当前位置:文档之家› 第7章差分方程习题集及答案

第7章差分方程习题集及答案

第7章差分方程习题集及答案
第7章差分方程习题集及答案

第七章 习题三

差分方程

1. 求下列函数的二阶差分

(1)232x x y -=; (2)x e y 3=; (3)x

x y 2)1(2++=

2. 写出下列一阶差分方程的特解形式

(1)12

1-=-+x y y x x ;

2)x y y x x 2sin 31=-+

3. 求下列一阶差分方程的通解

(1)061=--x x y y ;

(2)08

11=-

-x x y y ;

(3)x x x e y y βα=-+1;(βα、为常数且0≠α)

4. 求下列一阶差分方程的通解

(1)114

x x y y +=-且160=y ;

(2)0831=+++x x y y 且160=y .

5. 求解差分方程t t t t y y 21=-+.

6. 已知t t Y t Y t t 32)(,2)(21-==是非齐次差分方程)()(1t f y t P y t t =++的两个特解,求)(),(t f t P .

7. 求13331+=-+t t t t y y 的通解.

实验3离散系统的差分方程、冲激响应和卷积分析

实验3离散系统的差分方程、冲激响应和卷积分析 一 一、实验目的 1 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统 ] [n x ] [n y Discrete-time systme 其输入、输出关系可用以下差分方程描述:∑=∑=-=-M k k N k k k n x p k n y d 0 ][][ 输入信号分解为冲激信号 ∑-=∞ -∞=m m n m x n x ][][][δ 记系统单位冲激响应 ] [][n h n →δ 则系统响应为如下的卷积计算式 ∑∞ -∞ =-= *=m m n h m x n h n x n y ][][][][][ 当 N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为 FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=Filter(p,d,x) 求解差分方程,也可以用函数 y=Conv(x,h)计算卷积。 二、实验内容 编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。 ] 1[][]2[125.0]1[75.0][--=-+-+n x n x n y n y n y ]}4[]3[]2[]1[{25.0][-+-+-+-=n x n x n x n x n y 程序1: A=[1,0.75,0.125];B=[1,-1]; x2n=ones(1,65); x1n=[1,zeros(1,30)]; y1n=filter(B,A,x1n); subplot(2,1,1);y='y1(n)'; stem(y1n,'g','.'); title('单位冲击响应') 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

有限差分法求解偏微分方程MATLAB教学教材

有限差分法求解偏微分方程M A T L A B

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 115104000545 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2 100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

《有限差分法在微分方程中的应用》课程论文

课程论文

有限差分法在微分方程中的应用 本学期学习了《微分方程数值解》,本书中有限差分法给我留下的印象比较深刻,下边说说自己在方面的一点理解,请老师指正。 1.有限差分法的基本思想: 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。 2.有限差分法求解偏微分方程的步骤: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点; 近似替代,即采用有限差分公式替代每一个格点的导数。 逼近求解,换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。 从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值进行插值计算来近似得到。理论上,当网格步长趋近于零时,差分方程组的解应该收敛于精确解,但由于机器字节的限制,网格步长不可能也没有必要取得无限小,那么差分法的收敛性或者说算法的稳定性就显得至关重要。因此,在运用有限差分法时,除了要保证精度外,还必须要保证其收敛性。 3.构造差分法的几种形式: 主要草用的是泰勒级数展开的方法。其基本差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等。其中前两种形式为一阶计算精度,后一种为二阶计算精度。

第七章差分方程模型概论

第7章 差分方程模型 7.1 市场经济中的蛛网模型 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长 §7.1 市场经济中的蛛网模型 例1 蛛网模型问题 [问题的提出] 蛛网模型现象 供大于求 -> 价格下降 -> 减少产量 ↑ 数量与价格在振荡 ↓ 增加产量 <- 价格上涨 <- 供不应求 提出的问题 1.描述商品数量与价格的变化规律 2.商品数量与价格的振荡在什么条件下趋向稳定 3.当不稳定时政府能采 取什么干预手段使之稳定 [模型分析与假设] 蛛网模型 设 k x ~第k 时段商品数量; k y ~第k 时段商品价格 消费者的需求关系 → 需求函数 ) (k k x f y = → 减函数 生产者的供应关系 → 供应函数 ) (1k k y h x =+ → 增函数 ↓ ) (1+=k k x g y f 与 g 的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0 xk+1,xk+2,…=x0, yk+1,yk+2, …=y0 y x0 y0

方程模型 在P0点附近用直线近似曲线 ) (k k x f y =→ ) 0()(00>--=-ααx x y y k k ) (1k k y h x =+→ ) 0()(001>-=-+ββy y x x k k )(001x x x x k k --=-+αβ )()(0101x x x x k k --=-+αβ 1<αβ )/1(βα< → 0x x k → P0稳定 g f K K < 1>αβ )/1(βα> → ∞→k x P0不稳定 g f K K > 方程模型与蛛网模型的一致 f K =α g K =β/1 [模型的求解] 考察α ,β 的含义 xk~第k 时段商品数量;yk~第k 时段商品价格 ) (00x x y y k k --=-α α~ 商品数量减少1单位, 价格上涨幅度 ) (001y y x x k k -=-+β β~ 价格上涨1单位, (下时段)供应的增量 α~ 消费者对需求的敏感程度 α小, 有利于经济稳定 β~ 生产者对价格的敏感程度 β小, 有利于经济稳定 → 1<αβ 经济稳定 经济不稳定时政府的干预办法 1. 使α尽量小,如α=0 → 需求曲线变为水平 → 以行政手段控制价格不变 2. 使β尽量小,如β =0 → 供应曲线变为竖直 → 靠经济实力控制数量不变 x y 0 y0 g f x y 0 x0 g f

离散序列的卷积和系统差分方程的MATLAB实现

信息工程学院实验报告 课程名称:数字信号处理 实验项目名称:离散序列的卷积和系统差分方程的MATLAB 实现 实验时间: 班级:电信131 姓名: 学号:201311404113 一、 实 验 目 的: 熟悉序列的卷积运算及其MATLAB 实现;熟悉离散序列的傅里叶变换理论及其MATLAB 实现;加深对离散系统的差分方程和系统频率响应的理解。 二、实 验 原 理 1、MA TLAB 提供了一个内部函数conv(x,h)来计算两个有限长序列之间的卷积。 2、对于时域离散系统,可用差分方程描述或研究输入、输出之间的关系。对于线性时不变系统,经常用的是线性常系数差分方程。一个N 阶线性常系数差分方程用下式表示: ()() N M i i i i b y n i a x n i ==-=-∑∑ 当 0,1,2,,i b i N == 时,[]h n 是有限长度的,称系统为FIR 系统;反之,称系统为IIR 系统。 在MA TLAB 中,可以用函数filter(a,b,x)求解差分方程,其中参数a,b 分别系统函数的分子和分母多项式的系数。 三、实 验 内 容 与 步 骤 实验内容: 1、已知 1(){1,1,1,1,1}x n =,2(){1,1,1,1,1,1,1}x n =,计算12()()*()y n x n x n =。 2、在0到π区间画出矩形序列 10()R n (其定义见例1-3)的离散时间傅里叶变换(含幅度和相位)。 3、求系统:()0.5((1)(2)(3)(4))y n x n x n x n x n =-+-+-+-的单位冲激响应和阶跃响应。 实验步骤: 1、

离散系统差分方程计算

1.设离散控制系统差分方程为x采样周期T。试求:(1) 系统的脉冲传递函数。(2)系统的频率特性表达式。 解:差分方程两边取Z变换,得 脉冲传递函数 频率特性 2.假设离散系统差分方程为。其中; ,,,。试求:(1)分析系统的稳定性。(2),,。 解:(1)对差分方程两边取Z变换,得 特征方程: 解得:; 由于,即系统稳定。 (2)n=0时, n=1时, n=2时, 3.某离散控制系统的差分方程为,其中: ,,,,,,。试求:(1),。(2)分析稳定性。 解:(1)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。

(2)n=0时, n=1时。 4.离散控制系统的差分方程为:,其中 ,,时,时。试求:(1),,。(2)脉冲传递函数。 解:(1)差分方程两边取Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时, 5.已知:离散控制系统的差分方程为。试求:脉冲传 递函数。系统频率特性 解:对差分方程Z变换,得 频率特性 6.某离散系统的差分方程为=,其中 ,。试求(1)脉冲传递函数,并分析稳定。(2) ,,。 解:对差分方程两边Z变换,得 ()

特征方程: 解得:; 由于,所以系统稳定。 (2)n=0时, n=1时, n=2时,y 7.已知离散系统的差分方程为,试求:(1)脉冲传递 函数。(2)分析系统稳定性 解:(1)对差分方程两边Z变换,得 (2)特征方程:=0 解得:; 由于,所以系统临界稳定。 8.离散系统差分方程为,其中 ,;。试求:,,。()分析稳定性。 解:(1)n=0时, n=1时, n=2时, (2)对差分方程两边Z变换,得 特征方程: 解得:; 由于,所以系统稳定。 9.某离散系统差分方程为,其中:, 时,;时,。试求:,,。(2)分析

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

第七章 差分方程模型

第七章 差分方程模型 教学目的:通过经济学中蛛网模型的实例讨论,介绍一类动态离散模型------差分方程模型的 建模方法. 教学要求:1 让学生学会运用差分思想建立数学模型的基本方法,进一步熟悉数学建模的基 本过程. 2使学生掌握运用解析方法或数学软件求解差分方程模型. 3帮助学生运用差分方程的平衡点及其稳定性有关理论来分析实际问题. 教学重点:1蛛网模型的图形描述,并通过建立差分方程模型对其进行理论解释. 2运用差分思想建立数学模型和求出模型解析表达式或数值解. 教学难点:1差分方程在稳定点附近有关稳定条件的实际意义. 2差分方程在稳定点附近有关稳定条件的推广. 离散状态转移模型涉及的范围很广,可以用到各种不同的数学工具.下面我们对差分方程作一简单的介绍. §7.1 差分方程 1.1 差分方程简介 规定t 只取非负整数.记t y 为变量y 在t 点的取值,则称t t t y y y -=?+1为t y 的一阶向前差分,简称差分,称t t t t t t t y y y y y y y +-=?-?=??=?+++1212 2)(为t y 的二阶差分.类似地, 可以定义t y 的n 阶差分t n y ?. 由t y t 、及t y 的差分给出的方程称为t y 的差分方程,其中含t y 的最高阶差分的阶数称为该差分方程的阶.差分方程也可以写成不显含差分的形式.例如,二阶差分方程 02=+?+?t t t y y y 也可改写成012=+-++t t t y y y . 满足一差分方程的序列t y 称为差分方程的解.类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解.若解中不含任意常数,则称此 解为满足某些初值条件的特解. 称如下形式的差分方程 )(110t b y a y a y a t n t n t n =+++-++ (1) 为n 阶常系数线性差分方程,其中n a a a ,,,10 是常数,00≠a .其对应的齐次方程为 0110=+++-++t n t n t n y a y a y a (2) 容易证明,若序列) 1(t y 与) 2(t y 均为(2)的解,则) 2(2) 1(1t t t y c y c y +=也是方程(2)的解,其 中21,c c 为任意常数.若)1(t y 是方程(2)的解,) 2(t y 是方程(1)的解,则)2()1(t t t y y y +=也是

离散系统的差分方程、冲激响应和卷积分析

实验2 离散系统的差分方程、冲激响应和卷积分析 一、实验目的 加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。 二、实验原理 离散系统可表示为 其输入、输出关系可用以下差分方程描述: ∑∑==-=-M k m N k k m n x b k n y a 00][][ 输入信号分解为冲激信号, ∑∞ -∞=-= m m n m x n x ][][][δ。 记系统单位冲激响应 ][][n h n →δ, 则系统响应为如下的卷积计算式: ∑∞ -∞=-= *=m m n h m x n h n x n y ][][][][][ 当N k a k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(b,a,N)求系统的冲激响应。 对于N 阶差分方程∑∑==-=-M k m N k k m n x b k n y a 00][][, 1) 当给定函数的系数和输入序列时,差分方程的递推过程在MA TLAB 中用函数y=filter(b,a,x)来实现,其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。求得的输出序列y 和输入序列x 的长度相等。若x 的长度太短,需要补零。用conv 函数计算能在输入序列后自动补零,而filter 函数不能。 2) MATLAB 中有一个求离散系统脉冲响应的专门函数y=impz(b,a,N),其中,b 为右端x 的系数,a 为左端y 的系数,a 0=1。N 为要求的点数。键入impz(b,a),程序将自动给出脉冲响应的曲线。 3) 当输入序列和脉冲响应序列都是以数值方式给出时,可以用MATLAB 中的卷积函数y=conv(x,h)来计算。

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

差分方程模型习题+答案

1. 一老人60岁时将养老金10万元存入基金会,月利率0.4%, 他每月取1000元作为生活费,建立差分方程计算他每岁末尚有多少钱?多少岁时将基金用完?如果想用到80岁,问60岁时应存入多少钱? 分析:(1) 假设k 个月后尚有k A 元,每月取款b 元,月利率为 r ,根据题意,可每月取款,根据题意,建立如下的差分方程: 1k k A aA b +=-,其中a = 1 + r (1) 每岁末尚有多少钱,即用差分方程给出k A 的值。 (2) 多少岁时将基金用完,何时0k A =由(1)可得: 01k k k a A A a b r -=- 若0n A =,01 n n A ra b a = - (3) 若想用到 80 岁,即 n =(80-60)*12=240 时,2400A =,240 0240 1 A ra b a =- 利用 MA TLAB 编程序分析计算该差分方程模型,源程序如下: clear all close all clc x0=100000;n=150;b=1000;r=0.004; k=(0:n)'; y1=dai(x0,n,r,b); round([k,y1']) function x=dai(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)-b; end (2)用MA TLAB 计算: A0=250000*(1.004^240-1)/1.004^240

思考与深入: (2) 结论:128个月即70岁8个月时将基金用完 (3) A0 = 1.5409e+005 结论:若想用到80岁,60岁时应存入15.409万元。 2. 某人从银行贷款购房,若他今年初贷款10万元,月利率0.5%,他每月还1000元。建立差分方程计算他每年末欠银行多少钱,多少时间才能还清?如果要10年还清,每月需还多少? 分析:记第k个月末他欠银行的钱为x(k),月利率为r,且a=1+r,b为每月还的钱。则第k+1个月末欠银行的钱为 x(k+1)=a*x(k)+b,a=1+r,b=-1000,k=0,1,2… 在r=0.005 及x0=100000 代入,用MA TLAB 计算得结果。 编写M 文件如下: function x=exf11(x0,n,r,b) a=1+r; x=x0; for k=1:n x(k+1)=a*x(k)+b; end MA TLAB计算并作图: k=(1:140)'; y=exf11(100000,140,0.0005,-1000); 所以如果每月还1000元,则需要11年7个月还清。 如果要10年即n=120 还清,则模型为: r*x0*(1+r)^n/[1-(1+r)^n b=-r*x0*(1+r)^n/[1-(1+r)^n] 用MA TLAB 计算如下: >> x0=100000; >> r=0.005; >> n=120; >> b=-r*x0*(1+r)^n/[1-(1+r)^n] b= 1.1102e+003 所以如果要10年还清,则每年返还1110.2元。 3. 在某种环境下猫头鹰的主要食物是田鼠,设田鼠的年平均增长率为1r,猫头鹰的存在引起的田鼠增长率的减少与猫头鹰的数量成正比,比例系数为1a;猫头鹰的年平均减少率为

偏微分方程求解-有限差分法解析

--以有限差分法为例偏微分方程数值求解 1. 偏微分方程求解问题的描述 教材P653[12.1.1]椭圆型 教材P653[12.1.2] 教材P664[12.2.1]双曲型 教材P665[12.2.4]拉普拉斯泊松 对流 波动 教材P684[12.3.1]抛物型 教材P685[12.3.6]扩散 对流扩散 教材P686[12.3.8]二维扩散 教材P678[12.2.23]二维对流

??????????????????????≥≤≤==≥≤≤==≤≤=>≥≤≤≤≤???? ????+??=??0,0, ),(),,(),(),0,(0,0,),(),,(),(),,0(,0,),()0,,(0,0 , 0 , 0 21212222t L x t x v t L x u t x v t x u t L y t y t y L u t y t y u L y x y x y x u b t L y L x y u x u b t u μμ?Ω 求解域初值条件边值条件) ,,(t y x u 未知函数

????? ? ????????????????????≥<<-==≥<<==≥≤≤-==≥≤≤==≤≤==≤≤≤≤≤≤???? ????+??=??0 , 50 , sin 255sin ),(),5,(0 , 50 , 0),(),0,(0 , 50 , 5sin sin 25),(),,5(0 , 50 , 0),(),,0(5,0,0),()0,,( 10000 , 50 , 50 001.022********t x x x t x v t x u t x t x v t x u t y y y t y t y u t y t y t y u y x y x y x u t y x y u x u t u μμ?Ω 求解域初值条件边值条件以具体问题为例演示具体的求解过程) ,,(t y x u 未知函数

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验2 离散系统的差分方程、单位脉冲响应和卷积分析 一、 实验目的 1、 熟悉并掌握离散系统的差分方程表示法; 2、 加深对单位脉冲响应和卷积分析方法的理解。 二、 实验原理 (一), 1. 单位采样序列 ???=01 )(n δ 0 0≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01 )(k n δ 0≠=n k n 2.单位阶跃序列 1()=0 u n ??? 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3.正弦序列 )/2sin()(?π+=Fs fn A n x 在MATLAB 中 ) /***2sin(*1:0fai Fs n f pi A x N n +=-=

4.复指数序列 n j e n x ?=)( 在MATLAB 中 ) **exp(1:0n w j x N n =-= 5.实指数序列 n a n x =)( 在MATLAB 中 n a x N n .^1:0=-= (二) 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 00()()N M i i i i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即: ()()()m x n x m n m δ∞ =-∞= -∑ 记系统单位脉冲响应 ()()n h n δ→ 则系统响应为如下的卷积计算式:

有限差分法

有限差分法 有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散 点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函 数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差 分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便 可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原 微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和 计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分 格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格 式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过 程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致 差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以 控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能 任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是 数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的 微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用 待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法 将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从 而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分 的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目 前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分 方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

第七章线性差分方程模型的辨识

第七章线性差分方程模型的辨识 根据对过程的初步分析,可以是先提出一个结构已定的参数模型来描述过程的动态特性,而模型中有一些参数需要通过辨识来加以确定,像这样的辨识问题称为参数估计问题,最小二乘法是很常用的估计方法。 线性差分方程模型的最小二乘估计 首先讨论一种较简单的情况,即无噪声或噪声较小的情况,这样可以应用一般最小二乘估计模型参数,但是对于噪声较大的情况,采用一般最小二乘法估计通常是有偏差的,需要应用更加复杂的算法,如广义最小二乘法。 辨识问题的提法 设被辨识的动态系统,可用如下n阶常系数线性差分方程描述: y(k) + a^y(Jc—1) + ?? - a n y(k— n) = bju(k) + biu(k— 1) ---------- 卜b n u(k— n) 系统方程也写成如下算子形式: A(q_1)y(k) = B(q_1)u(k), 其中, = 14- fliQ-1 + a2q~2+ …+ 如厂",B(q_1) = 14- bq_1 + ①厂?H ------------- F bq~n, 辨识问题的提法,已知: (1)由方程描述的系统都是稳定的。 (2)系统的阶是n阶。 (3)输入输出观测数据{u (k) },{y(k)}(k“,2,...,N+n), 要求根据上述己知条件来估计差分方程的参数: a】, b](i = 1,2, ???N + n), 参数最小二乘估计的慕本思根是,选择 b x(i = 1,2, ...N + n), 使得系统方程尽可能好的与观测数据拟合,考虑到模型误差测最误差,模型方程改为: A(q")y(k) = B(q_1)u(k) + e(k), 其中,e(約称为模型残差,乂称方程误差。 现在的问题就是决定A(q"), B(g")的系数,是e2最小 最小二乘估计 将下式 A(q_1)y(k) = B(q_1)u(k) + e(k\ 改成以下形式

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

差分方程模型应用

第七章 差分方程模型 差分方程是解决离散时间问题的常用的数学方法,本章介绍几个用差分方程建立的实际问题的数学模型。 7.1个人住房抵押贷款 随着经济的发展,金融问题正越来越多地进入普通市民的生活,贷款、保险、养老金和信用卡等都涉及金融问题,个人住房抵押贷款是其中最重要的一项。1998年12月,中国人民银行公布了新的存、贷款利率水平,其中贷款利率如表7.1所列: 表7.1 中国人民银行贷款利率表 贷款期限 半年 一年 三年 五年 五年以上 利率﹪ 6.12 6.39 6.66 7.20 7.56 当贷款期处于表中所列相邻年限之间时利率为对应相邻两数中较大者。其后,上海商业银行对个人住房商业性贷款利率做出相应调整。表7.2和表7.3分别列出了上海市个人住房商业抵押贷款年利率和商业抵押贷款(万元)还款额的部分数据(仅列出了五年)。 表7.2 上海市商业银行住房抵押贷款利率表 贷款期限 一年 二年 三年 四年 五年 利率﹪ 6.12 6.255 6.390 6.525 6.660 表7.3 上海市商业银行住房抵押贷款分期付款表(元) 贷款期限 一年 二年 三年 四年 五年 月还款 一次还清 本息总和 10612.0 444.36 10664.54 305.99 11015.63 237.26 11388.71 196.41 11784.71 一个自然的问题是,表7.2和表7.3是如何依据中央人民银行公布的存、贷款利率水平制定的? 我们以商业贷款10000元为例,一年期贷款的年利率为6.12﹪,到期一次还本付息总计10612.00元,这很容易理解。然而二年期贷款的年利率为6.255﹪,月还款数444.36元为本息和的二十四分之一,这后两个数字究竟是怎样产生的?是根据本息总额算出月还款额,还是恰好相反?让我们稍微仔细一些来进行分析。由于贷款是逐月归还的,就有必要考察每个月欠款余额的情况。 设贷款后第k 个月时欠款余额为k A 元,月还款m 元,则由k A 变化到1k A +,除了还款额外,还有什么因素呢?无疑就是利息。但时间仅过了一个月,当然应该是月利率,设为r ,从而得到 1k k k A A rA m +-=-

常微分方程差分解法、入门、多解法

毕业论文 题目抛物型方程的差分解法学院数学科学学院 专业信息与计算科学 班级计算0802 学生王丹丹 学号20080901045 指导教师王宣欣 二〇一二年五月二十五日

摘要 偏微分方程的数值解法在数值分析中占有重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题【1】。近三十多年来,数值解法的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。本文的研究主要集中在依赖于时间的问题,借助于简单的常系数扩散方程,介绍抛物型方程的差分解法。本文以基本概念和基本方法为主,同时结合算例实现算法。 第一部分介绍偏微分方程及差分解法的基本概念,引入本文的研究对象——常系 数扩散方程: 2 2 ,,0 u u a x R t t x ?? =∈>?? 第二部分介绍上述方程的几种差分格式及每种格式的相容性、收敛性与稳定性。 第三部分通过算例检验每种差分格式的可行性。 关键词:偏微分方程;抛物型;差分格式;收敛性;稳定性;算例

ABSTRACT The numerical solution of partial differential equation holds an important role in numerical analysis .Many problems of compution in the field of science and techology include the numerical solution of partial differential equation. For more than 30 years, the theory and method of the numerical computation made a great development and its applications in various fields of science and technology are more and more widely. This paper focuses on the problems based on time. I will use object-constant diffusion equation to introduces the finite difference method of parabolic equation. This paper mainly focus on the basic concept ,basic method and simple numerical example. The first part of this paper introduces partial differential equations and basic concepts of finite difference method.I will introduce the object-constant diffusion equation for the first time. 2 2 ,,0 u u a x R t t x ?? =∈>?? The second part of this paper introduces several difference schemes of the above equation and their compatibility ,convergence and stability. The third part tests the accuracy of each scheme. Key words:partial differential equation;parabolic;difference scheme;convergence;stability;application

相关主题
文本预览
相关文档 最新文档