spss回归分析
- 格式:doc
- 大小:161.50 KB
- 文档页数:19
第9章SPSS线性回归分析1.线性回归分析概述线性回归分析是一种广泛应用于统计学和数据分析领域的方法,它用于研究自变量与因变量之间的线性关系。
线性回归模型基于一条直线的假设,通过最小化残差平方和来估计各个回归系数,并利用这些系数进行预测和推断。
SPSS是一款强大的统计分析软件,提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。
2.数据准备在进行线性回归分析之前,需要准备好相关的数据。
SPSS可以导入各种类型的数据文件,包括Excel、CSV等格式。
在导入数据之后,可以对数据进行预处理,如缺失值处理、异常值处理等。
3.构建线性回归模型在SPSS中,构建线性回归模型非常简单。
首先选择“回归”菜单下的“线性”选项,然后将所需要的自变量和因变量选择到相应的框中。
SPSS还提供了多种方法来选择自变量,如逐步回归、逐步回归法等。
选择好自变量之后,点击“确定”按钮,即可得到回归模型结果。
4.分析回归模型在得到回归模型结果之后,需要对模型进行分析。
SPSS提供了丰富的结果输出,包括参数估计值、显著性检验、模型拟合度等。
需要注意的是,线性回归模型的可靠性需要通过一系列统计检验进行验证,如F统计量、t统计量、残差分析等。
5.模型诊断6.预测与推断线性回归模型可以用于预测和推断,SPSS也提供了相应的功能。
在SPSS中可以输入自变量的数值,从而得到相应的因变量预测值。
此外,SPSS还可以进行参数估计的推断,包括置信区间和假设检验等。
7.扩展与应用除了简单的线性回归模型,SPSS还支持复杂的线性回归模型,如多重回归分析、多元回归分析等。
此外,SPSS还可以进行模型的改进和优化,如加入交互项、非线性变换等。
这些扩展功能在实际应用中非常有用,可以提高模型的解释力和预测能力。
总结:本章介绍了SPSS中的线性回归分析方法,包括模型构建、结果分析、模型诊断、预测与推断等。
SPSS提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。
简单易懂的SPSS回归分析基础教程章节一:SPSS回归分析基础概述SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)回归分析是一种常用的统计方法,用于研究自变量对因变量的影响程度以及变量之间的关系。
本章将介绍SPSS回归分析的基本概念和目的,以及相关的统计指标。
SPSS回归分析的目的是建立一个数学模型,描述自变量与因变量之间的关系。
通过这个模型,我们可以预测因变量的变化,以及各个自变量对因变量的贡献程度。
回归分析包括简单回归分析和多元回归分析,本教程主要讲解简单回归分析。
在SPSS回归分析中,我们需要了解一些统计指标。
其中,相关系数(correlation coefficient)用于衡量自变量与因变量之间的线性关系强度。
回归系数(regression coefficient)描述自变量对因变量的影响程度,可用于建立回归方程。
残差(residual)表示实际观测值与回归模型预测值之间的差异。
下面我们将详细介绍SPSS回归分析的步骤。
章节二:数据准备和导入在进行SPSS回归分析之前,我们需要准备好数据集,并将数据导入SPSS软件。
首先,我们需要确定因变量和自变量的测量水平。
因变量可以是连续型数据,如身高、体重等,也可以是分类数据,如满意度水平等。
自变量可以是任何与因变量相关的变量,包括连续型、分类型或二元变量。
其次,我们需要收集足够的样本量,以获取准确和可靠的结果。
在选择样本时,应该遵循随机抽样的原则,以保证样本的代表性。
最后,我们将数据导入SPSS软件。
通过依次点击“File”、“Open”、“Data”,选择数据文件,并设置变量类型、名称和标签等信息。
完成数据导入后,我们就可以开始进行回归分析了。
章节三:简单回归分析步骤简单回归分析是一种研究一个自变量与一个因变量之间关系的方法。
下面将介绍简单回归分析的步骤。
第一步,我们需要确定自变量和因变量。
SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。
在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。
接下来,我将详细介绍SPSS回归分析的步骤和意义。
一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。
在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。
二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。
数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。
2. 变量选择:选择需要作为自变量和因变量的变量。
自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。
可以通过点击"Variable View"选项卡来定义变量的属性。
3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。
然后将因变量和自变量添加到正确的框中。
4.回归模型选择:选择回归方法和模型。
SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。
然后,选择要放入回归模型的自变量。
可以进行逐步回归或者全模型回归。
6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。
可以使用SPSS的统计模块来生成残差,并进行残差分析。
7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。
要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。
因此,在解释回归结果时要慎重。
如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
SPSS-回归分析回归分析(⼀元线性回归分析、多元线性回归分析、⾮线性回归分析、曲线估计、时间序列的曲线估计、含虚拟⾃变量的回归分析以及逻辑回归分析)回归分析中,⼀般⾸先绘制⾃变量和因变量间的散点图,然后通过数据在散点图中的分布特点选择所要进⾏回归分析的类型,是使⽤线性回归分析还是某种⾮线性的回归分析。
回归分析与相关分析对⽐:在回归分析中,变量y称为因变量,处于被解释的特殊地位;;⽽在相关分析中,变量y与变量x处于平等的地位。
在回归分析中,因变量y是随机变量,⾃变量x可以是随机变量,也可以是⾮随机的确定变量;⽽在相关分析中,变量x和变量y都是随机变量。
相关分析是测定变量之间的关系密切程度,所使⽤的⼯具是相关系数;⽽回归分析则是侧重于考察变量之间的数量变化规律。
统计检验概念:为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
标准差表⽰数据的离散程度,标准误表⽰抽样误差的⼤⼩。
统计检验的分类:拟合优度检验:检验样本数据聚集在样本回归直线周围的密集程度,从⽽判断回归⽅程对样本数据的代表程度。
回归⽅程的拟合优度检验⼀般⽤判定系数R2实现。
回归⽅程的显著性检验(F检验):是对因变量与所有⾃变量之间的线性关系是否显著的⼀种假设检验。
回归⽅程的显著性检验⼀般采⽤F 检验。
回归系数的显著性检验(t检验): 根据样本估计的结果对总体回归系数的有关假设进⾏检验。
1.⼀元线性回归分析定义:在排除其他影响因素或假定其他影响因素确定的条件下,分析某⼀个因素(⾃变量)是如何影响另⼀事物(因变量)的过程。
SPSS操作2.多元线性回归分析定义:研究在线性相关条件下,两个或两个以上⾃变量对⼀个因变量的数量变化关系。
表现这⼀数量关系的数学公式,称为多元线性回归模型。
SPSS操作3.⾮线性回归分析定义:研究在⾮线性相关条件下,⾃变量对因变量的数量变化关系⾮线性回归问题⼤多数可以化为线性回归问题来求解,也就是通过对⾮线性回归模型进⾏适当的变量变换,使其化为线性模型来求解。
第八章回归分析回归分析是处理两个及两个以上变量间线性依存关系的统计方法。
在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。
回归分析就是用于说明这种依存变化的数学关系。
第一节Linear过程8.1.1 主要功能调用此过程可完成二元或多元的线性回归分析。
在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。
8.1.2 实例操作[例8.1]某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。
试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。
8.1.2.1 数据准备激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。
输入原始数据,结果如图8.1所示。
图8.1 原始数据的输入8.1.2.2 统计分析激活Statistics菜单选Regression中的Linear...项,弹出Linear Regression对话框(如图8.2示)。
从对话框左侧的变量列表中选y,点击 钮使之进入Dependent框,选x1、x2,点击 钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。
本例选用Enter法。
点击OK钮即完成分析。
图8.2 线性回归分析对话框用户还可点击Statistics...钮选择是否作变量的描述性统计、回归方程应变量的可信区间估计等分析;点击Plots...钮选择是否作变量分布图(本例要求对标准化Y预测值作变量分布图);点击Save...钮选择对回归分析的有关结果是否作保存(本例要求对根据所确定的回归方程求得的未校正Y预测值和标准化Y预测值作保存);点击Options...钮选择变量入选与剔除的α、β值和缺失值的处理方法。
8.1.2.3 结果解释在结果输出窗口中将看到如下统计数据:结果显示,本例以X1、X2为自变量,Y为应变量,采用全部入选法建立回归方程。
回归方程的复相关系数为0.94964,决定系数(即r2)为0.90181,经方差分析,F=34.14499,P=0.0003,回归方程有效。
回归方程为Y=0.0687101X1+0.183756X2-2.856476。
本例要求按所建立的回归方程计算Y预测值和标准化Y预测值(所谓标准化Y预测值是指将根据回归方程求得的Y预测值转化成按均数为0、标准差为1的标准正态分布的Y 值)并将计算结果保存入原数据库。
系统将原始的X1、X2值代入方程求Y值预测值(即库中pre_1栏)和标准化Y预测值(即库中zpr_1栏),详见图8.3。
图8.3 计算结果的保存本例还要求对标准化Y预测值作变量分布图,系统将绘制的统计图送向Chart Carousel 窗口,双击该窗口可见下图显示结果。
第二节Curve Estimation过程8.2.1 主要功能调用此过程可完成下列有关曲线拟合的功能:1、Linear:拟合直线方程(实际上与Linear过程的二元直线回归相同,即Y = b0+ b1X);2、Quadratic:拟合二次方程(Y = b0+ b1X+b2X2);3、Compound:拟合复合曲线模型(Y = b0×b1X);4、Growth:拟合等比级数曲线模型(Y = e(b0+b1X));5、Logarithmic:拟合对数方程(Y = b0+b1lnX)6、Cubic:拟合三次方程(Y = b0+ b1X+b2X2+b3X3);7、S:拟合S形曲线(Y = e(b0+b1/X));8、Exponential:拟合指数方程(Y = b0 e b1X);9、Inverse:数据按Y = b0+b1/X进行变换;10、Power:拟合乘幂曲线模型(Y = b0X b1);11、Logistic:拟合Logistic曲线模型(Y = 1/(1/u + b0×b1X)。
8.2.2 实例操作[例8.2]某地1963年调查得儿童年龄(岁)X与锡克试验阴性率(%)Y的资料如下,试拟合对数曲线。
8.2.2.1 数据准备激活数据管理窗口,定义变量名:锡克试验阴性率为Y,年龄为X,输入原始数据。
8.2.2.2 统计分析激活Statistics菜单选Regression中的Curve Estimation...项,弹出Curve Estimation对话框(如图8.5示)。
从对话框左侧的变量列表中选y,点击 钮使之进入Dependent框,选x,点击 钮使之进入Indepentdent(s)框;在Model框内选择所需的曲线模型,本例选择Logarithmic模型(即对数曲线);选Plot models项要求绘制曲线拟合图;点击Save...钮,弹出Curve Estimation:Save对话框,选择Predicted value项,要求在原始数据库中保存根据对数方程求出的Y预测值,点击Continue钮返回Curve Estimation对话框,再点击OK钮即可。
图8.5 曲线拟合对话框8.2.2.3 结果解释在结果输出窗口中将看到如下统计数据:在以X为自变量、Y为应变量,采用对数曲线拟合方法建立的方程,决定系数R2=0.913(接近于1),作拟合优度检验,方差分析表明:F=52.32,P=0.001,拟合度很好,对数方程为:Y=61.3259+20.6704lnX。
本例要求绘制曲线拟合图,结果如图8.6所示。
根据方程Y=61.3259+20.6704lnX,将原始数据X值代入,求得Y预测值(变量名为fit_1)存入数据库中,参见图8.7。
图8.7 计算结果的保存第三节Logistic过程8.3.1 主要功能调用此过程可完成Logistic回归的运算。
所谓Logistic回归,是指应变量为二级计分或二类评定的回归分析,这在医学研究中经常遇到,如:死亡与否(即生、死二类评定)的概率跟病人自身生理状况和所患疾病的严重程度有关;对某种疾病的易感性的概率(患病、不患病二类评定)与个体性别、年龄、免疫水平等有关。
此类问题的解决均可借助逻辑回归来完成。
特别指出,本节介绍的Logistic过程,应与日常所说的Logistic曲线模型(即S或倒S形曲线)相区别。
用户如果要拟合Logistic曲线模型,可调用本章第二节Curve Estimation 过程,系统提供11种曲线模型,其中含有Logistic曲线模型(参见上节)。
在一般的多元回归中,若以P(概率)为应变量,则方程为P=b0+b1X1+b2X2+…+bkXk, 但用该方程计算时,常会出现P>1或P<0的不合理情形。
为此,对P作对数单位转换,即logitP=ln(P/1-P),于是,可得到Logistic回归方程为:e b0+b1X1+b2X2+…+bkXkP = ———————————1+ e b0+b1X1+b2X2+…+bkXk8.3.2 实例操作[例8.3]某医师研究男性胃癌患者发生术后院内感染的影响因素,资料如下表,请通过Logistic回归统计方法对主要影响因素进行分析。
8.3.2.1 数据准备激活数据管理窗口,定义变量名:术后感染为Y(字符变量,有输入Y、无输入N),年龄为X1,手术创伤程度为X2,营养状态为X3,术前预防性抗菌为X4(字符变量,有输入Y、无输入N),白细胞数为X5,癌肿病理分度为X6。
按要求输入原始数据。
8.3.2.2 统计分析激活Statistics菜单选Regression中的Logistic...项,弹出Logistic Regression对话框(如图8.8示)。
从对话框左侧的变量列表中选y,点击 钮使之进入Dependent框,选x1、x2、x3、x4、x5和x6,点击 钮使之进入Covariates框;点击Method处的下拉按钮,系统提供7种方法:图8.8 逻辑回归对话框1、Enter:所有自变量强制进入回归方程;2、Forward: Conditional:以假定参数为基础作似然比概率检验,向前逐步选择自变量;3、Forward: LR:以最大局部似然为基础作似然比概率检验,向前逐步选择自变量;4、Forward: Wald:作Wald概率统计法,向前逐步选择自变量;5、Backward: Conditional:以假定参数为基础作似然比概率检验,向后逐步选择自变量;6、Backward: LR:以最大局部似然为基础作似然比概率检验,向后逐步选择自变量;7、Backward: Wald:作Wald概率统计法,向后逐步选择自变量。
本例选用Forward: Conditional法,以便选择有主要作用的影响因素;点击Options...钮,弹出Logistic Regression:Options对话框,在Display框中选取At last step项,要求只显示最终计算结果,点击Continue钮返回Logistic Regression对话框,再点击OK钮即可。
8.3.2.3 结果解释在结果输出窗口中将看到如下统计数据:系统先对字符变量进行重新赋值,对于应变量Y,回答是(Y)的赋值为0,回答否(X)的赋值为1;对于应变量X4,回答是(Y)的赋值为-1,回答否(X)的赋值为1。
结果表明,第一步自变量X3入选,方程分类能力达80.00%;第二步自变量X6入选,方程分类能力达93.33%(参见结果中的分类分析表);方程有效性经χ2检验,χ2=15.276,P=0.0005。
Logistic回归的分类概率方程为:e123.4053-30.5171X3-10.2797X6P = ——————————————1+ e123.4053-30.5171X3-10.2797X6根据该方程,若一胃癌患者营养状态评分(X3)为3,癌肿病理分度(X6)为9,则其P=4.5×10-27≈0,这意味着术后将发生院内感染;另一胃癌患者营养状态评分(X3)为1,癌肿病理分度(X6)为4,则其P=0.98105≈1,这意味着术后将不会发生院内感染。
第四节Probit过程8.4.1 主要功能调用此过程可完成剂量-效应关系的分析。
通过概率单位使剂量-效应的S型曲线关系转化成直线,从而利用回归方程推算各效应水平的相应剂量值。
8.4.2 实例操作[例8.4]研究抗疟药环氯胍对小白鼠的毒性,试验结果如下表所示。
试计算环氯胍的半8.4.2.1 数据准备激活数据管理窗口,定义变量名:剂量为DOSE、试验动物数为OBSERVE、死亡动物数为DEATH。