法和该方法论的意义做出明确区分,并对它们做出进一步的讨论。 一耗散结构创始人建立耗散结构理论的方法与思想 1.从可逆到不可逆:反常问题、哲学启迪和范式影响(注:见普里戈金的自传“我的科学生活”,《普利高津与耗散结构理论》,陕西科学技术出版社,1982年版。)按照库恩的科学革命的观点,普里戈金从事科学事业的时段已经是物理学的范式从牛顿转变到了爱因斯坦以后的时代。但是,在物理化学领域这个转变却远远没有完成。其中 最重要的,就是人们还习惯于把 可逆问题的研究当作“库恩范式”下的常规科学问题研究,而把不可逆问题当作“干扰”和令人厌恶的有害因素对待。克劳修斯与达尔文的矛盾,对十九世纪的以平衡态热力学和生物进化论为代表的常规科学,虽然一直就是一个演化方向的矛盾,是一个库恩意义上的反常,但是由于它们是在两个不同领域出现的,因而一直被科学家们搁置起来,不予理睬。同时也存在

应用耗散结构理论对

应用耗散结构理论对 人地关系的重新认识 蓝文亮(学号54) (福建师范大学地理科学学院01级地本,福州 350007) 摘要:人地关系历来是地理学研究的核心问题,随着社会的进步、文明的发展,人类日益重视这 个问题,本文回顾了人地关系的不同阶段的特征,并且用耗散结构理论对在人地关系第三第四阶段产生的环境问题作出了解释。然后用该理论结合一些实例提出了解决环境问题的措施。 关键词:人地关系、阶段、耗散结构理论、解释、措施 对于人地关系的研究历来是地理学研究的核心和热点问题,并且随着社会的进步、人类文明的发展,特别是工业化的前进,环境、资源问题日益突出的时代,研究人类和自然的关系变得越来越有重要和有实际意义。研究人地关系的实质是正确认识人类在自然界中地位、人类应该如何协调和自然的关系。 纵观整个人类历史,人类和自然的关系经历了四个阶段,第一阶段:农业前阶段,人类的生产力水平极其低下,使用的是石刀、石斧等来维持生计;劳动者智力水平也很低下;他们也只能靠采集、狩猎等直接从自然界获取生活的物质,因此他们的生活半径是很小的。这时人类对自然的影响很微弱,没有什么改造自然的能力,反而,他们在大自然面前总是显得无能为力,并且产生了原始的图腾崇拜。这一时期,人类只能依附自然。第二阶段:农业阶段,随着人类认识的进步,农业被人类发现,改变了人类的农业前阶段的单纯依靠自然的历史,人类有了比较稳定的生活,在大自然面前,人类不再是无能为力的角色,可以利用自然界的植物的生长规律为己所用。这一阶段是人类顺应自然阶段。总的来说,人类在这一阶段的生产力水平也是很低的,人类对自然的破坏力也是很微弱的。第三阶段:人类文明有了很大的进步,已经进入了工业化的阶段,从事工业生产必须要有一定的物质原料,工业是建立在一定数量的物质原料基础上的产业。如:炼铁业需要有铁矿石、冶炼过程中的动力源。动力源的最初是燃木头,在工业化初期,技术较低、设备较落后,他们要获得较高产量的铁产品只有依靠多炼铁矿石,随之必然要有大量的木头作为动力源来支持。这时,大量的树木被砍伐在所难免,森林资源遭到人类的破坏,从而引起水土流失,生态问题就产生了。产生这一问题的根本原因是人类对森林资源的过量开采,开采量超过了森林自身的修复能力。这是在人类改造自然阶段过程中带来的负面效应。人类遭到了自身行为的报应,这在十七世纪中业的欧洲出现了这一问题[1]。第四个阶段:后工业化时期,人类的生产力达到了一定的高度,在工业化的进程当中,人们的物质生活也获得相当程度的改善,但是这些改善人类付出了代价,这一代价并不是微乎其微的可以忽略不记的。在人类对不可更新的又不能重复利用的煤、石油、天然气等资源的使用感到有危机的时候,人类寻找了可替代的核动力资源,无可否认的这是人类使用能源历史上的一大进步,但是,事物都有二面性,核能利用带来高能的同时,丢弃的环境中的核废料有相当长的衰变期(几千年甚至上万年)在漫长的核衰变过程中的核辐射对周围环境中的生物有着致命性的伤害,还有核裂变所释放的巨大的核热能破坏了地球本身的热平衡[2]。因此,在这个阶段人类认识到了和自然和谐相处的必要性和重要性。这就是人类与自然关系发展的不同阶段。 在当今,人口、环境、资源已为全球所关注的问题。在1987年国际环境和发展委员会在其《我们共同的未来》的报告中首次对“持续发展”作出了定义。“可持性发展战略”日益得到广泛的认可!我国在1994年3月发表的《中国二十一世纪议程》(人口、环境发展的白皮书)也对“可持性发展”作出了明确的定义[3]。可见人类已认识到自觉的和自然和平相处的必要性和重要性了! 总结人类和自然的关系的四个阶段过程,人类在工业化阶段、工业后阶段都产生了环境问题。我们从深层次并且用布鲁塞尔学派的普利高津创立的耗散结构理论来解释人类发展过程中的环境问题的实质。整个自然系统是一个开放的系统,在与外界进行物质能量信息的转换过程中,其自身的混乱程度也要随之变动,即系统的总熵值ds要发生变动,其值最终取决于熵流(des)与熵产生(dis)的对比状况,在人类的自然地理系统中,当熵产生的数量积累超过了熵流的积累的时候,整个系统就破坏了,环境问题就产生了;当熵产生的积累等于熵流的积累的时候,整个自然地理系统不退化,也不进化,处于非平衡态的稳定状态,此时环境问题不会产生;当熵产生的积累小于熵流的积累的时候,整个自然地理系统已经良性发展

耗散结构简介

耗散结构简介 1自组织现象 热力学第二定律说明了孤立系统中进行的自然过程有方向性: 有序→ 无序(退化,克劳修斯提出) 自然界实际上也存在许多相反的过程: 无序→ 有序(进化,达尔文提出) 一个系统由无序变为有序的自然现象称为自组织现象。 例1:生命过程中的自组织现象 (1)蛋白质大分子链由几十种类型的成千上万个氨基酸分子按一定的规律排列起来组成。大脑是150 亿个神经细胞有规律排列组成的极精密极有序的系统,是一切计算机所替代不了的。——如看一张相片,分辨男?女?大约年龄?对带有输入“器官——眼睛”的大脑是很简单的事情,对计算机来说就非常复杂了。 假定蛋白质是随机形成的,而且每一种排列有相等的概率,那么即使每秒进行100 次排列,也要经过10109亿年才能出现一次特殊的排列。 这种有组织的排列决不是随机形成的 (2)树叶有规则的形状;动物毛皮有花纹,蜜蜂窝;龟背(空间有序)(3)候鸟的迁移;中华鲟的徊游(时间有序) 例2、无生命世界的自组织现象 (1)六角形的雪花; (2)鱼鳞状的云; (3)激光 (4)贝纳特现象(Benard) 当ΔT = T2 - T1 = 0 时平衡态 当ΔT > 0 但不太大时,稳定的非平衡态——单纯热传导 当ΔT> T c时,出现有序的宏观对流。千千万万的分子被组织起来,参加一定方式的宏观定向运动,能量得以更有效的传递。

自组织现象是与热力学第二定律的 有序 → 无序 时间箭头相矛盾的!要将它们用物理学规律统一起来,必须抓住孤立系统与开放系统的区别。 2、开放系统的熵变 热力学第二定律:孤立系统中发生的过程 ΔS > 0;但对一个开放系统,熵有可能减少! 开放系统:与外界有能量交换(通过作功、传热)或物质交换的系统。 2、1 理论上的可逆过程 状态 1 到状态 2 熵的增量 ()()21dQ S T ?=? (可逆) 对孤立系统:因绝热 ΔS = 0,熵不变 对开放系统:若单调吸热 d Q > 0,ΔS > 0 熵增加;若单调放热 d Q < 0, ΔS < 0 熵减少。 2、2 对实际的不可逆过程(上式不能用!) 利用卡诺定理可以证明 ()()()()2211dQ dQ T T >?? 或 ()()21dQ S T ?>? (可逆) (不可逆) (不可逆) 证明:

37第三代生命科学论之——人是典型的耗散结构

《第三代生命科学论》之 ——人是典型的耗散结构 作者:颜丙强张涛 人是典型的耗散结构,从耗散结构理论来理解人的开放、非平衡、负熵、物质与能量的耗散,会看到人的健康与疾病的许多纵深层面,大大地加深对于健康与疾病的深层本质的认知。 一、人具备耗散结构的严格条件 18世纪的“机器医学模式”,强调人是机器。而进入20世纪以来,科学家越来注意到人不是机器。为什么? 人不同于机器的最为深刻的本质是,人是耗散结构,而机器不是耗散结构。 机器远离耗散结构的三个基本条件: 1、它是封闭系统,不是开放系统,机器不能与环境有物质、能量交换,否则就会瓦解; 2、它是平衡系统,必须保持热力学的平衡条件,不然,机器内部和机器外部就不平衡,就发生物质与能量的交换,交换的结果就是机器的瓦解; 3、不存在非线性相互作用,不能从环境输入物质和能量转化组织为机体自身,没有负熵产生,不能自己升高有序度。 人是耗散结构的基本条件: 1、人体是开放系统,与环境有物质、能量、信息交换,一旦这些交换失常或终止,人体就失常或瓦解; 2、人体是远离热平衡的,无论在机体内部之间,还是机体与环境之间,都是非平衡的,因此才有强烈的物质、能量交换。 3、人体存在极其大量、复杂的非线性相互作用,把从环境输入的物质、能量进行多方面、多层次的转化,形成负熵产生过程,一方面建设自身、升高和保持机体的有序度,另一方面储存自由能,为生命活动提供有效能量。 二、人的生命的非平衡有序稳定 人作为典型的耗散结构,需要特别注意人的耗散结构的以下特点。 1、人的机体的稳定是高有序度的稳定。 虽然孤立地从稳定性上看,人与机器有些相似之处,但是,在稳定的有序度上,却有着天壤之别。人在分子水平、细胞水平、组织水平、器官水平、整体水平,其有序化、组织化程度之高,是迄今世界上能看到的唯一的,人的稳定性是建立在高度有序的水平上的。 2、人的机体的有序稳定是靠耗散物质、能量建立和维持的。

耗散结构理论

耗散结构 耗散结构 dissipative structures 比利时的普里戈金(I. Prigogine)从研究偏离平衡态热力学系统的输送过程入手,深入讨论离开平衡态不远的非平衡状态的热力学系统的物质、能量输送过程,即流动的过程,以及驱动此过程的热力学力,并对这些流和力的线性关系做出了定量描述,指出非平衡系统(线性区)演化的基本特征是趋向平衡状态,即熵增最小的定态。这就是关于线性非平衡系统的“最小熵产生定理”,它否定了线性区存在突变的可能性。 普里戈金在非平衡热力学系统的线性区的研究的基础上,又开始探索非平衡热力学系统在非线性区的演化特征。在研究偏离平衡态热力学系统时发现,当系统离开平衡态的参数达到一定阈值时,系统将会出现“行为临界点”,在越过这种临界点后系统将离开原来的热力学无序分支,发生突变而进入到一个全新的稳定有序状态;若将系统推向离平衡态更远的地方,系统可能演化出更多新的稳定有序结构。普里戈金将这类稳定的有序结构称作“耗散结构”。从而提出了关于远离平衡状态的非平衡热力学系统的耗散结构理论(1969年)。 耗散结构理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。 在平衡态和近平衡态,涨落是一种破坏稳定有序的干扰,但在远离平衡态条件下,非线性作用使涨落放大而达到有序。偏离平衡态的开放系统通过涨落,在越过临界点后“自组织”成耗散结构,耗散结构由突变而涌现,其状态是稳定的。耗散结构理论指出,开放系统在远离平衡状态的情况下可以涌现出新的结构。地球上的生命体都是远离平衡状态的不平衡的开放系统,它们通过与外界不断地进行物质和能量交换,经自组织而形成一系列的有序结构。可以认为这就是解释生命过程的热力学现象和生物的进化的热力学理论基础之一。 在生物学,微生物细胞是典型的耗散结构。在物理学,典型的例子是贝纳特流。广义的耗散结构可以泛指一系列远离平衡状态的开放系统,它们可以是力学的、物理的、化学的、生物学的系统,也可以是社会的经济系统。耗散结构理论的提出,对于自然科学以至社会科学,已经产生或将要产生积极的重大影响。耗散结构理论促使科学家特别是自然科学家开始探索各种复杂系统的基本规律,开始了研究复杂性系统的攀登。 远离平衡态的开放系统,通过与外界交换物质和能量,可能在一定的条件下形成一种新的稳定的有序结构。 典型的例子是贝纳特流。在一扁平容器内充有一薄层液体,液层的宽度远大于其厚度,从液层底部均匀加热,液层顶部温度亦均匀,底部与顶部存在温度差。当温度差较小时,热量以传导方式通过液层,液层中不会产生任何结构。但当温度差达到某

基于耗散结构的草原生态经济系统的动态分析

第25卷第1期干旱区资源与环境Vol.25No.1 2011年1月Journal of Arid Land Resources and Environment Jin.2011 文章编号:1003-7578(2011)01-011-04 基于耗散结构的草原生态经济系统的动态分析* 巩芳1,2,常青2,郝晓燕2,文宗川2 (1.内蒙古农业大学经管学院呼和浩特010018;2.内蒙古工业大学管理学院呼和浩特010051) 提要:以耗散结构理论为基础,草原生态经济系统为研究对象,用熵作为度量标准,从草原生态系统的冲击力、复合承载力和反馈力三个角度分析了草原生态经济系统可持续发展面临的危机与挑战,并提出了通过 构建完善的草原生态补偿机制增加草原生态经济系统的负熵流,通过转变牧区经济的发展方式,完善保护草 原生态经济系统的政策减少正熵的流入,从而实现草原生态经济系统的良性循环发展。 关键词:耗散结构;草原生态经济系统;熵理论 中图分类号:F062.2文献标识码:A 草原生态经济系统是一个开放的、非线性复杂系统,草原生态经济系统作为一个复杂系统既是自组织的,也是他组织的,是自组织与他组织的统一。文中着重研究它的自组织方面,通过分析草原生态经济系统的耗散结构特性来探索实现草原生态经济可持续发展的途径。 1耗散结构理论概述 耗散结构(Dissipative Structure)理论由普里高津(I.Prigogine)于1969年提出,是指"一个远离平衡的开放系统当外界条件达到某阈值时,量变引起质变,系统通过不断地与外界交换物质和能量,会自动出现一种自组织现象,系统的各子系统会形成一种互相协同的作用,从而可能从原来的无序状态变为一种时间、空间和功能的有序结构"。一个系统要处于耗散结构,即动态有序,必须满足以下几个条件:1)系统必须开放;2)远离平衡态;3)非线性相互作用;4)涨落现象[1]。上述条件是相互紧密联系的,根据这些条件可以把耗散结构概括为:在非平衡条件下产生的,依靠物质、能量、信息的不断输入和输出条件来维持其内部非线性相互作用的有序系统。一个系统达到生态产出最大、功能稳定和生态平衡状况时,就是该系统最高级的生态环境耗散结构。 2草原生态经济系统耗散结构特性分析 根据耗散结构理论,草原生态经济系统作为一个复杂系统符合耗散结构的特性。首先,草原生态系统是一个开放的大系统。草原生态系统与牧区经济系统、社会系统不断进行物质、能量和信息的交换,经济和社会系统不断向草原生态系统输入正或负熵流,正熵流输入导致草原生态恶化,如,过度放牧和无序开垦等;负熵流输入时草原生态得以恢复,如退耕还林(还草)等。第二,草原生态经济系统是远离平衡态的。草原生态系统中,生物气候形成的春生夏长,秋收冬眠,花开花落,四季循环,正是非平衡系统中的时、空有序态。草原生态系统是一个具有自我调节功能的系统,同时,草原生态系统受当地人口、经济、政策等诸多因素的影响和制约,这些因素导致草原生态经济系统处于远离平衡的非线性区,在与外界发生物质、能量和信息交换时,随机的突变可能导致草原生态系统结构的变化。第三,草原生态经济系统具有非线性的特征。草原生态系统包含多个自然、经济和社会子系统,这些子系统之间相互影响、相互制约的关系不 *收稿日期:2009-11-09。 基金项目:内蒙古自治区社科项目《制度创新视角下的内蒙古草原生态环境补偿机制研究》(项目批准号:08B025);内蒙古自治区高等学校科研项目《基于生态资本化理论的内蒙古草原生态补偿机制创新研究》(项目批准号:NJsy08062)资助。 作者简介:巩芳(1972-),女,汉族,内蒙古巴彦淖尔市人,副教授,博士,主要研究方向:产业经济,生态经济,牧区经济。 Email:gongfang110@sina.com

耗散结构理论在企业管理中的应用

耗散结构理论在企业管理中的应用 随着我国市场化进程的不断推进,企业想要在激烈的市场竞争中保持长久的发展动力,就需要不断对企业的管理进行创新,这就是要不断提高企业有序化的管理制度。而耗散理论研究的就是系统从无序到有序、低序到高序的发展过程,因此加强对耗散理论的研究,对增强企业管理具有深远的现实意义。 1 耗散结构理论 根据热力学第二定律,在热力学系统中,热能总是从高温物体自发地向低温物体传递,这就是说物体总是向着熵增的方向转变,运动状态也会变得越来越混乱,这是一种不可逆的状态。热力学的熵增原理根本观点就是宇宙是自发地向有序的方向转变,最后达到平衡的状态。从系统学角度上来考虑,企业的发展和热力学系统是一致的,比如公司发展的不确定性、成员数量较大以及具有不可逆性。但是从达尔文的进化理论来看,人类进化的方向是从无序到有序的过程,这正好和熵增理论相反,因此普利高津在1969 年提出了耗散理论,就是为了解决热力学和进化论之间的矛盾。 普利高津在分析耗散理论的时候,将宏观的系统分为三类:孤立系统、封闭系统以及开放系统,在针对开放系统分析的时候,又根据热力学的定义将其分为热力学平衡态、近平衡态以及远离平衡态,而远离平衡态的开放系统通过和物质之间进行不断的能量和物质的

交换,就会产生自组织的现象,这样系统就会逐渐由无序向有序的方向转化,这样一种自发形成的有序结构就是耗散结构。要形成耗散结构需要具备四个条件: 1.1 系统是开放系统要存在系统和外界环境之间的物质和能量的交换,这就必须是一个开放性的系统。而热力学第二定律中所讲述的熵增原理是存在于封闭系统的,只有在封闭系统的时候,系统的紊乱程度才会逐渐增大,也就会逐渐趋于稳衡状态。耗散结构是开放系统的时候,通过和外界不断进行物质、信息以及能量的转化和传递,从而保持源源不断的生命力。当开放系统从外界获得能量大于能够克服熵增的能量的时候,就能够逐渐趋于有序状态。 1.2 系统远离平衡状态系统想要转化成有序的状态,就需要处于不平衡的状态,这样系统内部的能量和物质才会进行转化,这样才能够逐渐形成有序的状态,这样才能够具有动态特征。当系统处于平衡态或者近平衡态的时候,系统内部各个要素的关系是可以通过线性关系来表示,其涨落过程是衰减的,因此系统再不会形成新的有序结构。但是当系统处于非平衡状态的时候,系统的涨落会被放大,就会存在系统和外界环境中信息、能量以及物质之间的势能差,这样就会逐渐引发质变,从而逐渐向有序结构进行转变,因此能够形成有序结构的根本原因就是非平衡态。 1.3 系统内部各个要素之间非线性的所谓的线性关系就是指系统内部各个要素之间存在着定量的线性关系,可以通过简单的数学关系如一元一次方程、二元一次方程以及多元线性方程来进行表示,

耗散结构理论-科学观,哲学意义

耗散结构理论 耗散结构理论是比利时布鲁塞尔学派领导人普利高津 (I.Prigogine)教授1969年在一次“理论物理与生物学”的国际会议上,针对非平衡态统计物理学的发展提出的。理论指出,一个远离平衡态的开放系统,通过不断地和外界交换物质和能量,当外界条件达到一定的阈值时,系统可能从原来的无序的混乱状态,转变为一种在时间上、空间上或功能上的有序状态。普利高津把在远离平衡态情况下所形成的有序结构命名为“耗散结构”。耗散结构理论就是研究耗散结构的性质,以及它的形成、稳定和演变规律的理论。 耗散结构理论研究的对象是开放系统。宇宙中的系统无一不是和周围环境有着相互依存和相互作用的开放系统,不论是有生命的,还是无生命的,都是如此。因此,这一理论涉及的面之广,在科学发展史上是罕见的。这一理论从诞生到现在,短短的二十几年中,在各方面的应用都已取得了可喜的成果。 我们应该清楚地看到,在自然界、科学实验、乃至社会现象中,从宏观上看,都有必要、也必须区分平衡结构(平衡状态下的稳定化有序结构)和耗散结构(耗散状态下的稳定化有序结构)。这里所讲的平衡结构,是指热力学意义上的平衡,即在与外界没有物质、能量交换的条件下,宏观系统的各部分在长时间内不发生任何变化。而耗散结构是指宏观系统在非平衡条件下,通过和外界不断地进行能量和物质交换而形成并维持的一种稳定化了的有序结构,即在非平衡态下

宏观体系的自组织现象。通俗一点讲,平衡结构是一种“死”的有序化结构,而耗散结构则是一种“活”的有序结构。我们熟知的晶体和液体是比较典型的平衡态下的稳定化有序结构。连续介质力学中的“贝纳特不稳流”则是布鲁塞尔学派最早用来说明耗散结构物理图象的一个例子。这个实例说,加热一个液体系统,液体内会产生一个温度梯度。温度梯度较小时,热量通过传导在液体中传递,不存在一种有序的自组织现象。但如果继续加热,当温度梯度达到一定的特征值时,一种有序的对流元胞会自动呈现,整个体系则由无数个这种对流元胞组成,它对应于一种高度有序化的分子组织,此时热量是通过宏观对流来传递的。这种图象就称为“贝纳特花样”,如右图所示。这种产生在不稳定之上,当体系达到某一特征值时稳定化的宏观有序的新组织、新结构,就是所谓的耗散结构。 热力学第二定律指出,熵是无序度的一种量度。熵增加原理又指出,孤立系统的熵永不减少。它终究要达到一个极大值,此时对应于一个热力学的平衡态。因此高熵对应于平衡态,低熵对应于非平衡态。而对于布鲁塞尔学派来说,耗散结构是“非平衡态是有序之源”这一基本出发点的必然结果。对于一个和外界可以交换能量或物质的开放系统,在时间dt内,体系熵的增加量ds,应该由两部分组成。一部分是由于体系和外界交换能量及物质而引起的熵增,称为熵流,用 d e s表示。另一部分称为“熵源”,顾名思义,它是由于体系内部的不可逆过程所引起的,用d i s表示。ds可表示为ds=d e s+d i s。熵增加原理告诉我们d i s≥O。而对于一个开放系统来说,只要满足d e s<-d i s,

耗散结构理论

耗散结构理论 伊里亚·普里戈金(Ilya Prigogine) 比利时

一.什么是耗散结构理论 一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。

二.耗散结构理论的分析方法举例 一座城市可看作一个耗散结构,每天输入食品、燃料、日用品等,同时输出产品和垃圾,它才能生存下去,它要保持稳定有序状态,否则将处于混乱。 现代经济系统也是一个非平衡的开放系统,系统内部各部门的联系是非线形的,存在着有规律的经济波动和无规律的随机扰动,因此也是一个耗散结构。

三.耗散结构理论的特点 一个典型的耗散结构的形成与维持至少需要具备三个基本条件: 一是系统必须是开放系统,孤立系统和封闭系统都不可能产生耗散结构; 二是系统必须处于远离平衡的非线性区,在平衡区或近平衡区都不可能从一种有序走向另一更为高级的有序; 三是系统中必须有某些非线性动力学过程,如正负反馈机制等,正是这种非线性相互作用使得系统内各要素之间产生协同动作和相干效应,从而使得系统从杂乱无章变为井然有序。

四.耗散结构理论的用途 耗散结构理论主要讨论了系统在与外界环境交换物质和能量的过程中从混沌向有序转化的机理、条件和规律。它深入浅出地揭示出世界上一切事物的本质。 主要应用:企业管理 对于现代企业组织来讲,最基本的过程就是"投入——产出",一方面是原材料的购进,能源的持续输入,另一方面通过加工后形成产品,在市场尽快地销售以使资金很快地回收。无论是输入还是输出,一旦停下来,企业内部所有秩序或结构都将会瓦解。显然,企业的一切基础都是依赖于这个开放的输入输出过程。这就是一个典型的耗散系统。

耗散结构理论

耗散结构理论 耗散结构理论是指用热力学和统计物理学的方法,研究耗散结构形成的条件、机理和规律的理论。 耗散结构理论的创始人是伊里亚·普里戈金(Ilya Prigogine)教授,由于对非平衡热力学尤其是建立耗散结构理论方面的贡献,他荣获了1977年诺贝尔化学奖。普里戈金的早期工作在化学热力学领域,1945年得出了最小熵产生原理,此原理和翁萨格倒易关系一起为近平衡态线性区热力学奠定了理论基础。普里戈金以多年的努力,试图把最小熵产生原理延拓到远离平衡的非线性区去,但以失败告终,在研究了诸多远离平衡现象后,使他认识到系统在远离平衡态时,其热力学性质可能与平衡态、近平衡态有重大原则差别。以普里戈金为首的布鲁塞尔学派又经过多年的努力,终于建立起一种新的关于非平衡系统自组织的理论──耗散结构理论。这一理论于1969年由普里戈金在一次“理论物理学和生物学”的国际会议上正式提出。 耗散结构理论提出后,在自然科学和社会科学的很多领域如物理学、天文学、生物学、经济学、哲学等都产生了巨大影响。著名未来学家阿尔文·托夫勒在评价普里戈金的思想时,认为它可能代表了一次科学革命。 耗散结构理论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变。 (1)远离平衡态 远离平衡态是相对于平衡态和近平衡态而言的。平衡态是指系统各处可测的宏观物理性质均匀(从而系统内部没有宏观不可逆过程)的状态,它遵守热力学第一定律:dE=dQ-pdV,即系统内能的增量等于系统所吸收的热量减去系统对外所做的功;热力学第二定律:dS/dt>=0,即系统的自发运动总是向着熵增加的方向;和波尔兹曼有序性原理:pi=e-Ei/kT,即温度为T的系统中内能为Ei的子系统的比率为pi. 近平衡态是指系统处于离平衡态不远的线性区,它遵守昂萨格(Onsager)倒易关系和最小熵产生原理。前者可表述为:Lij=Lji,即只要和不可逆过程i相应的流Ji受到不可逆过程j的力Xj的影响,那么,流Ji也会通过相等的系数Lij受到力Xi的影响。后者意味着,当给定的边界条件阻止系统达到热力学平衡态(即零熵产生)时,系统就落入最小耗散(即最小熵产生)的态。 远离平衡态是指系统内可测的物理性质极不均匀的状态,这时其热力学行为与用最小熵产生原理所预言的行为相比,可能颇为不同,甚至实际上完全相反,正如耗散结构理论所指出的,系统走向一个高熵产生的、宏观上有序的状态。 (2)非线性 系统产生耗散结构的内部动力学机制,正是子系统间的非线性相互作用,在临界点处,非线性机制放大微涨落为巨涨落,使热力学分支失稳,在控制参数越过临界点时,非线性机制对涨落产生抑制作用,使系统稳定到新的耗散结构分支上。 (3)开放系统

基于耗散结构理论的产学研合作技术创新动力分析

基于耗散结构理论的产学研合作 技术创新动力分析 □金高云 [摘要]在产学研合作技术创新过程中,不同主体具有各自的优势,发挥不同的作用。产学研合作通过创新主体的相互作用以及创新要素的有序流动,使合作创新组织能够不断与外界进行物质、能量的交换,从而使合作组织具有创新动力。本文基于耗散结构理论对产学研合作的动力机制进行分析,说明产学研合作技术创新系统是一个复杂适应性的系统,具有自组织的某些特征,产学研之间进行各种要素的流动是促使合作进行的动力之一。 [关键词]产学研;耗散结构;技术创新 [中图分类号]F273.1[文献标识码]A[文章编号]1006-5024(2013)01-0032-05 [作者简介]金高云,天津科技大学经济管理学院博士生,研究方向为技术创新、创业管理。(天津300222) Abstract:In the process of technological innovations of industry-university-institute unifications,different subject has respective ad-vantages and plays different roles.Through the interaction of the innovative bodies and the orderly flow of innovation factors,the cooperation of enterprise,university and institute ensures the material and energy exchanges between the cooperative in-novative organization and the outside world.In this way,the cooperative organization becomes more and more innovative.Based on the theory of dissipative structures,this thesis analyzes the dynamic mechanism of the cooperation of enterprise,university and institute,and tries to prove that the system of cooperative technological innovations of enterprise,university and institute is a complex adaptive system,which has some characteristics of self-organization.The flow of various elements in the enterprise,university and institute unification is one of the driving forces promoting the cooperation. Key words:industry-university-institute unification;dissipative structure;technological innovation 一、技术创新的要素构成 技术创新要素主要包括知识、技术、人才、资金以及信息等因素,实验设备、土地等物质要素由技术、资金等要素表示,这些要素在产学研合作过程中具有不同的特性和功能。 知识是技术创新的智力保证。Webster词典(1997年)关于知识的定义为:知识是通过实践研究、联系和调查,对事物的实施和状态认识的集合,是对科学、技术和艺术的理解,是人类获得的关于真理认识的总和。[1]伴随着技术特别是高新技术的快速发展,知识在经济发展方面的作用越来越重要,成为时代的主要特征。知识经济是“以知识资源的拥有、配置、产生和使用为最重要生产要素的经济型态”。“知识已是一种生产的要素,而且是全球化经济环境中最重要的关键资源。”[2]在知识经济时代,知识取代了土地、资金、设备等原本企业赖以竞争的要素,成为经济增长的源泉。一个组织的优劣依赖知识的储存、扩散、创新能力。[3]创新本质上是知识再创造的动态过程。知识既是创新不可缺少的投入要素,又是创新的结果和产出。“知识”具有系统性和动态性,它是多种元素按照一定的组成规则形成的有序集合,同时知识通过与人或组织交互作用形成了一个动态的系统。因此,各种知识必须协同发展并在使用、传播和交流的过程中实现其价值。各创新主体应充分发挥各自的作用,相互合作,协同发展,促进创新网络的形成,使产学研合作内部各主体所具有的知识特别是隐性知识在流动和扩散的过程中不断增值,从而产生新的知识。[4]新技术的构想不是凭空想象出来的, 而是建立在大量占有已有企业战略|Enterprise Strategy 32E nterprise E conomy 2013年第1期(总第389期)

耗散结构理论、时间和认识论(一)

耗散结构理论、时间和认识论(一) 摘要:本文讨论了普里戈金创立耗散结构理论、对不可逆时间探讨引起的几个认识论问题:认识与生命特征相联系;人既是参与者又是观测者;动力学描述和热力学描述,不可逆与可观测;科学认识发展中的共鸣与涨落放大;以及自然观和科学认识论的关系。 关键词:耗散结构时间认识论自然观 耗散结构理论的创建者普里戈金对时间的新探索,不仅具有自然观上的重要意义,而且具有科学认识论上的重要意义。 一、时间对称破缺:认识与生命特征相联系 时间,是一个基本的哲学范畴,也是一个基本的科学范畴。它与科学思想的演进密切相联系,也与认识论的发展密切相联系。 在经典科学的可逆的钟表时间观支配下,自然界被描述成一个量的世界、几何的世界,自然界是钟表,动物是机器,人只不过是更精妙的高级的会学习的机器。那时代的一部分思想家提出,学习是从感觉经验中来的,除了感觉经验之外,一切都不可知。另一部分时代思想家则认为,这台机器中已先天地装有某种概念程序,从而可以接纳跟这种内存程序相容的东西。康德则明确提出了“先验时间”是认识得以发生、发展的一个基本前提。 进入19世纪,终于出现一系列关于自然演化的理论。热力学第二定律,把不可逆的演化、时间之矢问题提到了醒目地位。在普里戈金看来,20世纪以来的一系列科学进展,特别是基本粒子的不稳定性的发现,现代宇宙学演化观念的发展,以及非平衡成为有序性的基本因素的发现,都标志着时间的再发现。所谓的时间的再发现即时间对称破缺、不可逆性作为自然界的一种建设性因素的发现,这标志着一种新的科学认识论观点的产生。 在对时间的新探索中,普里戈金导出了一个内部时间。一个系统的内部时间本质上不同于从钟表上读出的外部时间,但其与某个态相联系的平均“年龄”与钟表上读出的时间的数量相同。一旦得到了内部时间,就有一个时间对称破缺变换,从而把热力学第二定律表述为一个选择原则。 当普里戈金以“更带有认识论色彩的说明”来阐述上述科学发现的意义时,他认为:“测量过程相应于人与其周围世界相互作用的一种特殊形式。要对这种相互作用进行更为详细的分析,必须考虑到,活的系统,包括人,有一个破缺的时间对称性。”“时间不仅仅是我们内部经验的一个基本的成分和理解人类历史(无论是在个别人,还是在社会的水平上)的关键,而且也是我们认识自然的关键。”(〔1〕,pp.209—214)当然,“这并不是说,我们必须恢复主观主义的科学观;而是说,在某种意义上,我们必须把认识与生命联系起来。”(〔1〕,p.5) 从相对论、控制论到宇宙学,都接触到了时间的对称破缺,不可逆性对于科学认识和认识论的意义。相对论中,时间与认识有关;爱因斯坦还注意到:如同拍电报那样,“这里重要的是,发送信号在热力学意义上是一个不可逆的过程,是一个同熵的增大有关的过程(然而,按照我们现在的知识,一切基元过程都是可逆的)。”2]维纳写道:“能够和我们通信的任何世界,其时间方向和我们相同。”(〔3〕,p.35)霍金试图论证热力学时间箭头、心理学时间箭头和宇宙学时间箭头的一致性,他写道:“我们必须按熵增加的次序记住事物。”4] 普里戈金通过耗散结构理论的新成就,比较深入地探讨这一问题。他认为,热力学第一定律表述为一个选择原则表明,时间对称破缺意味着存在着一个熵垒,即存在不允许时间反演不变的态。如同相对论中光垒限制了信号的传播速度一样,熵垒的存在则是通信有意义所必需的。无限大的熵垒保证了时间方向的唯一性,即保证了生命与自然的一致性,使认识成为可能。换言之,人之所以能认识世界,是因为天人相通、人跟世界的时间之矢一致。 生命系统是耗散自组织系统,是有内在生命节律的过程系统。生命即使是最简单的单细胞生物,也正是借助这种内在的生命节律机制,从而内在的对时间有方向性感觉。对时间方向性的理解,随着生物组织水平的提高而提高,很可能是在人的意识中达到最高点。而且,耗散

耗散结构理论

耗散结构理论可概括为:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持,因此称之为“耗散结构”(dissipative structure)。可见,要理解耗散结构理论,关键是弄清楚如下几个概念:远离平衡态、非线性、开放系统、涨落、突变。 耗散结构,是普利高津在研究不违背热力学第二定律情况下,如何阐明生命系统自身的进化过程时提出的新概念。什么是耗散结构?用通俗的话来讲,就是一个远离平衡的包含有多组分多层次的开放系统,在外界条件变化达到一定阈值时,经“涨落”的触发,量变可能引起质变;系统通过不断与外界进行物质和能量交换,在耗散过程中产生负熵流,就可能从原来的无序状态转变为一种时间、空间或功能的有序状态。这种非平衡态下形成的新的有序结构,就是耗散结构。 耗散结构的概念是相对于平衡结构的概念提出来的,它提出一个远离平衡态的开放系统,在外界条件发生变化达到一定阀值时,量变可能引起质变,系统通过不断地与外界交换能量与物质,就可能从原来的无序状态转变为一种时间、空间或功能的有序状态。耗散结构理论成功地引用到某些系统。 一座城市可看作一个耗散结构,每天输入食品、燃料、日用品等,同时输出产品和垃圾,它才能生存下去,它要保持稳定有序状态,否则将处于混乱。现代经济系统也是一个非平衡的开放系统,系统内部各部门的联系是非线形的,存在着有规律的经济波动和无规律的随机扰动,因此也是一个耗散结构。 20世纪70年代,比利时物理学家普利高津提出了耗散结构学说,这也是一种系统理论。耗散结构的概念是相对于平衡结构的概念提出来的。长期以来,人们只研究平衡系统的有序稳定结构,并认为倘若系统原先是处于一种混乱无序的非平衡状态时,是不能在非平衡状态下呈现出一种稳定有序结构的。普利高津等人提出:一个远离平衡的开放系统,在外界条件变化达到某一特定阈值时,量变可能引起质变,系统通过不断与外界交换能量与物质,就可能从原来的无序状态转变为一种时间、空间或功能的有序状态,这种远离平衡态的、稳定的、有序的结构称之为“耗散结构”。这种学说回答了开放系统如何从无序走向有序的问题。 [编辑] 耗散结构是在远离平衡区的非线性系统中所产生的一种稳定化的自组织结构。在一个非平衡系统内有许多变化着的因素,它们相互联系、相互制约,并决定着系统的可能状态和可能的演变方向。这些因素可以归纳为两类:其一是广义流,其二是广义力;而且广义流依赖

耗散结构理论的建立

耗散结构理论的建立 作者:沈小峰胡岗等课程相关:自然篇文献类型:选读 耗散结构理论建立至今已有二十年的历史,它对当代科学和哲学发展的影响日益显著,有人甚至认为它代表了下一次的科学革命。普利高津(Prigogine)为此荣获了1997年诺贝尔化学奖。 本文试图通过对耗散结构理论建立过程的分析,探讨科学发现的一般特征及其规律性。 1、问题的提出:两种物理图像、两个演化方向和两类运动规律的矛盾 十九世纪,由于生产的发展,特别是由于蒸汽机的广泛使用,为了提高热机的效率,热力学开始建立和发展起来。1842年到1848年,由迈尔、焦耳、赫尔姆霍茨等人建立了热力学第一定律。1850年一1851年汤姆生和克劳修斯建立了热力学第二定律,从而奠定了热力学的理论基础。为了从微观的角度说明宏观的热力学现象,克劳修斯、麦克斯韦、玻尔兹曼、吉布斯等人建立了统计物理学。这个时期的热力学和统计物理学主要研究一个系统处于平衡态,以及从一个平衡态过渡到另一个平衡态的过程。即可逆过程的运动规律。对于非平衡系统与不可逆过程,除了根据热力学第二定律指出,一个不与外界发生物质和能量交换的孤立系统,自发地趋于平衡态这—过程是不可逆的之外,没有给出更多的知识。因而我们称之为平衡态热力学和统计物理学。 然而,在描述时间的问题上,热力学理论和动力学理论发生了根本性的分歧。 我们知道,在当时的牛顿力学(后来的量子力学和相对论力学亦不例外)中,时间和空间坐标一样,本质上只是一个描述运动的几何参量。力学问题可以放在四维时空中来进行研究,它们的基本方程,如牛顿运动方程,薛定谔方程,对于时间来说都是可逆的、对称的。也就是说,这些方程既可以说明过去,又可以决定未来,在方程中不出现任何“时间箭头”的问题。总之,动力学给我们描述的是一个可逆的、对称的世界图景。 但是,热力学第二定律却给我们提供了一个本质上完全不同的物理图像。它指出,一个孤立系统,无论其初始条件和历史如何,它的一个状态函数熵会随着时间的推移单调的增加,直至达到热力学平衡态时趋于极大,从而指明了不可逆过程的方向性。既“时间箭头”只能指向熵增加的方向。熵增加原理第一次把演化的观念、历史的观念引入物理学。“熵”概念的提出,是十九世纪科学思想的一个巨大贡献,它的意义完全可以和生物学中提出的“进化”概念相媲美,热力学和动力学给我们提供了两幅不同的物理图像,产生了可逆的微观方程和不可逆的宏观现象的矛盾。 十九世纪的热力学和生物学都涉及到世界运动变化的方向,即“时间箭头”的问题。热力学第二定律说明的是一个孤立系统朝着均匀、无序简单、趋向平衡态的方向演化,这实际上是一种.退化的方向。克劳修斯把这一理论推广到全宇宙,就得出了“宇宙热寂说”的悲观结论。生物学的进化论描述的却是系统从无序到有序,由简单到复杂,由低级到高级,出大功能到有功能、多功能的有组织的方向演化。这是一个进化的方向。在生物界和人类社会小这种进化的现象最为明显。于是又产生了一个克劳修斯和达尔文的矛盾,退化和进化的矛盾,似乎生物界包括人类社会遵循留与物理世界完全不同的规律,有着迥然不同的演化方向。 此外,还存在一个动力学规律相统计规律的关系问题。动力学的规律是必然的、决定论的,而统计规律却是概率性的、随机的、非决定论的。 两种物理图像,产生了动力学与热力学的关系问题:两个演化方向,涉及到物理学和生物学的关系问题;两类运动规律涉及必然性和偶然性的关系问题。这些问题引起了许多科学家们热烈的争论,正如普利高津所说:“十九世纪是带着—种矛盾的情景一一作为自然的世界和作为历史的世界——离开我们的。”(《普利高津与耗散结构理论》,第V页,陕西科学技术出版社,1982)近百年来,讨论这些矛盾的论文有上千篇,但问题至今尚未完全解决。当代著名物理学家威格纳(Wigner)曾经说:“近代科学中最重要的间隙是什么?显然是物理科学和精神科学的分离”(参见《普利高津与耗散结构理论》,第101—102页)。柯伊莱(A.Koyre)则指出,牛顿用他的经典力学“把分割天体和地球之间的壁垒推倒,并且把两者结合起来,统一成为一个整体的宇宙。”但是他却把“我们的世界一分为二”,即分成一个物理的世界、量的世界;一个生物的世界、质的世界,于是形成了两个世界、两种科学、两类文化,二者之间存在着巨大的鸿沟(参见《普利高津与耗散结构理论》,第101—102页)。怎样把二者统一起来呢?能否用物理学的观点来全面地解释生命的特点及其进化的过程,使生物学成为研究生命系统的“物理科学”,实现自然科学

相关主题
文本预览
相关文档 最新文档