当前位置:文档之家› 函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用
函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用

张猛

【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。

关键词:函数;方程;函数与方程思想应用案例

数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。

一:函数与方程思想的地位与作用

函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。

目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用:

二:函数与方程思想的应用案例

通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。

1 求代数式的值

例1 已知

22a b ==求22(3124)(2813)a a b b -+-+的值。

解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。

当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=;

当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得

∴ 原式=1?11=11。

解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题

例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。

(1)甲、乙两个工厂每天各加工多少件新产品?

(2)请你计算两厂合作完成加工任务公司所付费用。

解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程

960960208x x -=+。

化简得283840x x +-=。解得1216,24x x ==-(不合题意,舍去)

当x=16时,x+8=24,则甲、乙两厂每天各加工16件和24件。

甲厂独自完成加工任务需时间为960÷16=60(天);乙厂独自完成加工任务需时间为960÷24=40(天)。

(2)设甲、乙两厂合作完成加工任务所用时间为y 天 可得11()16040

y +=。解之,得y =24(天) 故公司所付费用为(800+1200)?24=4800(元)。

解题反思:本题第(1)小题通过列方程得出结论,同时又为第(2)小题列方程提供了条件,思路清晰。这些内容主要考查对基本关系式的运算能力和解决实际问题的应用能力。

3 图形的计算

例3 如图,在△ABC 中,∠ACB =90,AC =2,BC =3.D 是BC 边上一点,

直线DE ⊥BC 于D ,交AB 于E ,CF ∥AB 交直线DE 于F 。设CD =x 。

(1)当x 取何值时,四边形EACF 是菱形?请说明理由;

(2) 当x 取何值时,四边形EACD 的面积等于2?

解:(1)由已知可证得四边形EACF 是平行四边形。

当CF =AC 时,该四边形是菱形。此时CF =AC =2,BD =3-x

可证△ACB ∽△EDB ,得ED =2

3(3-x ),则DF =23x 。

B

由勾股定理得:2222()23x x +=,∴x =(舍去负值),

当x 时,该四边形是菱形。 (2)21

23EACD S x x =-+梯形,由题意得,21223x x -+=,

∴ 解得

1233x x =

∵233x BC =>=

∴舍去2x ,因此3x =EACD 的面积等于2。

解题反思:在本例(1)中,利用勾股定理建立方程;在(2)中,利用梯形面积的两个表示式相等建立方程。除此之外,诸如多边形内角和定理、外角和定理、相似三角形对应所成的比例关系式等几何定理、图形性质,都是建立方程的重要桥梁。充分利用这样的“桥梁”,就能较顺利地运用方程思想将几何问题转化成方程问题来解决。

4构建函数模型解决应用题

例4 某水果批发商场经销一种高档水果,如果每千克赢利10元,每天可售出500kg 。经市场调查发现,在进货价不变的情况下,每千克涨价1元,日销售量将减少20kg 。

(1)现该商场要保证每天赢利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?

(2)若该商场单纯从经济角度看,这种水果每千克涨价多少元能使商场获利最多?

解:设每千克应涨价x 元,根据题意得:

(10)(50020)6000x x +-=

解得:1

25,10.x x == 为了使顾客得到实惠,应取x =5(元)。

(2)设每千克涨价x 元时,总利润为y 元。

∴22(10)(50020)20300500020(7.5)6125y x x x x x =+-=-++=--+

∴7.5x =时,6125mas y =(元)。

解题反思:本题属于商品销售中的最大利润问题,解答这类问题的关键是根据“商品总利润=每件商品的利润×销售量”构建二次函数模型,然后利用二次函数的性质求解。运用二次函数性质求实际问题中的最大值和最小值的一般步骤:①求出函数解析式和自变量的取值范围;②配方变形,或利用公式求它的最大值或最小值;③检验求得的最大值或最小值对应的自变量的值是否在自变量的取值范围内。

5 函数与几何综合题

例5 一块三角形废料如图所示,∠A =30,∠C =90,AB =12。用这块废料剪出一个小矩形CDEF 。其中点D 、E 、F 分别在AC 、AB 、BC 上,要剪出的矩形CDEF 面积最大,点E 应选在何处?

解:由分析可得,利用勾股定理求出AC 、AD 、AE 的长,然后利用矩形面积公式解答,

设AE 的长为x ,则DE =1

2x ,AD

x 在Rt △ACB 中,∠A =30,∠C =90,AB =12,

∴ cos306 3.AC AB ==

A C D

∴.

CD AC AD x

=-=

∴2

1

=)6)

2

CDEF

S DE CD x x

?==-+

矩形

∴当x=6时,剪出的矩形CDEF

面积最大,最大值是此时点E 应选在AB的中点。

解题反思:本题从研究变量的变化趋势入手,借助勾股定理弄清线段之间的变化关系来求解矩形的最大面积,构造函数模型,利用函数的概念、性质、图像求解问题。

例6如图,在Rt△ABC中,∠C=90,AB

=

sin

5

B=点P为边BC 上一动点,PD∥AB,PD交AC于点D,连接AP。

(1)求AC、BC的长.

(2)设PC的长为x,△ADP的面积为y.当x为何值时,y最大?求出y的最大值。

解:根据三角函数的定义知sin AC

B

AB

==,

由AB=AC=2。再利用勾股定理求得另一条直角边BC的长为4。

(2)由分析可得:

∵PD∥AB

∴△ABC∽△DPC

∴1.2

DC AC PC BC == 又∵PC =x ,则DC =1

2x ,AD =122x -

∴21111(2)(2) 1.2224

y AD PC x x x =?=-?=--+

∴当x =2时,y 的值最大,最大值是一。

解题反思:本题是以点的运动为背景的动态几何问题,解决这类问题的关键是利用面积计算公式构建二次函数模型,然后利用二次函数的性质求出最大值或最小值。

三 结束语

函数思想是用函数的概念、性质去分析和转化问题。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关方程、最值之类的问题,利用函数观点加以分析;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质等知识解答。方程思想是从问题的数量关系分析入手,运用数学语言将问题中的条件转化为数学模型(方程或方程组)。

思想方法是数学的精髓和灵魂,是对数学内容的一种本质认识,灵活运用数学思想方法是提高学生数学素养和数学能力的根本。若干年后,我们做过的题目可能会忘记,但留在我们脑海里的是数学思想方法。

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

(完整版)初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题 1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( ) (A) 没有交点.(B) 只有一个交点. (C) 有且只有两个交点.(D) 有且只有三个交点. 2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( ) (A)2 .(B)1 .(C)3 .(D)4 . 3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 . 2 4.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( ) (A) 没有交点. (B) 有两个交点,都在x 轴的正半轴. (C) 有两个交点,都在x 轴的负半轴. (D) 一个在x 轴的正半轴,另一个在x 轴的负半轴. 5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a (A) x= .(B) x=2.(C) x=4.(D) x=3. b 6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( ) 7.二次函数y=2x2-4x+5 的最小值是_____ . 2 8.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ . 9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ . 10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

初中数学函数练习题(大集合)汇编

(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。 (2)函数22)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x =≠)的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3 时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数22 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于12 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x = 在同一坐标系内的图象大致是( ) (10)、如图,正比例函数(0)y kx k =>与反比例函数2y x =的图象相交于A 、C 两点, 过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于( ) A .1 B .2 C .4 D .随k 的取值改变而改变. 11、已知函数12y y y =-,其中1x y 与成正比例,22x y -与成反比例,且当1,1;3,5.2, x y x y x y =====时当时求当时的值 12、(8分)已知,正比例函数y ax =图象上的点的横坐标与纵坐标互为相反数,反比例函数k y x = 在每一象限内y x 随的增大而减小,一次函数24y x k a k =-++过点()2,4-. (1)求a 的值. (2)求一次函数和反比例函数的解析式. x y O x y O x y O x y O A B C D y x O A C B

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

初中数学 函数专题练习及答案

对称轴、顶点、平移: 1.抛物线()2 13y x =--+的顶点坐标为 . 2.抛物线2 1y x =-的顶点坐标是( ) A .(01), B .(01)-, C .(10), D .(1 0)-, 3.抛物线2 26y x x c =++与x 轴的一个交点为(10),,则这个抛物线 的顶点坐标是 . 4.二次函数2)1(2+-=x y 的最小值是( ) A. 2- B . 2 C. 1- D. 1 5.已知二次函数2 2 2y x x c =-++的对称轴和x 轴相交于点()0m ,,则m 的值为________. 6.抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D . 1=x 7.将抛物2 (1)y x =--向左平移1个单位后,得到的抛物线的解析式是 . 8.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A . 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 图像交点、判别式: 9..已知抛物线2 (1)(2)y x m x m =+-+-与x 轴相交于A B ,两点,且线段2AB =,则m 的值为 . 10.已知二次函数不经过第一象限,且与x 轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式 . 11.若抛物线2 2y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤ 12.已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A . 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

初中数学函数三大专题复习

初中数学函数三大专题复习 目录 专题一一次函数和反比例函数 (1) 一、一次函数及其基本性质 (1) 1、正比例函数 (1) 2、一次函数 (1) 3、待定系数法求解函数的解析式 (2) 4、一次函数与方程、不等式结合 (3) 5、一次函数的基本应用问题 (4) 二、反比例函数及其基本性质 (7) 1、反比例函数的基本形式 (7) 2、反比例函数中比例系数k的几何意义 (8) 3、反比例函数的图像问题 (9) 4、反比例函数的基本应用 (11) 专题二二次函数 (13) 一、二次函数的基本性质以及二次函数中三大参数的作用 (13) 1、二次函数的解析式及其求解 (13) 2、二次函数的基本图像 (14) 3、二次函数的增减性及其最值 (16) 4、二次函数中三大参数的和函数图像的关系 (16) 5、二次函数和不等式、方程的结合 (18) 二、二次函数的基本应用 (19) 1、二次函数求解最值问题 (19) 2、二次函数中的面积问题 (21) 3、涵洞桥梁隧道问题 (24) 4、二次函数和圆相结合 (26) 三、二次函数中的运动性问题 (27) 1、动点问题 (27) 2、折叠、旋转、平移问题 (33) 专题三锐角三角函数以及解直角三角形 (36) 1、锐角三角函数的基本定义及其计算 (36) 2、锐角三角函数的基本应用 (37)

专题一 一次函数和反比例函数 一、一次函数及其基本性质 1、正比例函数 形如()0≠=k kx y 的函数称为正比例函数,其中k 称为函数的比例系数。 (1)当k>0时,直线y=kx 经过第一、三象限,从左向右上升,即随着x 的增大y 也增大; (2)当k<0时,直线y=kx 经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小。 2、一次函数 形如b kx y +=的函数称为一次函数,其中k 称为函数的比例系数,b 称为函数的常数项。 (1)当k>0,b>0,这时此函数的图象经过第一、二、三象限;y 随x 的增大而增大; (2)当k>0,b<0,这时此函数的图象经过第一、三、四象限;y 随x 的增大而增大; (3)当k<0,b>0,这时此函数的图象经过第一、二、四象限;y 随x 的增大而减小; (4)当k<0,b<0,这时此函数的图象经过第二、三、四象限;y 随x 的增大而减小。 例题1:在一次函数y =(m -3)x m -1+x +3中,符合x ≠0,则m 的值为 。 随堂练习:已知自变量为x 的函数y=mx +2-m 是正比例函数,则m =________,该函数的解析式为_______。 例题2:已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A 、﹣2 B 、﹣1 C 、0 D 、2 随堂练习: 1、直线y =x -1的图像经过象限是( ) A 、第一、二、三象限 B 、第一、二、四象限 C 、第二、三、四象限 D 、第一、三、四象限 2、一次函数y =6x +1的图象不经过...( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 例题3:已知一次函数2-+=n mx y 的图像如图所示,则m 、n 的取值范围是( ) A 、m >0,n <2 B 、m >0,n >2 C 、m <0,n <2 D 、m <0,n >2 随堂练习:已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可化简为 。 例题4:已知一次函数y =kx +b 的图像经过二四象限,如果函数上有点()()1122,,,x y x y ,如果满足12y y >,那么1x 2x 。

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用 张猛 【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。 关键词:函数;方程;函数与方程思想应用案例 数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。 一:函数与方程思想的地位与作用 函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。 目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用: 二:函数与方程思想的应用案例 通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。 1 求代数式的值 例1 已知 22a b ==求22(3124)(2813)a a b b -+-+的值。 解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。 当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=; 当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得 ∴ 原式=1?11=11。 解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题 例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。 (1)甲、乙两个工厂每天各加工多少件新产品? (2)请你计算两厂合作完成加工任务公司所付费用。 解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程 960960208x x -=+。

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

专题01 函数与方程思想(解析版)

专题01 函数与方程思想 思想方法诠释 1.函数的思想:是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想. 2.方程的思想:是建立方程或方程组或者构造方程或方程组,通过解方程或方程组或者运用方程的性质去分析问题、转化问题,从而使问题获得解决的思想. 【典例讲解】 要点一 函数与方程思想在函数、方程、不等式中的应用 [解析] (1)当y =a 时,2(x +1)=a ,所以x =a 2 -1. 设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=????t -a 2+1=????t -t +ln t 2+1=????t 2-ln t 2 +1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为3 2,故选D. (2)因为函数f (x )=log 3(9x +t 2)是定义域R 上的增函数,且为“优美函数”,则f (x )=x 至少有两个不等 实根,由log 3(9x +t 2)=x ,得9x +t 2=3x ,所以(3x )2-3x +t 2=0有两个不等实根.令λ=3x (λ>0),则λ2-λ+t 2 =0有两个不等正实根,所以????? Δ=1-4t 2>0,t 2>0, 解得-12

初中数学解题思维方法大全

初中数学解题思维方法大全 还在为初中数学解题而烦恼?还在为数学低分而烦躁?那是你没有全面理解初中数学 的解题思维和解题方法。暑假不出门,了解,助你在新学期解决数学难题。 一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法:特殊值淘汰法有些选择题所涉及的数学命题与字母的取值范围有关, 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然 后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既 采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这 样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义, 又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求 解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数 含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数 学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之 间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊 与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不 同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要 的解题策略。

初中数学函数图像专题

中考专项复习三(函数及其图象) 一、选择题(本题共10 小题,每小题4 分,满分40分) 2.若 ab >0,bc<0,则直线y=-a b x -c b 不通过( ). A .第一象限 B 第二象限 C .第三象限 D .第四象限 3.若二次函数y=x 2-2x+c 图象的顶点在x 轴上,则c 等于( ). A .-1 B .1 C . 2 1 D .2 4.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ). A .y=-x -2 B .y=-x -6 C .y=-x+10 D .y=-x -1 5.已知一次函数y= kx+b 的图象经过第一、二、四象限,则反比例函数y= kb x 的图象大致为( ) . 6.二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 A .1 B .3 C .4 D .6 7.已知一次函数y=kx+b 的图象如图所示,当x <0时,y 的取值范围是( ). A .y >0 B .y <0 C .-2<y <0 D .y <-2 8.如图是二次函数y=ax 2+bx+c 的图象,则点(a+b ,ac)在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 (第7题图) (第8题图) (第9题图) (第10题图) 9.二次函数c bx ax y ++=2 (0≠a )的图象如图所示,则下列结论: ①a >0; ②b >0; ③c >0;④b 2-4a c >0,其中正确的个数是( ). A . 0个 B . 1个 C . 2个 D . 3个 10.如图,正方形OABC ADEF ,的顶点A D C ,,在坐标轴上,点F 在AB 上,点B E ,在函数 1 (0)y x x =>的图象上,则点E 的坐标是( ) A. ?? B. ? ? C. ?? D.?? 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=-1时,y=_________. 12.在平面直角坐标系内,从反比例函数x k y = (k >0)的图象上的一点分别作x 、y 轴的垂线段,与x 、y 轴所围成的矩形面积是12,那么该函数解析式是_________. 13.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙: 函数的图象经过第三象限;丙:在每个象限内,y 随x 的增大而减小 .请你根据他们的叙述构造满足上述 x

函数方程思想

难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,数学中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●难点磁场 1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 . 2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0) (1)若a =1,b =–2时,求f (x )的不动点; (2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx + 1 212 +a 对称,求b 的最小值. ●案例探究 [例1]已知函数f (x )=log m 3 3 +-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1) ?>+-03 3 x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有 0) 3)(3() (6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数. (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数. ∴??? ???? -=+-=-=+-=) 1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

相关主题
文本预览
相关文档 最新文档