当前位置:文档之家› 分布式驱动电动汽车底盘综合控制系统的设计_冯冲_丁能根_何勇灵_徐国艳_高峰

分布式驱动电动汽车底盘综合控制系统的设计_冯冲_丁能根_何勇灵_徐国艳_高峰

分布式驱动电动汽车底盘综合控制系统的设计_冯冲_丁能根_何勇灵_徐国艳_高峰
分布式驱动电动汽车底盘综合控制系统的设计_冯冲_丁能根_何勇灵_徐国艳_高峰

电动汽车与传统汽车底盘对比

电动汽车新技术 基本结构及其工作原理 传统汽车底盘由传动系、行驶系、转向系和制动系四部分组成,底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。 电动车的基本结构主要可分为三个子系统,即主能源系统(电动源)、电力驱动系统、能量管理系统。其中电力驱动系统又由电控系统、电机、机械传动系统和驱动车轮等部分组成;主能源系统又由主电源和能量管理系统构成,能量管理系统是实现电源利用控制、能量再生、协调控制等功能的关键部件。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。 电动汽车的工作原理:蓄电池——电流——电力调节器——电动机——动力传动系统——驱动汽车行驶。 纯电动汽车,相对燃油汽车而言,主要差别(异)在于四大部件,驱动电机,调速控制器、动力电池、车载充电器。 图1 电池组布置于底盘中间 能源供及系统 与内燃汽车相比,电动汽车的特点是结构灵活。内燃汽车的主要能源为汽油和柴油,而电动汽车是采用电力能源,由电动源和电动机驱动的,电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。传统内燃汽车的能量是通过钢性联轴器和转轴传递的,而电动车的能量是通过柔性的电线传输的。因此,电动汽车各部件的放置具有很大的灵活性。

传动系统 变速传动系统是电动车驱动子系统的一个重要部件,它指的是驱动电机转轴和车轮之间的机械连接部分。对于传统汽车来说,变速器是必要的部件,设计时主要考虑采用什么类型的变速器。但对于电动汽车则不同,由于驱动电动机的转矩和转速完全可以由电子控制器进行全范围的控制,因此变速系统的设计就可以有多种不同的选择。既可用传统的变速齿轮箱变速,还可以用电子驱动器控制电动机直接变速。究竟采用哪种方案,主要还应依据电动汽车的能量和经济性,也涉及到电机和控制器的设计。 为了提高电动汽车的传动效率,人们开发了电动汽车专用的电机和变速传动一体化的两速或三速自动传动桥。先进的两速电机/多速传动桥将变速齿轮组与高速异步电动机完全结合为一体,并且直接安装在电动汽车驱动轮的驱动轴上,构成重量轻、体积小、效率高、结构紧凑和成本低廉的传动系统。 动力系统 电动汽车经过近20年的快速发展,在能源动力系统方面形成了具特色的三大类动力系统结构技术特点。 纯电动汽车、油电混合动力汽车和燃料电池汽车是目前电动汽车领域的三大种类,油电混合动力汽车目前被国内外各大汽车企业最早列入产业化计划,并联混合动力和混联混合动力是被电动轿车广泛采用的主流动力系统结构。近几年,随着储能电池技术水平的飞速发展,以车载动力蓄电池提供电能驱动的纯电动汽车得到快速发展,多个电机驱动的动力分散结构的纯电动动力系统受到国内外研究机构的广泛关注。以氢和氧通过电极反应转换成电能驱动的燃料电池电动汽车,采用电-电混合动力结构,能量转换效果比内燃机高2~3倍,是未来清洁能源汽车的重要发展方向之一。 图2 多能源动力总成控制模块 底盘电子化、模块化与智能化

电动汽车驱动电机匹配设计.

电动汽车驱动电机匹配设计 目录 1 概述 (1) 2 世界电动汽车发展史 (2) 3 电驱动系统的基本要求 (5) 3.1电驱动系统结构 (5) 3.2电机的基本性能要求 (6) 4 电动汽车基本参数参数确定 (7) 4.1电动汽车基本参数要求 (7) 4.2 动力性指标 (7) 5 电机参数设计 (7) 5.1 以最高车速确定电机额定功率 (7) 5.2 根据要求车速的爬坡度计算 (8) 5.3 根据最大爬坡度确定电机的额定功率 (9) 5.4 根据额定功率来确定电机的最大功率 (9) 5.5 电机额定转速和转速的选择 (9) 6 传动系最大传动比的设计 (10) 7 电机的种类与性能分析 (11) 7.1 直流电动机 (11) 7.2交流三相感应电动机 (11)

7.3 永磁无刷直流电动机 (11) 7.4 开关磁阻电动机 (12) 8 电机的选择 (13) 9 电机其他选择与设计 (15) 9.1 电机形状位置设计 (15) 9.2 电机冷却设计 (15) 10 总结与展望 (17) 10.1 总结 (17) 10.2 问题与展望 (17) 致谢 (18) 参考文献 (19) 1.概述 汽车工业在促进世界经济飞速发展和给人们生活提供便利的同时,又展现出了其双刃剑的另一面,它将能源与环境问题推到了日益尴尬的处境。“能源、环境和安全”成为了21世纪世界汽车工业发展的3大主题。其中,能源与环境问题作为全球面临的重大挑战和制约汽车工业可持续发展的症结所在,更成为重中之重。电动汽车使用电能作为动力能源,而电能具有来源广、清洁无污染等特点。电动汽车被公认为21世纪重要的交通工具。 电动汽车是指汽车行驶的动力全部或部分来自电机驱动系统的汽车,它主要以动力电池组为车载能量源,是涉及机械、电子、电力、微机控制等多学科的高科技技术产品。按照汽车行驶动力来源的不同,一般将电动汽车划分为纯电动汽车(Pure Electric Vehicle,PEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)、插电式混合动力电动汽车(Plug-in Hybrid Electric Vehicle,PHEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)4种基本类型。 自1881年法国电气工程师Gustave Trouve制造出首辆电动汽车开始,电动汽车经历了曲折起伏的几个发展阶段,其中的决定因素就是动力电池技术和人们

高性能分布式驱动电动汽车关键 基础问题研究

项目名称:高性能分布式驱动电动汽车关键基础问 题研究 首席科学家:余卓平同济大学 起止年限:2010.9至2015.9 依托部门:上海市科委

二、预期目标 3.1 总体目标 本项目以分布式驱动电动汽车的节能与主动安全性能为突破点,建立基于分布式驱动电机特性的轮胎动态模型、车辆多体耦合动力学模型和动力电源—电驱动系统多场耦合动力学模型,构建分布式驱动电动汽车多体多场复杂耦合动力学系统;研究电源与电驱动系统能耗规律、车辆空气/热动力学特性及其能耗规律,提出分布式电源与能量管理系统的分析与设计理论、车身空气动力造型设计及整车结构设计方法与整车热管理方法;探索无非驱动轮工况下车辆关键动力学参数自适应辨识方法;研究复杂耦合系统能耗优化与动力学协调控制理论,创立高性能分布式驱动电动汽车设计与控制的新理论、新方法。 通过该重大基础研究项目的支持,可以培养一支以高性能分布式驱动电动汽车核心技术为研究背景的科研团队,产生一批具有国际影响力的中青年学术专家和具有自我创新能力的高水平骨干人才,提高我国汽车工业的自主研发水平,为我国电动汽车开发提供基础理论支持,推动我国汽车工业的跨越式发展。 3.2 五年预期目标 (1)理论研究成果: 揭示分布式驱动电机转矩与转速快速变化时的轮胎-路面的瞬态作用机理;揭示分布式驱动型式对电动汽车整车动力学的影响规律及多物理场 的耦合作用对分布式驱动电动汽车动力学的影响规律。 揭示电源系统在全生命周期和全工作范围内的能量效率变化规律;建立适用于分布式驱动系统的电池状态估计理论模型,提出电池状态估计方 法;揭示多样工况条件下不同拓扑结构电源与轮边电驱/制动系统能耗 内在规律,提出电源及分布式电驱/制动系统拓扑结构理论及能量管理 方法。 揭示分布式驱动电动汽车的流场规律、空气阻力形成机理,探索适应于分布式驱动结构的最佳空气动力学汽车外形特征;揭示分布式驱动电动 汽车在轮边驱动单元区域的特殊流动及传热规律,探索适应于该区域的 特有的气动外型特征和热管理途径。 初步建立起高性能分布式驱动电动汽车多源信息融合的车辆状态估计与参数辨识方法及技术体系,并在路面特征参数辨识方法以及车辆行驶状 态参数估计的自适应方法方面取得突破。 建立适用于分布式电驱动模式的汽车驱动/制动控制的理论,阐明分布式驱动电动汽车能量管理与汽车动力学控制间的作用关系,形成分布式驱 动电动汽车复杂耦合系统能量管理与动力学协调控制理论。 (2)技术创新与应用成果: 建立轮胎高频动态模型及多物理场耦合作用下分布式驱动电动汽车复杂多体系统动力学模型,提出分布式驱动电动汽车复杂耦合动力学建模 方法。

电动汽车底盘结构的设计与分析

……………………. ………………. ………………… 山东农业大学 毕 业 论 文 题目: 电动汽车底盘结构的设计与分析 院 部 机械与电子工程学院 专业班级 车辆工程二班 届 次 2014届 学生姓名 衣光亮 学 号 20100673 指导教师 玄冠涛 二零一四年六月十二日 装 订 线 ……………….……. …………. …………. ………

目录 摘要 (1) Abstract.................................................... . (2) 引言 (3) 1.电动汽车底盘结构 (3) 1.1电动汽车底盘 (3) 1.2 电动汽车底盘设计方法 (3) 1.3电动汽车底盘结构的分析方法 (4) 1.4电动汽车底盘优化设计方案 (6) 2. 电动车底盘结构静态分析 (6) 2.1底盘结构六种工况静力学分析 (7) 2.1.1 底盘满载四轮同时着地工况分析 (7) 2.1.2 底盘满载前轮一侧悬空工况分析 (8) 2.1.3 底盘满载后轮一侧悬空工况分析 (9) 2.1.4 底盘满载对角两轮悬空工况分析 (11) 2.1.5 底盘满载紧急制动工况分析 (12) 2.1.6 底盘满载转弯工况分析 (13) 2.2 底盘结构优化处理 (14) 3. 电动汽车底盘结构动态分析 (15) 3.1 底盘四轮着地工况模态分析 (15) 3.2 底盘前轮一侧悬空工况模态分析 (17) 3.3 底盘紧急制动工况模态分析 (20) 3.4 底盘紧急转弯工况模态分析............................ . (22) 结论 (25) 参考文献 (26) 致谢 (27)

电动汽车与传统汽车底盘对比

电动汽车与传统汽车底盘对比 基本结构及其工作原理 传统汽车底盘由传动系、行驶系、转向系和制动系四部分组成,底盘作用是支承、安装汽车发动机及其各部件、总成,形成汽车的整体造型,并接受发动机的动力,使汽车产生运动,保证正常行驶。 电动车的基本结构主要可分为三个子系统,即主能源系统(电动源)、电力驱动系统、能量管理系统。其中电力驱动系统又由电控系统、电机、机械传动系统和驱动车轮等部分组成;主能源系统又由主电源和能量管理系统构成,能量管理系统是实现电源利用控制、能量再生、协调控制等功能的关键部件。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。 电动汽车的工作原理:蓄电池——电流——电力调节器——电动机——动力传动系统——驱动汽车行驶。 纯电动汽车,相对燃油汽车而言,主要差别(异)在于四大部件,驱动电机,调速控制器、动力电池、车载充电器。 能源供及系统 与内燃汽车相比,电动汽车的特点是结构灵活。内燃汽车的主要能源为汽油和柴油,而电动汽车是采用电力能源,由电动源和电动机驱动的,电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。传统内燃汽车的能

量是通过钢性联轴器和转轴传递的,而电动车的能量是通过柔性的电线传输的。因此,电动汽车各部件的放置具有很大的灵活性。 传动系统 变速传动系统是电动车驱动子系统的一个重要部件,它指的是驱动电机转轴和车轮之间的机械连接部分。对于传统汽车来说,变速器是必要的部件,设计时主要考虑采用什么类型的变速器。但对于电动汽车则不同,由于驱动电动机的转矩和转速完全可以由电子控制器进行全范围的控制,因此变速系统的设计就可以有多种不同的选择。既可用传统的变速齿轮箱变速,还可以用电子驱动器控制电动机直接变速。究竟采用哪种方案,主要还应依据电动汽车的能量和经济性,也涉及到电机和控制器的设计。 为了提高电动汽车的传动效率,人们开发了电动汽车专用的电机和变速传动一体化的两速或三速自动传动桥。先进的两速电机/多速传动桥将变速齿轮组与高速异步电动机完全结合为一体,并且直接安装在电动汽车驱动轮的驱动轴上,构成重量轻、体积小、效率高、结构紧凑和成本低廉的传动系统。 动力系统 电动汽车经过近20年的快速发展,在能源动力系统方面形成了具特色的三大类动力系统结构技术特点。 纯电动汽车、油电混合动力汽车和燃料电池汽车是目前电动汽车领域的三大种类,油电混合动力汽车目前被国内外各大汽车企业最早列入产业化计划,并联混合动力和混联混合动力是被电动轿车广泛采用的主流动力系统结构。近几年,随着储能电池技术水平的飞速发展,以车载动力蓄电池提供电能驱动的纯电动汽车得到快速发展,多个电机驱动的动力分散结构的纯电动动力系统受到国内外研究机构的广泛关注。以氢和氧通过电极反应转换成电能驱动的燃料电池电动汽车,采用电-电混合动力结构,能量转换效果比内燃机高2~3倍,是未来清洁能源汽车的重要发展方向之一。

电动汽车主要驱动方式对比

导读:电动汽车可分为两种:单电机集中驱动型式电动汽车(简称集中驱动式电动汽车)和多电机分布驱动型式电动汽车(简称分布式驱动电动汽车)。 电动汽车作为一种工业产品,以电池为主要能量源,动力源全部或部分由电动机提供,涉及机械、电力电子、通信、嵌入式控制等多个学科领域。电动汽车与传统汽车相比,能量源、驱动系统结构都发生了极大的改变。根据驱动系统结构布置的不同,电动汽车可分为两种:单电机集中驱动型式电动汽车(简称集中驱动式电动汽车)和多电机分布驱动型式电动汽车(简称分布式驱动电动汽车)。 1、传统集中式驱动结构类型 集中驱动式电动汽车与传统内燃机汽车的驱动结构布置方式相似,用电动机及相关部件替换内燃机,通过变速器、减速器等机械传动装置,将电动机输出力矩,传递到左右车轮驱动汽车行驶。集中驱动式电动汽车操作实现技术成熟、安全可靠,但存在体积较重,效率相对不高等不足。随着纯电动汽车技术研究的深入,纯电动汽车的驱动系统的布置结构也逐渐由单一动力源的集中式驱动系统向多动力源的分布式驱动系统发展。图1.1为电动汽车不同驱动系统的结构示意图。图1.1(a)为单电动机集中驱动型式,由电动机、减速器和差速器等构成,由于没有离合器和变速器,可以减少传动装置的体积及质量。图1.1(b)也为单集中驱动型式,与发动机横向前置前驱的内燃机汽车结构布置方式相似,将电动机、减速器和差速器集成一体,通过左右半轴分别驱动两侧车轮,该布置型式结构紧凑,多用于小型电动汽车上。图1.1(c)为双电机分布驱动型式,两个驱动电机通过减速器分别驱动左右两侧车轮,可通过电子差速控制实现转向行驶,以取代机械差速器,该驱动方式为目前研究的热点。图1.1(d)为轮毂电机分布式驱动型式,电动机和固定速比的行星齿轮减速器安装在车轮里面,省去传动轴和差速器,从而使传动系统得到简化。该驱动方式对驱动电机的要求较高,同时控制算法也比较复杂。 2、分布式驱动电动汽车结构类型

纯电动汽车的结构分析和驱动系统性能比较

纯电动汽车的结构分析和驱动系统性能比较 摘要 纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。 绪论 作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。如今,有多种驱动系统可以使用。根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。 整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。 为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。 结构分析 整体式驱动 整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。图1 b和直驱系统十分相似,除了扭矩由变速器调节。因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。

电动汽车悬架、底盘系统

第二章悬架、底盘系统 1、悬架、底盘系统概况 早年生产的汽车是人们的代步工具,当时的电动汽车是将生产的能量转换成机械能。50年代后,汽车设计主要是考虑人体工学和汽车外观完美的流线型。60年代,随着汽车保有量和汽车速度的增加,交通事故频发成了比较严重的社会问题。未来防止交通事故的发生,除指定新的交通法规加以限制外,还改造了制动装置和添加了许多安全装置。70年代后,能源危机和环境保护是汽车以机械控制系统或液压控制系统为主。到了80年代,随着电子技术的发展,汽车上的电子系统可以说无处不见,电子控制成为电动汽车上的主要控制。如今,已由传统电器发展到电脑、传感器为核心的电子技术阶段。现代电动汽车广泛采用电脑及先进的传感器等电子部件,使电动汽车性能大为改善,提高了经济性和操作方便性、工作可靠性、维修简便性与乘坐舒适性,排气污染也得到了较好的控制,尤其是在电动汽车的安全性、操作智能化方面更加突出。在电动汽车底盘方面,随着电脑控制的引入,电动汽车行驶状态中各种动作。都可以进行更加精密的控制。如电动汽车速度自动控制系统,在行驶条件许可时,将车速控制在一定的范围内,使电动汽车恒速行驶,驾驶员只需操作转向盘。总之,电子控制系统使电动汽车控制项目增多,精度提高,功能增强,特性稳定。 目前,电动汽车底盘电子控制技术已得到了迅速发展。制动防抱死系统(ABS)和空气气囊的使用,对汽车制动安全性和碰撞后的安全性起到了很大改善作用。因此,ABS和空气气囊不仅在一些轿车上使用,许多货车上也都使用,ABS和空气气囊逐渐成为现代电动汽车上的标准配备。近些年来,汽车防滑转电子控制系统(ASR)也在一些电动汽车上得到应用。ASR的应用,提高了汽车的起步、加速、通过滑溜路面的能力和汽车在这些情况下的操作稳定性。电子控制自动变速器比较早的纯液力控制的自动变速器又前进了一大步,其控制精度和控制范围是纯液力控制自动变速器无法实现的。电子控制自动变速器通过适时、准确地自动换挡控制,提高了汽车操纵行、舒适性和安全性,也使汽车燃油消耗有可能比使用普通变速器的汽车更低。电子控制悬架可根据不同的路面、车速等情况自动控制悬架的刚度和阻尼以及车身的高度,使得汽车的乘坐舒适性和操作稳定性进一步提高。此外,动力转向电子控制系统、汽车行驶速度控制系统等电子控制装置的使用都使汽车的操作性、安全性和舒适性等得到了进一步的提高。

电动汽车驱动控制系统设计.

电动汽车驱动控制系统设计 摘要 驱动系统是电动汽车的心脏,也是电动汽车研制的关键技术之一,它直接决定电动汽车的性能,本文根据异步电动机矢量控制理论,结合电动汽车的实际要求,研究设计基于无速度传感器矢量控制的电动汽车驱动系统。矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,已达到直流电动机的控制效果。最后,在Matlab环境中建立了仿真系统,验证了无速度传感器矢量控制系统原理应用于电动汽车驱动系统的可行性。 关键词:电动汽车;驱动系统;异步电动机;无速度传感器矢量控制

ABSTRACT Driving system is the heart of EV and one of the key parts of the vehicle that determines the performance of the EV directly. According to the control technique、the method of induction motor drive system and based on the factual requirement of EV, the speed sensorless vector control was designed in this article. By transforming coordinate, the stator current is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively, So magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. Finally, intimation system is established in the environment of Matlab to validate these control arithmetic. The system proved its enormous practical value of application. Key words: EV; Drive system; Induction motor; speed sensorless vector control

分布式驱动电动汽车车轮滑移率自适应控制

分布式驱动电动汽车车轮滑移率自适应控制 摘要:主要研究分布式驱动电动汽车滑移率自适应控制问题。由于被研究车轮动态系统具有很强的非线性,滑移率控制需要一个鲁棒性较强的控制器。该研究设计了基于PI 控制算法的滑移率控制器,目标在于不管路面如何变化都能将车轮滑移率控制在设定最优滑移率上。与此同时,本研究还设计了一个在线路面估计器,估计器实时为滑移率PI控制器提供路面最优滑移率值。PI控制器和在线路面估计器结合路面自适应控制律就构建了滑移率自适应控制器。PI控制器和在线路面估计器的设计保证了其具有李雅普诺夫稳定性。最后,基于分布式驱动电动汽车仿真平台对滑移率自适应控制器性能进行了仿真验证。仿真结果表明,滑移率自适应控制器性能优良,大大地提高了车辆的驱动性能和驱动效率。 关键词:自适应控制路面估计滑移率电动汽车 Abstract:This project conducts a research on wheel slip ratio control for distributed drive electric vehicles. In consideration of wheel rotation dynamics and its strong nonlinear properties,a Proportional-Integral controller is designed in this paper aimed at regulating the wheel slip ratio to a constant value regardless of the road adhesion conditions.

新能源汽车底盘设计..

新能源汽车底盘设计方向 朱赤 【摘要】本文阐述了底盘设计在新能源汽车设计中的重要性,并结合典型实例探讨了新能源汽车底盘的设计方向,分析了不同种类底盘的特点与优势。 【主题词】新能源汽车底盘整体优化设计滑板式底盘 0 引言 美国科罗拉多州的洛基山研究所(RMI)首先提出未来汽车的设计准则:不参照现有的汽车设计模式;整体化系统设计;强调轻量化和高效的制造平台。整体化系统设计的设计理念,就是在设计汽车的过程中不及仅仅对单个部件优化,更重要的是在设计之初对整个汽车系统进行优化,以降低因动力系统的改变而带来的连锁反应。 新能源汽车作为汽车工业的未来发展方向,在设计过程中运用了大量整体化系统设计理念,尤其在底盘方面,底盘的设计与新能源汽车的总布置方案息息相关,与新能源汽车动力系统架构及其集成度联系紧密,同时也影响着新能源汽车的外观设计与内部空间,是新能源汽车设计中极其重要的开发内容。 1 简介 底盘系统包含了悬架、制动、转向等子系统,在传统意义上它影响着整车的舒适性、安全性与操控性,而对于新能源汽车而言,它的影响更加深远。新能源汽车的底盘系统需要适应于车载能源的多样性、适用于高度集成的系统模块,同时不限制汽车内部空间与外部造型的设计。 2设计方向 纵观各类新能源汽车,从概念车到量产车,从国内自主车型到国际典型车型,底盘系统的设计朝着两大方向发展:一方面以传统车平台为基石,根据需求进行局部改进;另一方面推翻传统思维模式,创造出全新的理念。 2.1 方向一:改制

2.1.1 设计思路 从探索新能源车伊始,很多新能源车是在现有平台上实施新的总布置方案。其设计思路是被动的,根据其他系统方案的更改给底盘系统带来的影响,在原有平台的基础上设计或更改底盘各子系统。在该思路指导下,传统车的成熟零部件得到最大可能的沿用,保持底盘框架不改变,制动系统、转向系统、悬架系统、传动系统等在保持工作原理基本不变的前提下做相应改变或调整。 图1 “改制”设计思路 ①沿用底盘平台沿用原有平台的底盘构架,即副车架不变、底盘子系统工作原理不变。 ②传统发动机的取消影响部分底盘子系统因为新的动力系统取代了原传统发动机,新能源汽车的制动系统、转向系统、传动系统都需要在原有构架上做出相应调整。制动真空助力泵失去了真空源,需要增加电动真空泵为其提供真空源,相应的管路等零部件需要更改;原动力转向泵因为发动机的取消而无法沿用,需要开发新的转向动力源,相应的管路等零部件需要更改;新动力系统的减速器接口与原车相比发生了改变,因此传动系统需要根据新的输入信息进行更改或者重新设计。各子系统零部件更改的设计完成之后,根据总布置的位置与零部件数模设计悬置支架,最后通过CAE分析来确定悬置系统的强度与噪音并做出相应的改进。 ③总布置的改变影响悬架系统由于实施了新的总布置方案,前后舱布置内

分布式驱动电动汽车状态参数估计综述

10.16638/https://www.doczj.com/doc/2b17599095.html,ki.1671-7988.2019.15.001 分布式驱动电动汽车状态参数估计综述* 樊东升,李刚 (辽宁工业大学汽车与交通工程学院,辽宁锦州121001) 摘要:由于汽车的状态参数在行驶过程中不断变化,从而影响车辆行驶状态的准确估计,针对这一问题,论文对分布式驱动电动汽车状态参数估计进行了综述,列举了常用的两种估计算法,分别从扩展卡尔曼滤波和容积卡尔曼滤波两个方面进行了论述,对比分析了两种算法之间的应用场景与估计效果。总结出通过信息融合技术的多滤波器融合成为车辆状态参数估计的主流方向。 关键词:分布式驱动电动汽车;状态参数估计;扩展卡尔曼滤波;容积卡尔曼滤波 中图分类号:U469.72 文献标识码:A 文章编号:1671-7988(2019)15-03-02 Review on State Parameter Estimation of Distributed Drive Electric Vehicles* Fan Dongsheng, Li Gang (Automobile & Transportation Engineering College, Liaoning University of Technology, Liaoning Jinzhou 121001) Abstract: As the vehicle state parameters change continuously during vehicle driving process, which affects the accurate estimation of vehicle driving state. For this problem, the paper reviewed the state parameter estimation of distributed driving electric vehicle, and listed two commonly used estimation algorithms. The extended Kalman filter and the cubature Kalman filter were discussed. The application scenarios and estimation effects between the two algorithms were compared and analyzed. It is concluded that the multi-filter fusion through information fusion technology becomes the mainstream direction of vehicle state parameter estimation. Keywords: Distributed drive electric vehicle; State parameter estimation; Extended Kalman filter; Cubature Kalman filter CLC NO.: U469.72 Document Code: A Article ID: 1671-7988(2019)15-03-02 1 前言 汽车在行驶过程中,很难直接获取准确的车辆状态参数,而获取这些参数的传感器价格又非常的昂贵,无法大量使用在量产车上。随着科技技术的发展,一些低成本的传感器(纵向加速度、侧向加速度、横摆角速度)逐渐被研究出来,其精度也相对较高,因此开始逐渐运用在汽车上,通过这些传感器实现对车辆状态参数的估计,从而解决了无法直接测得准确的车辆状态的难题。目前汽车的主动安全系统响应速度与响应效果很大程度上取决于车辆在运动状态中自身关键参数的估计精度。当前应用的主流系统,一个普遍的问题是车辆模型的参数缺乏适应性,这些参数通常情况下被视为随时间恒定不变的,尽管它们不是完全已知的或者受到时间变化以及运动的影响。导致的直接结果就是,由于驾驶条件的不断变化,采用固定不变的参数值使控制系统的性能降低[1]。 作者简介:樊东升(1995.3-)男,硕士研究生,就读于辽宁工业大 学,研究方向:车辆系统动力学及控制。 基金项目:国家自然科学基金面上项目(51675257)辽宁省高等学 校创新人才项目(LR2016054)。 3

电动汽车前后副车架及底盘车架设计开发项目合同协议合同书技术协议合同书优选稿

电动汽车前后副车架及底盘车架设计开发项目合同协议合同书技术协 议合同书 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

附件1 技术开发协议 项目名称:电动汽车前后副车架及整体底盘设计开发 委托人: 研究开发人: 签订地点:北京 签订日期:___2016-3-11________ 目录 附件2、《电动汽车前后副车架及底盘车架设计开发项目计划进度表》 附件3、《电动汽车前后副车架及盘设车架计开发项目-商业秘密保密协议》

一、产品定义 1.目标定义 本项目以某商务车副车架为研究对象,借助先进的CAE方法,建立汽车前、后悬架的动力学仿真模型和动力总成仿真模型。同时应用有限元方法,研究副车架的静、动态 特性。同时对副车架进行疲劳寿命分析,并与试验结果进行比较,验证优化分析的正确性和合理性。为副车架结构的进一步设计和分析提供一定的理论基础,并为企业后续的产品研发提供借鉴和参考。同时完成对底盘车架的优化设计,各项参数需满足设计任务书的要求。 二、产品开发的要求 1、前后副车架应达到的指标 1.1优化后的副车架应有足够的强度。确保副车架在各种工况下有足够的强度,在复杂受力情况下不易产生破坏,特别是严重的疲劳损伤,影响正常的使用寿命; 1.2优化后的副车架应有足够的弯曲刚度。确保该型车在复杂受力的条件下,连接在其上的各总成,像转向机总成、下摆臂等因在特殊工况受力变形而丧失正常的工作能力,影响整车的使用寿命和安全性; 1.3优化后的副车架应较原结构减轻30%以上重量。副车架作为一个重要的二级减振和隔振部件,在保证各种性能的前提下,尽量减轻重量,降低成本,提高动力性和巡航里程。 1.4副车架总成中有害物质应符合2000/53/EC和2010/115/EU的要求;

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

详解电动汽车传动系统原理、传动方式及拓扑构架设计

详解电动汽车传动系统原理、传动方式及拓扑构架设计 随着现代汽车电子技术的发展,新能源汽车、电动汽车的出现无疑给整个行业注入了一股新鲜而且充满挑战性的血液。凭借可以减少很多废弃物、有害气体的排放,对整个社会的生活环境都有很大的改善效果,得到社会及国家的高度的重视,具有很好的发展前景。下面我们就来从电动车的结构引入到电动汽车传动系统,并分析它的工作原理、传动方式、优势等,并简单的列举一些成功的应用案例。电动汽车和普通的汽车不同,它是用车载电源提供行驶的动力,用电机来驱动车轮的运动,而不是用点火装置来提供向前运动的力。我们知道,电动汽车主要是由电力驱动及控制系统、驱动力传动系统、工作装置等各个部分组成。它的工作原理是蓄电池中提供恒定的电流输出,这些恒定的电路通过电力调节器进行一次转换成可以驱动电动机的合适的电流和电压,从而可以驱动整个动力传动系统的正常运行,经过他们之间相互的作用最终给汽车提供可以运行的动力汽车可以正常的行驶。由此可见,电动汽车传动系统的有效性和安全性直接影响着整个系统的运行。电动汽车传动系统原理是直接将电动机的驱动转矩传给汽车的驱动轴。汽车传动轴在采用电动轮驱动时,由于它是靠车载电源提供动力源驱动电动机因而可以实现带负载启动,无需离合器;也正是因为是车载电源可以提供恒定的电流,中间会有电路控制的环境来实现驱动电机的方向和转速的控制,所以不需要倒档和差速器。若采用无级调速,就可以实现自动控制,无需变速器。电动汽车传动系统的传动方式主要有三种:(1)电机+传动轴+后桥(2)电机+变速箱+后桥(3)电机+磁力变矩器+后桥以目前的变速箱技术成熟度而言,除了传统车的变速箱外还没有一款真正成熟的适用于电动汽车的产品,最可靠和适用的传动方式还是电机+传动轴+后桥的直驱方案。当然在具体的设计时,我们需要更具实际情况来设计,包括电机的位置、电源的位置、驱动负载的能力、行驶速度要求、稳定性等这些都需要综合的来考虑。了解车辆效率损失分配即从发动机输出的功率消耗在不同汽车部件上的量及比例。这对改善车辆总体的传动效能非常有用,以达到适当配置资源,改善性能的目的。各种损失,使用安装在车辆适当位置的传感器进行测定。电动汽车传动系统拓扑构架设计汽车动力传动系统采用传统的内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车。在低速小功率运行时可以关闭发动机,采用电动机驱动;而高速行驶时用内燃机驱动;通过发动机和电动机的协同工作模式,将车辆在制动时产生的能量转化为电能,并积蓄起来成为新的驱动力量.从而在不同工况下都能达到高效率。一般上有串联式、并联式、混联式和复合式4种布置形式。(1)串联式—下图中采用的电力电子装置只有电机控制器,电池和辅助动力装置都直接并接在电机控制器的入口,属于串联式,车辆的驱动力只来源于电动机。 (2)并联式—下图中是典型的并联式动力系统结构,通常在电池和电机控制器之间安装了一个DC/DC变换器,电池的端电压通过DC/DC变换器的升压或降压来与系统直流母线的电压等级进行匹配。车辆的驱动力由电动机及发动机同时或单独供给。(3)混联式----采用四轮驱动、前后轮分别与不同的驱动系相连,后轮驱动有发动机、后置电机、发电机、变速器等组成,前轮驱动由前置电机、发电机组成。由于它使用不同的驱动方式,所以整个电动汽车传动系统既分离又相关联,可以更好的控制。下图就是一个简单的混联式的拓扑构架。同时具有串联式、并联式驱动方式。(4)复合式---改结构主要集中于双轴混合动力系统中,前轴和后轴独立驱动,前轮和后轮之间没有任何驱动抽或转电力主动型的设计,这种独立的驱动,让传动系统各个部件在运行过程中相互独立控制,因此可以有更好的传输能力。要让整个系统可以更好的运行,除了结构设计方面需要注意之外,还有一个就是电动汽车传动系统的参数设计也需要合理的匹配,这些参数对传动结构的性能影响也是很大的。这一方面的知识,小编在这边文章就不具体介绍了。总结能源问题和环境污染问题是现在社会日益突出的问题,深受国家的重视。因此寻找新能源汽车可以减少废气排放,让能源可以更好的利用在汽车电子设计行业是当务之急。电动汽车正是因为具有上面

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势 2012年1月30日 电动汽车用永磁同步电机的发展分析 彭海涛,何志伟,余海阔 (华南理工夫学电力学院,广州510640) 摘要:简要的比较了几种常用电动汽车的驱动系统,并指出了永磁同步电动机的优势。在各类驱动电机中,永磁同步电机能量密度高,效率高、体积小、惯性低、响应快,有很好的应用前景,介绍了电动车驱动用永磁同步电机的目前研究状况以及目前的研究热点和发展趋势。关键词:电动汽车;永磁同步电机;弱磁控制;控制策略;应用 中圈分类号:TM351, TM341 文献标志码:A 文章编号:1001—6848[2010)06-0078-04 O引言 电动汽车具有低噪声、零排放、高效、节能及能源多样他和综合利用等显著优点,成为各国开发的主流。电动汽车的发展有赖于技术的进步,尤其是需要进一步提高其驱动系统的性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[2]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1电动汽车用电动机及驱动系统比较 电气驱动系统作为现代电动汽车的核心,主要包括:电动机、功率电子元器件及控制部分。评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁电动机(PM)、开关磁阻电动机(SRM)网类。下面分别对几种电气驱动系统进行简要分析和说明,其总体比较见表l。 1.1直流电动机驱动系统 在电动汽车领域最早使用的就是直流电动机。直流电动机结构简单,易于控制,具有良好的电磁转矩控制特性,但是由于采用机械换向结构,维护困难,并产生火花,容易对无线电产

相关主题
文本预览
相关文档 最新文档