当前位置:文档之家› 青岛科技大学橡胶工艺原理讲稿

青岛科技大学橡胶工艺原理讲稿

青岛科技大学橡胶工艺原理讲稿
青岛科技大学橡胶工艺原理讲稿

青岛科技大学橡胶工艺原理讲稿(5)

青岛科技大学, 橡胶, 讲稿, 工艺, 原理

§3-6炭黑对橡胶的补强机理

炭黑补强作用使橡胶的力学性能提高,同时也使橡胶在粘弹变形中由粘性作用而产生的损耗因素提高。例如tanδ、生热、损耗模量、应力软化效应提高。因应力软化效应能够比较形象地说明大分子滑动补强机理,因此将两者结合一起讨论。

一.应力软化效应

(一)应力软化效应的含义

硫化胶试片在一定的试验条件下拉伸至给定的伸长比λ1时,去掉应力,恢复。第二次拉伸至同样的λ1时所需应力比第一次低,如图3-18所示,第二次拉伸的应力-应变曲线在第一次的下面。若将第二次拉伸比增大超过第一次拉伸比λ1时,则第二次拉伸曲线在λ1

处急骤上撇与第一次曲线衔接。若将第二次拉伸应力去掉,恢复。第三次拉伸,则第三次的应力应变曲线又会在第二次曲线下面。随次数增加,下降减少,大约4~5次后达到平衡。上述现象叫应力软化效应,也称为Mullins效应。

应力软化效应用拉伸至给定应变所造成的应变能下降百分率ΔW表示。

(3-10)

式中 W1 —第一次拉伸至给定应变时所需要的应变能;

W2 —第一次拉伸恢复后,第二次(或更多次数)再拉伸至同样应变时所需的应变能。

(二)应力软化效应的影响因素

应力软化效应代表一种粘性的损耗因素,所以凡是影响粘弹行为的因素对它均有影响。填料及其性质对应力软化效应有决定性作用。1.填充的影响

2.填料品种对应力软化效应的影响

3.炭黑品种对应力软化效应的影响

总的趋势是补强性高的炭黑应力软化效应比较高,反之亦然。

(三)应力软化的恢复

应力软化有恢复性,但在室温下停放几天,损失的应力恢复很少,而在100℃×24h真空中能恢复大部分损失的应力。因为炭黑的吸附是动态的,在恢复条件下,橡胶大分子会在炭黑表面重新分布,断的分子链可被新链代替。剩下的不能恢复的部分称为永久性应力软化作用。

二.炭黑的补强机理

近半个世纪以来,人们对炭黑补强机理曾进行了广泛的探讨。各个作者提出的机理虽然能说明一定的问题,但有局限性。随着时间进展,橡胶补强机理也在不断地深化和完善。橡胶大分子滑动学说的炭黑补强机理是一个比较完善的理论。现将各种论点简述如下。

(一)容积效应

(二)弱键和强键学说

(三)Bueche的炭黑粒子与橡胶链的有限伸长学说

(四)壳层模型理论

核磁共振研究已证实,在炭黑表面有一层由两种运动状态橡胶大分子构成的吸附层。在紧邻着炭黑表面的大约0.5nm(相当于大分子直径)的内层,呈玻璃态;离开炭黑表面大约0.5~5.0nm范围内的橡胶有点运动性,呈亚玻璃态,这层叫外层。这两层构成了炭黑表面上的双壳层。关于双壳层的厚度Δγc,报道不一,不过基本上是上述范围。这个双壳的界面层内中的结合能必定从里向外连续下降,即炭黑表

面对大分子运动性的束缚不断下降,最后到橡胶分子不受束缚的自由状态。

图3-22 炭黑填充的硫化胶的非均质模型

A相—进行微布朗运动的橡胶分子链;B相—交联团相;C相—被填料束缚的橡胶相

对壳层补强作用的解释是双壳层起骨架作用。提出了填充炭黑橡胶的不均质结构示意图,见图3-22。图中A相为自由大分子,B相为交联结构,C相为双壳层,该理论认为C相起着骨架作用联结A相和B相,构成一个橡胶大分子与填料整体网络,改变了硫化胶的结构,因而提高了硫化胶的物理机械性能。

(五)橡胶大分子链滑动学说

这是比较新和比较全面的炭黑补强理论。该理论的核心是橡胶大分子能在炭黑表面上滑动,由此解释了补强现象。炭黑粒子表面的活性不均一,有少量强的活性点以及一系列的能量不同的吸附点。吸附在炭黑表面上的橡胶链可以有各种不同的结合能量,有多数弱的范德华力的吸附以及少量的化学吸附。吸附的橡胶链段在应力作用下会滑动伸长。

大分子滑动学说的基本概念可用示意图3-23表示。

(1)表示胶料原始状态,长短不等的橡胶分子链被吸附在炭黑粒子表面上。

(2)当伸长时,这条最短的链不是断裂而是沿炭黑表面滑动,原始状态吸附的长度用点标出,可看出滑移的长度。这时应力由多数伸直的链承担,起应力均匀作用,缓解应力集中为补强的第一个重要因素。

(3)当伸长再增大,链再滑动,使橡胶链高度取向,承担大的应力,有高的模量,为补强的第二个重要因素。由于滑动的摩擦使胶料有滞后损失。滞后损失会消耗一部分外力功,化为热量,使橡胶不受破坏,为补强的第三个因素。

(4)是收缩后胶料的状况,表明再伸长时的应力软化效应,胶料回缩后炭黑粒子间橡胶链的长度差不多一样,再伸长就不需要再滑动一次,所需应力下降。在适宜的情况(如膨胀)下,经过长时间,由于橡胶链的热运动,吸附与解吸附的动态平衡,粒子间分子链长度的重新分布,胶料又恢复至接近原始状态。但是如果初次伸长的变形量大,恢复常不超过50%。

图3-23 橡胶大分子滑动学说补强机理模型

也发生滑移,全部分子链高度取向,高定伸,缓解应力集中,应力均匀,滑动耗能;4—恢复,炭黑粒子间的分子链有相等的长度,应力软化'再滑移,BB'1—原始状态;2—中等拉伸,AA

§3-7 白炭黑

一.白炭黑的制造

白炭黑的制备多采用两种方法,即煅烧法和沉淀法。

煅烧法制备的白炭黑又称为气相法白炭黑或干法白炭黑,它是以多卤化硅(SiClx)为原料在高温下热分解,进行气相反应制得。

干法白炭黑粒径极小,约为15~25nm,飞扬性极大。气相法白炭黑杂质少,补强性好,但制备复杂且成本高,主要用于硅橡胶中,所得产品为透明、半透明状,产品的物理机械性能和介电性能良好,耐水性优越。

沉淀法白炭黑普遍采用硅酸盐(通常为硅酸钠)与无机酸(通常使用硫酸)中和沉淀反应的方法来制取水合二氧化硅。

沉淀法白炭黑粒径较大,约为20~40nm,纯度较低,补强性比煅烧法差,胶料的介电性能特别是受潮后的介电性能较差,但价格便宜,工艺性能好。可单用于NR、SBR等通用橡胶中,也可与炭黑并用,以改善胶料的抗屈挠龟裂性,使裂口增长减慢。

二.白炭黑的结构

1.白炭黑的化学结构

白炭黑的95~99%的成分是SiO2,经X射线衍射证实,因白炭黑的制法不同,其结构有不同差别。气相法白炭黑内部结构几乎完全是排列紧密的硅酸三维网状结构,这种结构使粒子吸湿性小,表面吸附性强,补强作用强。而沉淀法白炭黑的结构内除了生成三维结构的硅酸外,还残存有较多的二维结构硅酸,致使结构疏松,有很多毛细管结构,很易吸湿,以致降低了它的补强活性。

2.白炭黑的结构

白炭黑的结构象炭黑,它的基本粒子呈球形。在生产过程中,这些基本粒子在高温状态下相互碰撞而形成了以化学键相连结的链枝状结构,这种结构称之为基本聚集体。链枝状结构彼此以氢键吸附又形成了次级聚集体结构,这种聚集体在加工混炼时易被破坏。

三.白炭黑的表面化学性质

1.表面基团

图3-24 白炭黑的表面模型

相邻羟基(在相邻的硅原子上),它对极性物质的吸附作用十分重要;隔离羟基,主要存在于脱除水分的白炭黑表面上。这种羟基的含量,气相法白炭黑比沉淀法的要多,在升高温度时不易脱除;双羟基,在一个硅原子上连有两个羟基。

白炭黑表面的基团具有一定的反应性,表面的反应包括:失水及水解反应、与酰氯反应、与活泼氢反应、形成氢键等。

2.白炭黑表面的吸附作用

白炭黑表面有很强的化学吸附活性,这与表面羟基有关。它可以和水以氢键形式结合,形成多分子吸附层。除此之外,它还可与许多有机小分子物质发生吸附作用。

多官能团的胺类或醇类的吸附性高于单官能团的,所以SiO2胶料中常用乙醇胺、乙二醇、三乙醇胺等多官能团化合物做活性剂。

3.热行为

将白炭黑加热就会放出水分,随温度升高,放出水分量增加。在150~200℃之前,放出水最多,200℃以后趋向平缓,有明显的转折点,见图3-25。折点以前主要是吸附水脱附,折点后是表面羟基缩水反应。

四.白炭黑对胶料工艺性能和硫化胶性能的影响

(一)白炭黑对胶料工艺性能的影响

1.胶料的混炼与分散

白炭黑由于比表面积很大,总趋向于二次聚集,加之在空气中极易吸收水分,致使羟基间易产生很强的氢键缔合,进一步提高了颗粒间的凝聚力,所以白炭黑的混炼与分散要比炭黑困难得多,而且在多量配合时,还容易生成凝胶,使胶料硬化,混炼时生热大。为获得良好的分散,就要求初始混炼时,保持尽可能高的剪切力,以便使白炭黑的这些聚集体粒子尽可能被破坏,而又不致使橡胶分子链发生过多的机械降解。为此,白炭黑应分批少量加入,以降低生热。适当提高混炼温度,有利于除掉一部分白炭黑表面吸附水分,降低粒子间的凝聚力,有助于白炭黑在胶料中的分散。

2.白炭黑补强硅橡胶混炼胶中的结构控制

白炭黑,特别是气相法白炭黑是硅橡胶最好的补强剂,但有一个使混炼胶硬化的问题,一般称为“结构化效应”。其结构化随胶料停放时间延长而增加,甚至严重到无法返炼、报废的程度。对此有两种解释,一种认为是硅橡胶端基与白炭黑表面羟基缩合;另一方面认为硅橡胶硅氧链节与白炭黑表面羟基形成氢键。

防止结构化有两个途径,其一是混炼时加入某些可以与白炭黑表面羟基发生反应的物质,如羟基硅油、二苯基硅二醇、硅氮烷等。当使用二苯基硅二醇时,混炼后应在160~200℃下处理0.5~1h。这样就可以防止白炭黑填充硅橡胶的结构化。另一途径是预先将白炭黑表面

改性,先去掉部分表面羟基,从根本上消除结构化。

3.胶料的门尼粘度

白炭黑生成凝胶的能力与炭黑不相上下,因此在混炼白炭黑时,胶料的门尼粘度提高,以致于恶化了加工性能,故在含白炭黑的胶料配方中软化剂的选择和用量很重要。在IIR中往往加入石蜡烃类、环烷烃类和芳香烃类,用量视白炭黑用量多少及门尼粘度大小而异,一般可达15-30%。在NR中,以植物性软化剂如松香油、妥尔油等软化效果最好,合成的软化剂效果不大,矿物油的软化效果最低。4.胶料的硫化速度

白炭黑粒子表面有大量的微孔,对硫化促进剂有较强的吸附作用,因此明显地迟延硫化。为了避免这种现象,一方面可适当地提高促进剂的用量;另一方面可采用活性剂,使活性剂优先吸附在白炭黑表面,这样就减少了它对促进剂的吸附。

活性剂一般是含氮或含氧的胺类、醇类、醇胺类低分子化合物。对NR来说胺类更适合,如二乙醇胺、三乙醇胺、丁二胺、六亚甲基四胺等。对SBR来说,醇类更适合,如己三醇、二甘醇、丙三醇、聚乙二醇等。活性剂用量要根据白炭黑用量、PH值和橡胶品种而定,一般用量为白炭黑的1~3%。

(二)白炭黑对硫化胶性能的影响

白炭黑对各种橡胶都有十分显著的补强作用,其中对硅橡胶的补强效果尤为突出。

白炭黑是一种补强效果仅次于相应炉法炭黑的白色补强剂。含一定量白炭黑的硫化胶与相应炉法炭黑(如HAF)补强的硫化胶相比,具有强度高、伸长率大,撕裂强度高、硬度高、绝缘性好等优点。通常将炭黑和白炭黑并用,可以获得较好的综合性能。

五.白炭黑的发展与应用方向

1.存在的问题

(1)加工性能;

(2)静电问题;

(3)价格问题

2.白炭黑的发展与应用方向

当前,白炭黑的发展向高分散性、精细化、造粒化和表面改性化等方面发展。

§3-7 有机补强剂

橡胶用有机补强剂包括合成树脂和天然树脂,但并非所有树脂都可用作补强剂。用作补强剂的树脂多为合成产品,如酚醛树脂、石油树脂及古马隆树脂。天然树脂有木质素等。许多树脂在胶料中同时兼有多种功能,如酚醛树脂可用作补强剂、增粘剂、纤维表面粘接剂、交联剂及加工助剂。石油树脂、高苯乙烯树脂也有多种功能。

一.酚醛树脂

一般橡胶专用补强酚醛树脂的聚合必须加入第三单体,并通过油或胶乳改性合成的酚醛树脂,使其具有高硬度、高补强、耐磨、耐热及加工安全和与橡胶相容性好的特征。通用橡胶补强酚醛树脂主要有间苯-甲醛二阶酚醛树脂、贾树油或妥尔油改性二阶酚醛树脂和胶乳改性酚醛树脂。

酚醛树脂的化学结构特征如图3-27所示。

图3-27 酚醛树脂的化学结构特征

R1,R2为不同的烷基;X,Y为非金属原子或烷基

线形酚醛树脂商业化的产品主要有:美国Occidental公司的Durez系列、Schenectady公司的SP系列、Summit公司的Duphene系列、Polymer Applications公司的PA53系列;德国BASF公司的Koreforte系列;法国CECA公司的R系列;我国常州常京化学有限公司的

PFM系列。

酚醛树脂主要用于刚性和硬度要求很高的胶料中,尤其常用于胎面部位(胎冠和胎面基部)和胎圈部位(三角胶和耐磨胶料)。

二.石油树脂

石油树脂是石油裂解副产物的C5、C9馏分经催化聚合所制得的分子量油状或热塑性烃类树脂。按化学成分可分为芳香族石油树脂(C5

树脂)、脂肪族石油树脂(C9树脂)、脂肪-芳香族树脂(C5/C9共聚树脂)、双环戊二烯树脂(DCPD树脂)以及这些树脂加氢后的加氢石油树脂。

C5石油树脂还可进一步分为通用型、调和型和无色透明型3种。DCPD树脂又有普通型、氢化型和浅色型3种之分。C9石油树脂,按原材料预处理及软化点分为PR1和PR2两种型号和多种规格。C5石油树脂软化点多在100℃左右,主要作为增粘剂用于NR和IR胶料中。C9石油树脂软化点为90~100℃,主要用于油墨和涂料;软化点在120℃以上的C9石油树脂还可用作橡胶补强剂。C5/C9石油树脂为C5和C9两种成分兼有的树脂,软化点为90~100℃ ,主要用于NR和SBR等橡胶和苯乙烯型热塑性弹性体。DCPD石油树脂软化点为80~100℃,用于轮胎、涂料和油墨。氢化的DCPD树脂软化点可高达100~140℃,主要用于各种苯乙烯型热塑性弹性体和塑料中。

三.苯乙烯树脂

常用的高苯乙烯树脂由苯乙烯和丁二烯共聚制得,苯乙烯含量在85%左右,有橡胶状、粒状和粉状。高苯乙烯树脂

§3-10 新型纳米增强技术

近年来,橡胶的纳米增强及纳米复合技术日益引起人们浓厚的兴趣。纳米材料已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。纳米复合材料(nanocomposite)被定义为:补强剂(分散相)至少有一维尺寸小于100nm。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,橡胶纳米复合材料具有优于相同组分常规聚合物复合材料的力学性能、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。

作为纳米粉体,炭黑和白炭黑均具有纳米材料的大多数特性(如强吸附效应、自由基效应、电子隧道效应、不饱和价效应等)。根据炭黑和白炭黑的原生粒子以及它们在橡胶基质中的一次聚集体的尺寸,炭黑和白炭黑增强橡胶也属于纳米复合材料。也正因为如此,炭黑和白炭黑的高增强地位一直很难被取代。

一.插层复合法

1.原理和分类

插层复合法是制备聚合物/层状硅酸盐纳米复合材料的方法。首先将单体或聚合物插入经插层剂处理的层状硅酸盐片层之间,进而破坏硅酸盐的片层结构,使其剥离成厚为1nm、面积为100nm×100n m的层状硅酸盐基本单元,并均匀分散在聚合物基体中,以实现高分子与粘土类层状硅酸盐在纳米尺度上的复合。

按照复合过程,插层复合法可分为两大类。

(1)插层聚合(intercalation polymerization)。先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出的大量热量克服硅酸盐片层间的作用力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合。

(2)聚合物插层(polymer intercalation)。将聚合物熔体或溶液与层状硅酸盐混合,利用力化学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中。

按照聚合反应类型的不同,插层聚合可以分为插层缩聚和插层加聚两种。聚合物插层又可分为聚合物溶液插层和聚合物熔融插层两种。从结构的观点来看,聚合物/层状硅酸盐纳米复合材料可分为插层型(intercalated)和剥离型(exfolicated)纳米复合材料两种类型,其结

构示意图见图3-28所示。

在插层型聚合物/层状硅酸盐纳米复合材料中,聚合物插层进入硅酸盐片层间,硅酸盐的片层间距虽有所扩大,但片层仍然具有一定的有序性。在剥离型纳米复合材料中,硅酸盐片层被聚合物打乱,无规分散在聚合物基体中的是一片一片的硅酸盐单元片层,此时硅酸盐片层与聚合物实现了纳米尺度上的均匀混合。由于高分子链在层间受限空间与层外自由空间有很大的差异,因此插层型聚合物/层状硅酸盐纳米复合材料可作为各向异性的功能材料,而剥离型聚合物/层状硅酸盐纳米复合材料具有很强的增强效应。

图3-28 聚合物/层状硅酸盐复合材料的结构示意图

(a)相分离型微米复合材料;(b)插层型纳米复合材料;(c)剥离型纳米复合材料

2.层状硅酸盐

具有层状结构的粘土矿物包括高岭土、滑石、膨润土、云母四大类。目前研究较多并具有实际应用前景的层状硅酸盐是2:1型粘土矿物,如钠蒙脱土、锂蒙脱土和海泡石等,其单元晶层结构如图3-29所示。

层状硅酸盐的层间有可交换性阳离子,如Na+、Ca2+、Mg2+等,它们可与无机金属离子、有机阳离子型表面活性剂等进行阳离子交换进入粘土层间。通过离子交换作用导致层状硅酸盐层间距增加。在适当的聚合条件下,单体在片层之间聚合可能使层间距进一步增大,甚至解离成单层,使粘土以1n m厚的片层均匀分散在聚合物基体中。

图3-29 2:1型页硅酸盐单元晶层的结构

(片层的厚度约为1n m,层间距也约为1n m,片层的直径范围约为30nm到几个微米之间)

3.插层剂的选用原则

插层剂的选择在制备聚合物/层状硅酸盐纳米复合材料的过程中是极其重要的一个环节,需要根据聚合物基体的种类以及复合工艺的具体条件来选择。

选择合适得插层剂需要重点考虑以下几个方面的因素:

(1)容易进入层状硅酸盐晶片间的纳米空间,并能显著增大粘土晶片间片层间距。

(2)插层剂分子应与聚合物单体或高分子链具有较强的物理或化学作用,以利于单体或聚合物插层反应的进行,并且可以增强粘土片层与聚合物两相间得界面粘结,有助于提高复合材料的性能。

(3)价廉易得,最好是现有得工业品。

目前在制备聚合物/层状硅酸盐纳米复合材料时常用的插层剂有烷基铵盐、季铵盐、吡啶类衍生物和其他阳离子型表面活性剂等。

层状硅酸盐/橡胶纳米复合材料的性能特点是:纳米分散相为形状比(面积/厚度比)非常大的片层填料,限制大分子变形的能力比球形增强剂更强(但弱于常规短纤维),因而橡胶/粘土纳米复合材料具有较高的模量、硬度、强度等高增强性和其他特殊性能如:优异的气体阻隔性能和耐小分子溶胀和透过性能,耐油、耐磨、减震、阻燃、耐热、耐化学腐蚀。适用于轮胎内胎、气密层、薄膜、胶管、胶辊、胶带、胶鞋等制品。

二、溶胶-凝胶法

用溶胶-凝胶法原位生成SiO2增强橡胶是橡胶的纳米增强领域最为活跃的课题,其原理是将二氧化硅的某些反应前体,如四乙氧基硅烷(TEOS)等引入橡胶基质中,然后通过水解和缩合直接生成均匀分散的纳米尺度的SiO2粒子,从而对橡胶产生优异的增强作用。这种复合技术通常是在硫化胶中完成,TEOS最终在硫化胶网络中形成了粒径为10~50nm的SiO2粒子,该粒子直径分布窄,分散非常均匀,性能明显超过了直接填充沉淀法SiO2增强的橡胶。用此技术已制备了SBR,BR,聚二甲基硅氧烷(PDMS),NBR,IIR等纳米复合材料。

橡胶/纳米SiO2复合材料中的分散相分散非常均匀,分散相的化学成分及结构、尺寸及其分布、表面特性等均可以控制,这不但为橡胶增强的分子设计提供了可能性,也为橡胶增强理论的研究提供了对象和素材。用该方法制备的纳米复合材料具有很高的拉伸强度和撕裂强度,优异的滞后生热和动/静态压缩性能,在最优化条件下的综合性能明显超过炭黑和白炭黑增强的橡胶纳米复合材料。限于技术的成熟性和产品的成本,该方法在橡胶工业中的广泛应用仍需进一步探讨。

三.原位聚合增强法

近十年来,不饱和羧酸盐/橡胶纳米复合材料的研究日益受到人们的关注。这是一种利用原位自由基聚合生成分散相的纳米复合材料。所谓“原位聚合”增强,是指在橡胶基体中“生成”增强剂,典型的方法如在橡胶中混入一些与基体橡胶有一定相容性的带有反应性官能团的单体物质,然后通过适当的条件使其“就地”聚合成微细分散的粒子,并在橡胶中形成网络结构,从而产生增强作用。不饱和羧酸金属盐增强橡胶就是“原位聚合”增强的典型例子。

1.不饱和羧酸盐的制备

不饱和羧酸盐的通式可用Mn+(RCOO-)n表示,其中M为价态为n的金属离子,R为不饱和烯烃。RCOO-可以是丙烯酸(AA)、甲基丙烯酸(MAA)和马来酸等的羧酸根离子,其中AA和MAA等α,β-不饱和羧酸最为常见。不饱和羧酸盐的制备一般是通过金属氧化物或氢氧化物与不饱和羧酸进行中和反应制得的。不饱和羧酸盐也可在橡胶中原位制得,即将金属氧化物和不饱和羧酸直接加入橡胶中,让中和反应在橡胶中原位发生。一般是在密炼机中将金属氧化物和橡胶混合均匀,再加入不饱和羧酸。

2.不饱和羧酸盐补强橡胶的特点

早期不饱和羧酸盐作为过氧化物的活性交联助剂,提高交联效率。80年代后,不饱和羧酸盐在橡胶中的应用得到重视,发现不饱和羧酸盐不仅可以改善硫化特性,而且直接用不饱和羧酸盐补强的橡胶也具有较高的硬度和强度,逐渐用于一些产品的制造,如用于高尔夫球芯。日本ZEON公司也开发了商品名为ZSC的复合材料,应用于汽车零部件、油田开采等领域。

与传统的炭黑补强相比,不饱和羧酸盐补强橡胶有以下特点:

(1)在相当宽的硬度范围内都有着很高的强度;

(2)随着不饱和羧酸盐用量的增加,胶料粘度变化不大,具有良好的加工性能;

(3)在高硬度时仍具有较高的伸长率;

(4)较高的弹性。

3.不饱和羧酸盐补强橡胶的机理

不饱和羧酸盐补强的橡胶中存在着大量的离子交联键并分散着纳米粒子,这种结构特点使硫化胶具有独特的性能。

离子交联键具有滑移特性,能最大限度地将应力松弛掉,并产生较大的变形,因此能够赋予硫化胶高强度、高的断裂伸长率。不饱和羧酸盐在橡胶基体中发生聚合反应,生成的聚盐以纳米粒子的形式存在在橡胶中,并有一部分不饱和羧酸盐接枝到橡胶大分子上,从而改善了橡胶与填料粒子间的相容性。

橡胶,特别是合成橡胶的增强一直是橡胶领域的重要研究课题。炭黑和白炭黑增强一直占据着主导地位,统治着橡胶工业。而原位纳米复合技术的高分散性、可设计性(物理化学结构、界面、形状、尺寸及其分布等)却是橡胶技术追求的理想境界。因此发展价格低廉的新型纳米增强剂,寻找更科学、适用的纳米复合技术,是橡胶纳米增强研究的一个重要方向。同时,利用纳米复合技术开发特种和功能性新型纳米复合材料,以填补炭黑和白炭黑增强弹性体的性能空缺。

03青岛科技大学本科毕业设计(论文)撰写规范

青岛科技大学本科毕业设计(论文)撰写规范 为提高毕业设计(论文)质量,特对我校本科毕业设计(论文)撰写规范作如下规定: 一、内容要求 毕业设计(论文)一般应包括以下九个主要组成部分: 1.封面 采用全校统一制作格式,填写的内容为:论文题目、指导教师姓名、辅导教师姓名、学生姓名、学生学号、学生所在学院(部)、专业、班级、完成日期。 2.中文摘要 中文摘要应是毕业设计(论文)的中心内容,应具有独立性和自含性,即读者不需要阅读全文,就能获得必要的毕业设计(论文)信息。摘要内容涉及本项科研工作的目的和意义、研究方法、研究成果、结论。要注意突出毕业设计(论文)中具有创造性的成果和具有新见解的部分。 3.英文摘要 英文摘要应与中文摘要相对应。 4.目录 目录作为毕业设计(论文)的提纲,是其各组成部分的小标题,应简明扼要。 5. 毕业设计(论文)正文 毕业设计(论文)正文是主体,一般由引言(绪论、前言)开始,以结论(或讨论)结束。毕业设计(论文)的内容可因科研项目的性质不同而变化,一般可包括理论分析、计算方法、实验装置和测试方法,经过整理加工的实验结果与理论计算结果的比较分析和讨论,以及本研究方法与已有研究方法的比较等。人文社科类设计(论文)正文不少于8000字,理工科类设计(论文)正文及说明书不少于10000字。 6.参考文献 参考文献是撰写毕业设计(论文)时引用的有关图书资料。应按文中引用出现的顺序列全,附于文末。 7.附录 重要的测试结果、图表、程序等可列在附录中。 8.致谢 对给予各类资助、指导和协助完成研究工作以及提供各种条件的单位和个人表示感谢。致谢应实事求是,切忌滥用浮夸庸俗之词。 9. 外文资料翻译及原文 理工科学生要求一篇与本专业相关的外文参考文献翻译,字数不限。 二、撰写规范 1. 毕业设计(论文)封面一律由计算机打印,按统一要求进行装订。题目不宜超过33个汉字。模板中已定义好格式,直接输入即可。或输入后选择相应样式来格式化。 题目使用“封面论文题目”样式来格式化。 指导教师、辅导教师、学生姓名和学生学号使用“封面作者信息”样式来格式化。 学院(部)、专业和班级使用“封面作者单位”样式来格式化。 年、月和日使用“封面论文日期”样式来格式化。 2.中文摘要字数为300字左右,其内容次序为:题目、“摘要”二字、摘要正文、关键词(15个汉字左右)。 ⑴题目可以分成1或2行,使用“中文论文题目”样式来格式化。

[橡胶工艺原理]橡胶材料与配方

《橡胶工艺原理》讲稿 绪论 一.橡胶材料的特点 高弹性弹性模量低,伸长变形大,有可恢复的变形,并能在很宽的温度(-50~150℃)范围内 保持弹性。 粘弹性橡胶材料在产生形变和恢复形变时受温度和时间的影响,表现有明显的应力松弛和 蠕变现象,在震动或交变应力作用下,产生滞后损失。 电绝缘性橡胶和塑料一样是电绝缘材料。 4.有老化现象如金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因为环境条件的变化而产生 老化现象,使性能变坏,寿命下降。

必须进行硫化才能使用,热塑性弹性体除外。 必须加入配合剂。 其它如比重小、硬度低、柔软性好、气密性好等特点,都属于橡胶的宝贵性能。 表征橡胶物理机械性能的指标 1.拉伸强度又称扯断强度、抗张强度,指试片拉伸至断裂时单位断面上所承受的负荷,单 位为兆帕(MPa),以往为公斤力/平方厘米(kgf/cm2)。 2.定伸应力旧称定伸强度,指试样被拉伸到一定长度时单位面积所承受的负荷。计量单位 同拉伸强度。常用的有100%、300%和500%定伸应力。它反映的是橡胶抵抗 外力变形能力的高低。

3.撕裂强度将特殊试片(带有割口或直角形)撕裂时单位厚度所承受的负荷,表示材料的 抗撕裂性,单位为kN/m。 4.伸长率试片拉断时,伸长部分与原长度之比叫作伸长率;用百分比表示。 5.永久变形试样拉伸至断裂后,标距伸长变形不可恢复部分占原始长度的百分比。在解除 了外力作用并放置一定时间(一般为3分钟),以%表示。 6.回弹性又称冲击弹性,指橡胶受冲击之后恢复原状的能力,以%表示。 7.硬度表示橡胶抵抗外力压入的能力,常用邵尔硬度计测定。橡胶的硬度范围一般在20~100 之间,单位为邵氏A。 二.关于橡胶的几个概念

青岛科技大学橡胶工艺复习题

一、简答题 1、何谓喷霜?何谓焦烧?其产生原因何在? 答:喷霜即为某些配合剂(如硫磺、促进剂、防老剂、石蜡等)析出胶料或硫化胶表面的现象;造成这种现象的原因主要是某些配合剂用量过大,超过其常温下在橡胶中的溶解度所造成的。焦烧是一种胶料早期硫化的现象,即胶料在硫化前的操作或停放中发生不应有的提前硫化现象;原因是配合不当,炼胶操作不当,胶料冷却停放不当。 2、何谓老化?影响橡胶老化的因素有哪些? 答:橡胶或橡胶制品的在加工、贮存和使用的过程中,由于受到各种外界因素的作用,而逐步失去原有的优良性能,以致最后失去使用价值,这种现象称为橡胶老化;影响因素有热、氧、臭氧、金属离子、电离辐射、光、机械力等。 3、何谓塑炼?其目的意义何在? 答:把具有弹性的生胶变成柔软的具有可塑性的胶料的工艺过程称为塑炼; 生胶塑炼的目的: 一、使生胶获得一定的可塑性,适合混炼、压延、挤出、成型等后续工艺操作; 二、使生胶的可塑性均匀化,以便制得质量均匀的胶料。 4、何谓混炼?其目的意义何在? 答:在炼胶机上将各种配合剂加入到橡胶中制成混合胶的工艺过程叫混炼;使配合剂均匀分散,制得质量均匀的混炼胶,并使胶料具有适合的可塑性;混炼不好,出现配合剂分散不均匀,可塑度过高或低、焦烧、喷霜现象,影响压延等后续工序的正常进行,还会导致产品的性能下降。 5、何谓压延?它包括哪些作业形式? 答:压延工艺是利用压延机辊筒的挤压力作用使胶料发生塑性流动和变形,将胶料制成具有一定断面规格和一定断面几何形状的胶片,或者将胶料覆盖于纺织物表面制成具有一定断面厚度的胶布的工艺加工过程;作业形式:胶料的压片、压型和胶片贴合及纺织物的贴胶、擦胶和压力贴胶。 6、何谓挤出?它有何作用? 答:橡胶的挤出是使胶料通过挤出机连续地制成各种不同形状半成品的工艺过程;应用于制造胎面、内胎、胶管以及各种复杂断面形状或空心、实心、包胶等半成品。 7、何谓弹性变形和塑性变形? 答:弹性变形:橡胶在变形后能够恢复其原来状态的形变行为。 塑性变形:橡胶在变形后不能够恢复其原来状态的形变行为(永久变形)分子链间发生了位移 8、何谓硫化?它在制品生产中有何意义? 硫化是橡胶长分子链进行化学交联反应的过程。 使橡胶获得更完善的物理机械性能和化学性能,使橡胶变为更有使用价值的材料 9、何谓硫化介质? 答:橡胶硫化,在大多数情况下,都是在加热的条件下进行的,要对胶料进行加热,就需要使用一种能传递热能的物质,这种物质就称为加热介质 10、何谓挤出膨胀?其产生原因? 答:胶料在压力下从口型挤出后,挤出物直径(或断面尺寸)比口型直径(或断面尺寸)增大,这一现象称为挤出膨胀;由入口效应和剪切变形的弹性变形引起的。 11、口型设计的一般步骤? 答:一、要事先掌握胶料的膨胀率;二、根据胶料膨胀率来确定口型样板的尺寸;三、取略小于计算值

青岛科技大学本科毕业设计(论文) 过程管理办法

青岛科技大学 本科毕业设计(论文) 过程管理办法 为提高本科毕业设计(论文)质量,加强过程管理,特制定本办法。 一、毕业设计(论文)的选题 1.毕业设计(论文)的选题必须符合专业培养目标的要求,应遵循专业性、典型性和完整性原则。 2.选题的范围和深度应符合学生的实际情况。工科类专业的毕业设计(论文)课题要尽量能与生产、科研实际相结合,文、理科类专业毕业论文要尽量与应用结合。 3.选题应具有一定的新颖性、先进性和创新性,同时应考虑可行性,以中、小型课题为宜,难度适当,保证学生在规定的时间内工作量饱满。 4.选题应遵循因材施教的原则,根据学生的不同情况适当安排不同的题目。 5.毕业设计(论文)选题应遵循“一人一题”的原则。多人同题的,其方向应有所不同,内容不能相同,必须明确学生应独立完成的任务,并在题目上加以区别。 6.自拟的设计课题,各学院(部)可根据本单位实际条件,经指导教师同意,并经院长(主任)批准后,方可实施。 7.教师和学生之间采用双向选择方式确定。在双方无法自愿达成时,由学院指定指导关系。

8.毕业设计(论文)选题工作应在第七学期末进行。 9.课题一经确定,不能随意更改,如确需变动,应重新履行审批手续。 二、任务书 1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经教研室(系)论证,由院长(主任)批准后在第八学期第一周内向学生公布。 2. 学生毕业设计(论文)完成的情况必须与任务书内填写的内容相一致。 3.任务书上课题类型是指:理论研究、实践研究、应用(实务)研发、开发研究、工艺设计、工程设计、设备设计、软件设计、艺术设计、工业设计、服装设计、绘画创作、广告设计、指定问题研究。 4.任务书上的课题来源是指:国家资助课题、省(市)资助项目、企业(公司)资助、学校资助项目、自选项目、储备项目。 三、开题 学生在充分调研,理解工作目的后,需向指导教师提交一份开题报告。开题应在选题后1—2周之内完成。主要内容包括:目前国内外研究进展概述(立题依据),主要研究内容,设计方案及思路,毕业设计(论文)工作计划安排等。 四、毕业设计(论文)撰写 毕业设计(论文)应立论明确,推理严谨,数据可靠,层次分明,文字简练,依据《青岛科技大学本科毕业设计(论文)撰

最新橡胶工艺原理14

最新橡胶工艺原理(十四) 王作龄 编译 中图分类号:TQ330.1 文献标识码:E 文章编号:167128232(2004)0520047208 第7章 填充剂 7.1 引言 填充剂是混入橡胶中以赋与橡胶补强、增容和特殊功能为目的使用的配合剂。作为填充剂代表的炭黑不仅可以提高橡胶的定伸应力和拉伸强度等力学性能,而且还可赋与橡胶导电等性能,是橡胶材料不可缺少的配合剂 。 一般,填充剂按不同材质、有无补强性和功能性进行分类。按材质分类,有白炭黑、陶土、碳酸钙等无机填充剂和树脂、木粉、软木粉等有机填充剂。按有无补强性分类有炭黑、白炭黑等补强性填充剂和陶土、滑石粉、碳酸钙等非补强性填充剂。 通常将用于提高橡胶物理机械强度的配合剂称为补强剂。补强剂除了上述的补强填充剂外,还有高苯乙烯树脂等补强性树脂和补强性短纤维。 本章节以补强性高的炭黑、白炭黑和短纤维的基本性能、基本性能与橡胶复合体物理性能之间的关系及这些补强剂的补强机理为主进行叙述。 7.2 补强性填充剂 补强性填充剂和非补强性填充剂的区别可用填充剂粒子的大小(粒子表面积)加以说明。此外,粒子的形态和表面特性对橡胶的补强效果也有很大影响。 SBR中配入不同填充剂时的各比表面积与拉伸强的关系如图7-1所示。若仅在白色填充剂范围内考虑,那么拉伸强度与比表面之间有相关性。相同比表面积的炭黑的拉伸强度比白色填充剂的大,这是因为炭黑和橡胶分子的相互作用强。为提高白炭黑等填充剂的补强性,大多还同时使用偶联剂。 图7-1 不同填充剂的比表面积与拉伸 强度的关系(SBR1500) 1—碳酸钙(55vo l%);2—硅酸盐(25vo l%); 3—湿法白炭黑(25vo l%);4—炭黑(27vo l%); 5—陶土(30vo l%) 7.2.1 炭黑 炭黑是由约95%以上无定形的炭组成的毫微米级的微粒,是在燃烧木材和煤时产生的所谓“煤烟子”(含有以多量灰分和焦油为主要成分的溶剂抽出分,炭含量在50%以下)的不同物质。 自1910年发现炭黑对橡胶具有显著的补强效果以来,炭黑成为支持橡胶工业发展的重要材料。炭黑的用途除了用作以汽车轮胎为主的橡胶制品的补强剂外,还可用作印刷油墨、涂料、塑料等的黑色颜料,以及赋与电池活性物质以导电性的填充剂等。但是,从数量上看,炭黑在像胶工业中的需求量占绝对多数,1996年日本橡胶工业的炭黑需求量占日本总需求量约95%,其中约75%用于汽车轮胎。 a.炭黑的种类 炭黑按制造方法的分类如表7-1所示。表7-2为A STM D1765-98的炭黑分类表。现在,橡胶和染料工业使用的炭黑几乎都是用油炉法生产的。

青岛科技大学 橡胶实验七 威廉姆可塑度

实验七威廉姆可塑度 胶料的可塑性是指物体受外力作用而变形,当外力除去后,不能恢复原来形状的性质。橡胶胶料在进行混炼、压延、压出和成型时,必须具备适当的可塑性。 一、试验目的 橡胶胶料在进行混炼、压延、压出和成型时,必须具备适当的可塑性。因为胶料的可塑性直接关系到整个橡胶加工工艺过程和产品质量。可塑度过大时,胶料不易塑炼,压延时胶料粘辊,胶料黏着力降低;可塑度过小时,胶料混炼不均匀,且收缩力大,模压时制品表面粗糙,边角不整齐。因此,加料在加工前必须测定并控制胶料的粘度,以保证加工的顺利进行。 二、实验设备及测试原理 可塑性测定仪可分为压缩型、转动型和压出型三大类。威廉氏可塑计、快速塑性计和德弗塑性计属压缩型。这类塑性计结构简单,操作简易,适用于工厂控制生产用。威廉氏可塑性是指试样在外力作用下产生压缩变形的大小和除去外力后保持变形的能力。 威廉氏可塑计是至今仍为广泛应用的较早期的可塑计。它可以测定生胶或胶料的可塑性,还可以在测定回复值时同时测出橡胶的弹性。威廉氏可塑计至今仍保持在美国的标准之中。威廉氏可塑计的结构如图7-1所示,可塑计的负荷由上压板与重锤等组成,压铊可作上下移动,其总重为49+0.0049N(5+0.005Kg),在支架上装有百分表,分度为0.01mm,可塑计垂直装在恒温箱内的架子上,离箱底不少于60mm,重锤温度可调节为70+1℃和100+1℃。重锤的温度有温度计读出。 图7-1 威廉氏可塑度计 试样置于重锤与平板之间,压缩变形量由百分表指示。 按标准规定,威廉氏可塑性测定采用直径为16+0.5mm,高为10+0.3mm的圆柱形试样。为防止发粘,试样上下可各垫一层玻璃纸。实验时,先将试样预热3分钟,测量在负荷作用下的高度,然后去掉负荷,取出试样在室温下放至3分钟,测量恢复后的高度。 试样结果计算:

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

橡胶工艺原理_复习思考题_ 答案

《橡胶工艺原理》复习思考题 0.1 名词解释 碳链橡胶、硬质橡胶、杂链橡胶、混炼胶、硫化胶、冷冻结晶、拉伸结晶、极性橡胶 杂链橡胶:碳-杂链橡胶: 主链由碳原子和其它原子组成 全杂链橡胶:主链中完全排除了碳原子的存在,又称为“无机橡胶”,硅橡胶的主链由硅、氧原子交替构成。混炼胶:所谓混炼胶是指将配合剂混合于块状、粒状和粉末状生胶中的未交联状态,且具有流动性的胶料 硫化胶 : 配合胶料在一定条件下(如加硫化剂、一定温度和压力、辐射线照射等)经硫化所得网状结构橡胶谓硫化胶,硫化胶是具有弹性而不再具有可塑性的橡胶,这种橡胶具有一系列宝贵使用性能。 硬质橡胶:玻璃化温度在室温以上、简直不能拉伸的橡胶称为硬质橡胶 0.2 一般来说,塑料、橡胶、纤维的分子结构各有什么特点? 0.3 影响橡胶材料性能的主要因素有哪些? 橡胶性能主要取决于它的结构,此外还受到添加剂的种类和用量、外界条件的影响。 (1) 化学组成:单体,具有何种官能团 (2) 分子量及分子量分布 (3) 大分子聚集状况:空间结构和结晶 (4) 添加剂的种类和用量 (5) 外部条件:力学条件、温度条件、介质 0.4简述橡胶分子的组成和分子链结构对橡胶的物理机械性能和加工性能的影响。 答: 各种生胶的MWD曲线的特征不同,如NR一般宽峰所对应的分子量值为30~40万,有较多的低分子部分。低分子部分可以起内润滑的作用,提供较好的流动性、可塑性及加工性,具体表现为混炼速率快、收缩率小、挤出膨胀率小。分子量高部分则有利于机械强度、耐磨、弹性等性能。 0.5 简述橡胶的分类方法。 答:按照来源用途分为天然胶和合成胶,合成胶又分为通用橡胶和特种橡胶; 按照化学结构分为碳链橡胶、杂链橡胶和元素有机橡胶; 按照交联方式分为传统热硫化橡胶和热塑性弹性体。 0.6 简述橡胶的分子量和分子量分布对其物理机械性能和加工性能的影响。 答: 分子量与橡胶的性能(如强度、加工性能、流变性等)密切相关。随着分子量上升,橡胶粘度逐步增大,流动性变小,在溶剂中的溶解度降低,力学性能逐步提高。 橡胶的大部分物理机械性能随着分子量而上升,但是分子量上升达到一定值(一般是600000)后,这种关系不复存在;分子量超过一定值后,由于分子链过长,纠缠明显,对加工性能不利,具体反映为门尼粘度增加,混炼加工困难,功率消耗增大等。 0.7 简述橡胶配方中各种配合体系的作用。

橡胶制品生产工艺

橡胶制品生产工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

橡胶制品生产工艺简要介绍 一、基本工艺流程 橡胶制品种类繁多,但生产工艺过程,却基本相同。以一般固体橡胶(生胶)为原料的橡胶制品的基本工艺过程包括:塑炼、混炼、压延、压出、成型、硫化6个基本工序。当然,原材料准备、成品整理、检验包装等基本工序也少不了。 橡胶的加工工艺过程主要是解决塑性和弹性性能这个矛盾的过程,通过各种工艺手段,使得弹性的橡胶变成具有塑性的塑炼胶,再加入各种配合剂制成半成品,然后通过硫化使具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 二、原材料准备: 1.橡胶制品的主要原料是以生胶为基本材料,而生胶就是生长在热带,亚热带的橡胶树上通过人工割开树皮收集而来。 2.各种配合剂:是为了改善橡胶制品的某些性能而加入的辅助材料。 3.纤维材料有(棉、麻、毛及各种人造纤维、合成纤维)和金属材料(钢丝、铜丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。 在原材料准备过程中,配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对材料进行加工: 生胶要在60--70℃烘房内烘软后,再切胶、破胶成小块; 配合剂有:块状的,如石蜡、硬脂酸、松香等要粉碎; 粉状的若含有机械杂质或粗粒时需要筛选除去;

液态的,如(松焦油、古马隆)需要加热、熔化、蒸发水分、过滤杂质; 配合剂要进行干燥,不然容易结块、混炼时若不能分散均匀,硫化时产生气泡,会影响产品质量; 三、塑炼 生胶富有弹性,缺乏加工时必需的可塑性性能,因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼;这样,在混炼时配合剂就容易均匀分散在生胶中;同时,在压延、成型过程中也有助于提高胶料的渗透性(渗入纤维织品内)和成型流动性。 将生胶的长链分子降解,形成可塑性的过程叫做塑炼。 生胶塑炼的方法有机械塑炼和热塑炼两种。机械塑炼是在不太高的温度下,通过塑炼机的机械挤压和摩擦力的作用,使长链橡胶分子降解变短,由高弹性状态转变为可塑状态。热塑炼是向生胶中通入灼热的压缩空气,在热和氧的作用下,使长链分子降解变短,从而获得可塑性。 四、混炼 为了适应各种不同的使用条件、获得各种不同的性能,也为了提高橡胶制品的性能和降低成本,必须在生胶中加入不同的配合剂。 混炼就是将塑炼后的生胶与配合剂混合、放在炼胶机中,通过机械拌合作用,使配合剂完全、均匀地分散在生胶中的一种过程。 混炼是橡胶制品生产过程中的一道重要工序,如果混合不均匀,就不能充分发挥橡胶和配合剂的作用,影响产品的使用性能。混炼后得到的胶料,人们称为混炼胶,它是制造各种橡胶制品的半成品材料,俗称胶料,通常均作为商品出

青岛科技大学毕业论文模板

科技大学本科毕业设计(论文)撰写规 (理工类) 为提高毕业设计(论文)质量,特对我校本科毕业设计(论文)撰写规作如下规定: 一、容要求 毕业设计(论文)一般应包括以下八个主要组成部分: 1.封面 采用全校统一制作格式,填写的容为:论文题目、指导教师姓名、辅导教师姓名、学生姓名、学生学号、学生所在学院(部)、专业、班级、完成日期。 2.中文摘要 中文摘要应是毕业设计(论文)的中心容,应具有独立性和自含性,即读者不需要阅读全文,就能获得必要的毕业设计(论文)信息。摘要容涉及本项科研工作的目的和意义、研究法、研究成果、结论。要注意突出毕业设计(论文)中具有创造性的成果和具有新见解的部分。 3.英文摘要 英文摘要应与中文摘要相对应。 4.目录 目录作为毕业设计(论文)的提纲,是其各组成部分的小标题,应简明扼要。 5.毕业设计(论文)正文

毕业设计(论文)正文是主体,一般由引言(绪论、前言)开始,以结论(或讨论)结束。毕业设计(论文)的容可因科研项目的性质不同而变化,一般可包括理论分析、计算法、实验装置和测试法,经过整理加工的实验结果与理论计算结果的比较分析和讨论,以及本研究法与已有研究法的比较等。设计(论文)正文及说明书不少于10000字。 6.参考文献 参考文献是撰写毕业设计(论文)时引用的有关图书资料。应按文中引用出现的顺序列全,附于文末。 7.附录 重要的测试结果、图表、程序等可列在附录中。 8.致 对给予各类资助、指导和协助完成研究工作以及提供各种条件的单位和个人表示感。致应实事,切忌滥用浮夸之词。 二、撰写规 1.毕业设计(论文)封面一律打印,按统一要求进行装订。题目一般不宜超过30个汉字。模板中已定义好格式,直接输入即可。或输入后选择相应样式来格式化。 题目使用“封面论文题目”样式来格式化。 指导教师、辅导教师、学生姓名和学生学号使用“封面作者信息”样式来格式化。 学院(部)、专业和班级使用“封面作者单位”样式来格式化。

橡胶技术专业高等院校

橡胶技术专业高等院校 一、青岛科技大学高分子科学与工程学院 高分子科学与工程学院是青岛科技大学创办历史最长、最具学科专业特色的学院之一,其前身可以追溯到1950年创办的沈阳轻工高级职业学校的橡胶工艺专业。经过61年的建设,学院已发展成为我国高分子材料与工程(橡胶工程、塑料工程、高分子合成)、包装工程、印刷工程及复合材料与工程领域高级专业人才培养、科学研究以及技术开发的重要基地,特别是橡胶工程专业已为社会输送了各类高级专业技术及管理人才近2万人,是我国橡胶工业人才培养的摇篮。 学院现有教职工99人,其中教授26人、双聘院士1人、博士生导师8人、泰山学者3人(洪堡学者3人)、拥有博士学位的教师43人、省级教学名师、省突出贡献专家及省拔尖人才各1人。目前各类在校生达2300人。 学院设有材料科学与工程博士后流动站、三个博士学位授予点(材料学、材料加工工程、高分子化学与物理)和材料科学与工程一级学科硕士学位授予点及材料工程硕士学位授予点。依托高分子学科建有橡塑材料与工程教育部重点实验室。 1、高分子材料与工程(包括橡胶工程、塑料工程、高分子合成三个专业方向) Polymer Material and Engineering 高分子材料与工程涉及高分子量有机化合物的设计合成、结构性能、化学与物理改性、成型加工及其应用,是当代材料科学与工程的重要组成部分。本校高分子材料与工程专业发端于1950年设立的橡胶工艺专业,经60年的积累和发展,已成为青岛科技大学的传统和特色学科,也是山东省重点建设的优势学科,2008年又被评为国家级特色专业。依托该学科建立有橡塑材料与工程教育部重点实验室、高性能聚合物及成型技术教育部工程研究中心和国家轮胎工艺与控制工程技术研究中心。目前,本学科已发展成为我国橡胶与塑料加工工程和高分子材料合成的重要科研与开发基地,在高分子基础材料和先进材料的人才培养方面独具特色,我国高分子工业,特别是橡胶企业的领军人物和工程技术骨干大都出自我校高分子学科及其相关专业。 培养目标: 该专业培养适应社会发展需要的具有高分子材料与工程相关基础知识和专

青岛科技大学《橡胶及塑料加工工艺》复习重点

名词解释 链段:链段是指高分子链上划分出来的可以任意取向的最小单元。 柔顺性:高分子链能够改变其构象的性质 均聚物:由一种单体聚合而成的聚合物称为均聚物。 共聚物:由两种或两种以上不同单体经聚合反应而得的聚合物。 近程结构:一个或几个结构单元的化学组成、空间结构及其与近程邻近基团间的键接关系。 远程结构:相距较远的原子(团)间在空间的形态及其相互作用。 取向态结构:由于大分子链的取向而形成的聚集态结构。 聚集态结构:高分子材料中分子链与链间的排列与堆砌结构。 构象:分子中由于共价单键的旋转所表现出的原子或基团的不同空间排列。 构型:在立体化学中,因分子中存在不对称中心而产生的异构体中的原子或取代基团的空间排列关系。 松弛时间:黏弹性材料作松弛试验时,应力从初始值降至1/e(=0.368)倍所需的时间。 普弹性:材料瞬时产生的由内能变化导致的可逆小形变的特性 高弹性:小应力作用下由于高分子链段运动而产生很大的可逆形变的性质。所产生的形变称为高弹形变。 强迫高弹性:玻璃态高分子在大应力作用下由熵变导致的大形变,升温后可回复。 玻璃化转变温度:是玻璃态物质在玻璃态和高弹态之间相互转化的温度 粘流温度:Tf为高弹态与粘流态间的转变温度,叫做粘流温度或软化温度 力学松弛:由分子运动的松弛特性导致的高分子力学性能也具有时间依赖性的特性。 蠕变:恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象 应力松弛:恒温恒应变下,材料内部的应力随时间延长而逐渐衰减的现象。 滞后现象:聚合物在交变应力作用下应变落后于应力的现象称为滞后现象 内耗:聚合物在交变应力作用下,产生滞后现象,使机械能转变为热能的现象。 流变性:物质在外力作用下的变形和流动性质,主要指加工过程中应力,形变,形变速率和粘度之间的联系 剪切变稀流体:流动时表现粘度随剪切应力或剪切速率增加而逐渐下降的流体 挤出胀大:挤出机挤出的高聚物熔体直径比挤出模孔直径大的现象。 切力增稠流体:流动时表现粘度随剪切应力或剪切速率增加而逐渐增大的流体。 熔融指数:表示塑胶材料加工时的流动性的数值 门尼粘度:反映橡胶加工性能的好坏和分子量高低及分布范围宽窄的数值 可塑度:是指被测试样在一定外力作用下产生压缩形变的大小和除去外力后保持形变的能力。 高分子的基本概念、高分子的结构 1. 高分子有何特征? (1)分子量很高或分子链很长,这是高分子化合物最根本的特点。 (2)高分子是由很大数目的结构单元通过共价键相连接而成(均聚物,共聚物) (3)高分子的结构具有不均一性(多分散性) (4)大多数高分子的分子链具有一定的柔顺性 2. 试分析线型、支链型、交联型高分子的结构和性能特点? 线型:形状:整条高分子犹如一条又细又长的线,大分子既可卷曲成团,也可舒展成直线,这取决于高分子链本身的柔性及所处的外部条件。通常各种橡胶、大多数的纤维、塑料等都属线形大分子。特点:既可溶解又可熔融,易于加工成型。 支链型:链分子在二维空间键合增长所形成的高聚物。其主链上带有长短不一的支链,支链的形状有星型、梳型、无规支链型等几种。特点:与线形大分子相比,带短支链的高聚物更易溶解和熔融,且机械强度低此外,支链型高聚物大分子上有叔碳原子,其反应活性高,所以热稳定性差,易老化变硬变脆。 交联型:高分子链之间通过支链或某种化学键相键接,形成的三维网状大分子热固性塑料、硫化橡胶都属于网状大分子。特点:若分子间形成网状结构,则整个高聚物可看成一个大分子,既不溶解也不熔融,只能熔胀。随着分子间交联程度的增加,材料的弹性降低,但机械强度和硬度都增加 3. 以丁二烯和苯乙烯共聚物为例,说明单体共聚方式对高聚物性能的影响。 1)75%的丁二烯和25%的苯乙烯无规共聚,共聚物具有良好的弹性,是丁苯橡胶; 2)20%的丁二烯和80%的苯乙烯接枝共聚,共聚物是韧性很好的耐冲击PS塑料;

青岛科技大学橡胶工艺原理讲稿

青岛科技大学橡胶工艺原理讲稿(5) 青岛科技大学, 橡胶, 讲稿, 工艺, 原理 §3-6炭黑对橡胶的补强机理 炭黑补强作用使橡胶的力学性能提高,同时也使橡胶在粘弹变形中由粘性作用而产生的损耗因素提高。例如tanδ、生热、损耗模量、应力软化效应提高。因应力软化效应能够比较形象地说明大分子滑动补强机理,因此将两者结合一起讨论。 一.应力软化效应 (一)应力软化效应的含义 硫化胶试片在一定的试验条件下拉伸至给定的伸长比λ1时,去掉应力,恢复。第二次拉伸至同样的λ1时所需应力比第一次低,如图3-18所示,第二次拉伸的应力-应变曲线在第一次的下面。若将第二次拉伸比增大超过第一次拉伸比λ1时,则第二次拉伸曲线在λ1 处急骤上撇与第一次曲线衔接。若将第二次拉伸应力去掉,恢复。第三次拉伸,则第三次的应力应变曲线又会在第二次曲线下面。随次数增加,下降减少,大约4~5次后达到平衡。上述现象叫应力软化效应,也称为Mullins效应。 应力软化效应用拉伸至给定应变所造成的应变能下降百分率ΔW表示。 (3-10) 式中 W1 —第一次拉伸至给定应变时所需要的应变能; W2 —第一次拉伸恢复后,第二次(或更多次数)再拉伸至同样应变时所需的应变能。 (二)应力软化效应的影响因素 应力软化效应代表一种粘性的损耗因素,所以凡是影响粘弹行为的因素对它均有影响。填料及其性质对应力软化效应有决定性作用。1.填充的影响 2.填料品种对应力软化效应的影响 3.炭黑品种对应力软化效应的影响 总的趋势是补强性高的炭黑应力软化效应比较高,反之亦然。 (三)应力软化的恢复 应力软化有恢复性,但在室温下停放几天,损失的应力恢复很少,而在100℃×24h真空中能恢复大部分损失的应力。因为炭黑的吸附是动态的,在恢复条件下,橡胶大分子会在炭黑表面重新分布,断的分子链可被新链代替。剩下的不能恢复的部分称为永久性应力软化作用。 二.炭黑的补强机理 近半个世纪以来,人们对炭黑补强机理曾进行了广泛的探讨。各个作者提出的机理虽然能说明一定的问题,但有局限性。随着时间进展,橡胶补强机理也在不断地深化和完善。橡胶大分子滑动学说的炭黑补强机理是一个比较完善的理论。现将各种论点简述如下。 (一)容积效应 (二)弱键和强键学说 (三)Bueche的炭黑粒子与橡胶链的有限伸长学说 (四)壳层模型理论 核磁共振研究已证实,在炭黑表面有一层由两种运动状态橡胶大分子构成的吸附层。在紧邻着炭黑表面的大约0.5nm(相当于大分子直径)的内层,呈玻璃态;离开炭黑表面大约0.5~5.0nm范围内的橡胶有点运动性,呈亚玻璃态,这层叫外层。这两层构成了炭黑表面上的双壳层。关于双壳层的厚度Δγc,报道不一,不过基本上是上述范围。这个双壳的界面层内中的结合能必定从里向外连续下降,即炭黑表

橡胶工艺原理讲稿 第五章 橡胶的增塑体系

第五章橡胶的增塑体系1 §5.1 橡胶增塑剂及分类1 一.橡胶增塑剂的概念1 二.增塑剂的作用1 三.增塑剂的分类1 四.对增塑剂的要求1 §5.2 橡胶增塑原理及增塑效果表征2 一.橡胶增塑的方法2 二.增塑剂与橡胶的相容性2 三.增塑剂作用机理2 四.增塑剂增塑效果的表征3 §5.3 橡胶增塑剂3 一.石油系增塑剂3 二.煤焦油增塑剂5 三.松焦油系增塑剂5 四.脂肪油系增塑剂5 五.合成增塑剂5 §5.4 新型增塑剂7

第五章橡胶的增塑体系 §5.1 橡胶增塑剂及分类 一.橡胶增塑剂的概念 增塑剂又称为软化剂,是指能够降低橡胶分子链间的作用力,改善加工工艺性能,并能提高胶料的物理机械性能,降低成本的一类低分子量化合物。 过去习惯上根据应用X围不同分为软化剂和增塑剂。软化剂多来源于天然物质,常用于非极性橡胶;增塑剂多为合成产品,多用于极性合成橡胶和塑料中。目前由于所起的作用相同,统称为增塑剂。 二.增塑剂的作用 1.改善橡胶的加工工艺性能:通过降低分子间作用力,使粉末状配合剂更好地与生胶浸润并分散均匀,改善混炼工艺;通过增加胶料的可塑性、流动性、粘着性改善压延、压出、成型工艺。 2.改善橡胶的某些物理机械性能:降低制品的硬度、定伸应力、提高硫化胶的弹性、耐寒性、降低生热等。 3.降低成本:价格低、耗能省。 三.增塑剂的分类 1.根据作用机理分: 物理增塑剂:增塑分子进入橡胶分子内,增大分子间距、减弱分子间作用力,分子链易滑动。 化学增塑剂:又称塑解剂,通过力化学作用,使橡胶大分子断链,增加可塑性。 大部分为芳香族硫酚的衍生物如2-萘硫酚、二甲苯基硫酚、五氯硫酚等。 2.按来源分: ①石油系增塑剂 ②煤焦油系增塑剂 ③松油系增塑剂 ④脂肪油系增塑剂 ⑤合成增塑剂 四.对增塑剂的要求 增塑效果好,用量少,吸收速度快; 与橡胶的相容性好,挥发性小、不迁移、耐寒性好,耐水、耐油、溶剂; 电绝缘性好,耐燃性好,无色、无毒、无臭,价廉易得。

青岛科技大学-橡胶实验九--撕裂强度

实验九撕裂强度 (Determination of tear strength) 一、实验目的 1、了解撕裂试样种类,掌握撕裂试样的制备 2、熟悉测试撕裂强度的设备及其工作原理 3、掌握实验结果的分析 4、掌握影响撕裂强度的因素 二、试样种类及形状 按试样形状分类,撕裂试验的试样主要有以下几种。 1、直角型 直角型试样的形状和尺寸如图9-1所示。 图9-1 直角型试样(GB530-81)(单位:mm) 2、圆弧型 此类试样又称为新月型或腰型。国家标准试验方法中,过去称为延续型。其形状和尺寸如图9-2所示。 图9-2 圆弧型试样(GB529-81)(单位:mm) 3、裤型 试样的形状和尺寸如图9-3所示。它是一种带有割口的试样。该试样在试验机上的夹持情况如图9-4所示。

该试样的特点是其撕裂强度对割口长度不敏感。因此,试验结果的重复性好。它还便于进行撕裂能的计算,为撕裂能的理论分析提供较理想的方法。 4、德耳夫特(Delft )型 该试样的形状和尺寸如图9-5所示。 此种试样内,切有一个狭长的切口,是一种比较容易从成品上裁取的小尺寸试样。在国际标准ISO816中,采用了此种试样。 图6-5 德耳夫特型试样(ISO 816) (单位:mm) 直角型撕裂试验,由于试验不需事先割口,故测试的人为影响因素少,本试验选用此法。 三、试样的制备 国家标准GB 529和GB 530对试样的裁取和圆弧型试样割口方法均有规定。 1、试样的裁取 圆弧型和直角型试样均用裁刀裁取。裁刀刃口应保持锋利,不应出现缺口或卷刃等现象。用裁片机裁取试样时,可先用水或中性肥皂溶液润滑刀的刃口,以便于裁切。在裁切过程中,为了防止裁刀刃口与裁片机的金属底板相撞而受到损坏,在试样的下面应垫有合适的软质材料。裁取试样时,裁刀撕裂角等分线的方向应与胶料压延、压出方向一致,即试样的长度方向应与压延、压出方向垂直。这是因为,橡胶材料产生裂口后,撕裂扩展的方向常是沿着与压延、压出平行的方向进行的。 2、试样割口方法 试样在拉伸过程中,为了使应力集中于一点,以便迅速地从此产生裂口,使撕裂从该裂口扩展,可于试样的某一部位进行割口。 图9-3 裤型试样(BS 903/A3-1982) (单位:mm) 图9-4 裤型试样在试验机上的位置

热处理原理与工艺课程试题

热处理原理与工艺课程试题 热处理原理与工艺课程试题,一, 一、术语解释(每题4分,共20分) 1(分级淬火: 2(淬透性: 3(TTT曲线: 4(Ms温度: 5(调质处理: 二、填空(每空1分,共20分) 1(大多数热处理工艺都需要将钢件加热到相变临界点以上。 2((在钢的表面同时渗入碳和氮的化学热处理工艺称为,其中低温,最初主要用于中碳钢的耐磨性及疲劳强度的提高,因为硬度提高不多,故又称为。 3(奥氏体中的碳浓度差是奥氏体在铁素体和渗碳体相界面上形核的必然结果,也是相界面推移的驱动力。 4(钢中产生珠光体转变产物的热处理工艺称为退火或正火。 5(马氏体相变区别于其他相变最基本的两个特点是: 相变以切变共格方式进行和无扩散性。 6(贝氏体相变时随着钢中碳含量的增加,贝氏体相变速度减慢,等温转变C曲线向右移。 7(回火第一阶段发生马氏体的分解。 8(钢件退火工艺种类很多,按加热温度可分为两大类,一类是在临界温度(Ac1或AC3)以上的退火,又称相变重结晶退火。 9(有物态的淬火介质淬火冷却过程可分为三个阶段: 蒸气膜阶段、沸腾阶段和对流阶段。

10. 几乎所有的合金元素(除(Co )、(Al)以外),都使Ms和M点( 降低 )。 f11.随着合金含量的增加(Co等个别元素除外),钢的等温转变曲线右移,淬透性( 提高 ),比碳钢更容易获得( 马氏体 )。 三、选择题(每题2分,共20分) 1、下面对“奥氏体”的描述中正确的是: ( ) A(奥氏体是碳在α,Fe中的过饱和固溶体 B(奥氏体是碳溶于α,Fe形成的固溶体 C(奥氏体是碳溶于γ,Fe所形成的固溶体 D(奥氏体是碳溶于γ,Fe所形成的过饱和固溶体 2、45钢经下列处理后所得组织中,最接近于平衡组织的是:( ) A(750?保温10h后空冷 B(750?保温10h后炉冷 C(800?保温10h后炉冷 D(800?保温10h后空冷 3、对奥氏体实际晶粒度的描述中不正确的是:( ) A(某一热处理加热条件下所得到的晶粒尺寸 B(奥氏体实际晶粒度比起始晶粒度大 C(加热温度越高实际晶粒度也越大 D(奥氏体实际晶粒度与本质晶粒度无关 4、钢的淬硬性主要取决于() A(含碳量 B(含金元素含量 C(冷却速度 D(保温时间 5、防止或减小高温回火脆性的较为行之有效的方法是()

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

相关主题
文本预览
相关文档 最新文档