当前位置:文档之家› 专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题(解析版)
专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题

一、几何图形面积公式

1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/2

2.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah

3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab

4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=22

2

b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah

若菱形的两条对角线长分别为m 、n ,则面积S=mn/2

也就是说菱形的面积等于两条对角线乘积的一半。

6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/2

7.圆的面积:设圆的半径为r,则面积S=πr 2

8.扇形面积计算公式

9.圆柱侧面积和表面积公式

(1)圆柱的侧面积公式S 侧=2π

rh

2360r n s π?=lr s 2

1=或

(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2

+2πrh

10.圆锥侧面积公式

从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL

注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。

(1)圆的周长计算公式为:C=2πr

(2)扇形弧长的计算公式为:

(3)其他几何图形周长容易计算,不直接给出。

二、用面积法解题的理论知识

1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

三、面积方法问题主要涉及以下两部分内容

1.证明面积相等的理论依据

(1)三角形的中线把三角形分成两个面积相等的部分。

(2)同底同高或等底等高的两个三角形面积相等。

180

2360r n r n l ππ=?=

(3)平行四边形的对角线把其分成两个面积相等的部分。

(4)同底(等底)的两个三角形面积的比等于高的比。

(5)同高(或等高)的两个三角形面积的比等于底的比。

(6)三角形的面积等于等底等高的平行四边形的面积的一半。

(7)三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4

(8)三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4

(9)有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。

2.用面积法解几何问题的解题思路

(1)分解法:通常把一个复杂的图形,分解成几个三角形。

(2)作平行线法:通过平行线找出同高(或等高)的三角形。

(3)利用有关性质法:比如利用中点、中位线等的性质。

(4)还可以利用面积解决其它问题。

【例题1】(2020?咸宁)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()

A.π

2?√2B.π?√2C.π

2

?2 D.π﹣2

【答案】D

【解析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.∵∠C=45°,

∴∠AOB=90°,

∴S阴影=S扇形AOB﹣S△AOB

=90?π×22

360?1

2

×2×2

=π﹣2.

【对点练习】如图,在?ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()

A.π B.2π C.3π D.6π

【答案】C.

【解析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.∵在?ABCD中,∠B=60°,⊙C的半径为3,

∴∠C=120°,

∴图中阴影部分的面积是:=3π,

【点拨】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.

【例题2】(2020?重庆)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆

初二数学面积法几何专题

初二数学---面积法解题 【本讲教育信息】 【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】 1. 使学生灵活掌握证明几何图形中的面积的方法。 2. 培养学生分析问题、解决问题的能力。 【重点、难点】: 重点:证明面积问题的理论依据和方法技巧。 难点:灵活运用所学知识证明面积问题。 【教学过程】 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等

③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE 同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比

七年级上册数学 几何图形初步专题练习(word版

一、初一数学几何模型部分解答题压轴题精选(难) 1.探究题 学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。 (1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________. (2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程. 过点P作PE∥AC. ∴∠A=________ ∵AC∥BD ∴________∥________ ∴∠B=________ ∵∠BPA=∠BPE-∠EPA ∴________. (3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题: 已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°. 【答案】(1)∠APB=∠A+∠B (2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1 (3)证明:过点A作MN∥BC

∴∠B= ∠1 ∠C= ∠2 ∵∠BAC+∠1+∠2=180° ∴∠BAC+∠B+∠C=180° 【解析】【解答】解:(1)如图: 由平行线的性质可得:∠1=∠A, ∠2=∠B, ∴∠1+∠2=∠A+∠B 即APB=∠A+∠B ⑵解:过点P作PE∥AC. ∴∠A=∠1 ∵AC∥BD ∴ PE ∥ BD ∴∠B=∠EPB ∵∠APB=∠BPE-∠EPA ∴∠APB=∠B -∠1 【分析】根据图形做出平行辅助线,探究角度关系。此类做辅助线的方法变式多,是考试热点问题。 2.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补

解析几何中的定点和定值问题精编版

解析几何中的定点定值问题 考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。 一、 定点问题 解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 例1、已知A 、B 是抛物线y 2 =2p x (p >0)上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当α、β变化且α+β= 4 π 时,证明直线AB 恒过定点,并求出该定点的坐标。 解析: 设A ( 121 ,2y p y ),B (222 ,2y p y ),则 2 1 2tan , 2tan y p y p ==βα,代入1)tan(=+βα 得2 21214)(2p y y y y p -=+ (1) 又设直线AB 的方程为b kx y +=,则 022222 =+-????=+=pb py ky px y b kx y ∴k p y y k pb y y 2,22121= += ,代入(1)式得pk p b 22+= ∴直线AB 的方程为)2(2p x k p y +=- ∴直线AB 过定点(-)2,2p p 说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点问题转化为求直线AB ,再从AB 直线系中看出定点。 例2.已知椭圆C :22 221(0)x y a b a b +=>> ,以原点为圆心,椭圆的短半轴长为半径的 圆与直线0x y -相切. ⑴求椭圆C 的方程; ⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围; ⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.

(专题精选)初中数学几何图形初步难题汇编含答案

(专题精选)初中数学几何图形初步难题汇编含答案 一、选择题 1.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是() A.∠1=1 2 (∠2﹣∠3)B.∠1=2(∠2﹣∠3) C.∠G=1 2 (∠3﹣∠2)D.∠G= 1 2 ∠1 【答案】C 【解析】 【分析】 根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠ G,从而推得∠G=1 2 ?(∠3﹣∠2). 【详解】 解:∵AD平分∠BAC,EG⊥AD, ∴∠1=∠AFE, ∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE, ∴∠3=∠G+∠2+∠G,∠G=1 2 ?(∠3﹣∠2). 故选:C. 【点睛】 本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键. 2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为() A.1 B.2 C.3 D.4 【答案】C

试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P. ∴EP+FP=EP+F′P. 由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时 EP+FP=EP+F′P=EF′. ∵四边形ABCD为菱形,周长为12, ∴AB=BC=CD=DA=3,AB∥CD, ∵AF=2,AE=1, ∴DF=AE=1, ∴四边形AEF′D是平行四边形, ∴EF′=AD=3. ∴EP+FP的最小值为3. 故选C. 考点:菱形的性质;轴对称-最短路线问题 3.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于() A.38°B.104°C.142°D.144° 【答案】C 【解析】 ∵∠AOC=76°,射线OM平分∠AOC, ∴∠AOM=1 2 ∠AOC= 1 2 ×76°=38°, ∴∠BOM=180°?∠AOM=180°?38°=142°, 故选C. 点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 4.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】

高三数学选择填空题压轴专题5.4 解析几何中的定值与定点问题(教师版)

一.方法综述 解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下; (1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性; 一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果; 另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。 (2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。 二.解题策略 类型一定值问题 【例1】(2020?青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为() A.B.C.2p D. 【答案】D 【解析】分析:直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果. 解:抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),

面积法在平面几何问题求解中的巧妙应用

平面几何问题的证明——面积法(教案) 教学目的:掌握面积法在平面几何解题中的巧妙应用 教学重点:1、三角形、凸四边形面积公式的推导 2、面积法在平面几何解题中的巧妙应用 教学内容: 2002年,张景中院士推出《新概念几何》,其中对三角学作了全新的处理,他把边长为 1、夹角为α的菱形的面积定义为αsin ,由此研究正弦的性质,到处理余弦,用面积的方法证明大量的平面几何问题,把三角学和几何学打成一片,别具一格,极有新意。 张院士指出:抓住面积,不但能把平面几何课程变得更容易学,而且使几何问题求解变得更有趣味。 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积比表示有关的几何量或其比,从而把要论证的几何量之间的关系转化为有关面积之间的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,这就是面积法。 一、为运用面积法解题,我们需要一些面积公式: 1、设ABC ?中,角C B A ,,所对的边依次为c b a ,,,又a h 为a 边上的高,R 为其外接圆半径,r 为其内切圆半径,)(21c b a p ++= ,则 (1)a ABC ah S 21=?; (2)A bc S ABC sin 21?=?; (3)R abc S ABC 4=?; (4)A C B a S ABC sin 2sin sin 2?=?; (5)rp S ABC =?; (6)))()((c p b p a p p S ABC ---= ?。(海伦公式) 2、在凸四边形ABCD 中,边长分别为d c b a ,,,,两对角线长为,,f e 两对角线夹角θ,且)(2 1d c b a l +++= ,则: (1)θsin 21?=ef S ABCD (2) 2222222)(441d b c a f e S ABCD --+-= (3)))()()((d l c l b l a l S ABCD ----= (当D C B A ,,,四点共圆时) (4)?2cos ))()()((?-----=abcd d l c l b l a l S ABCD ,2D B +=?或2C A +=? 引理1:圆内接四边形ABCD 的四边是,,,,d DA c CD b BC a AB ====则四边形ABCD 的面积 ]1[ ))()()((d p c p b p a p S ABCD ----=,)(21d c b a p +++= 。

利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题 构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明. 方法: 1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。 2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。 3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。 例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 简析 设矩形PNDM 的边DN =x ,NP =y , 则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y . 且有 NP BC CN -=BF AF (作辅助线构造相似三角形),即34y x --=12, 所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4), 此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值 S 最大=-12×42+5×4=12. 说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.

专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题 一、几何图形面积公式 1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/2 2.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah 3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab 4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=22 2 b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah 若菱形的两条对角线长分别为m 、n ,则面积S=mn/2 也就是说菱形的面积等于两条对角线乘积的一半。 6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/2 7.圆的面积:设圆的半径为r,则面积S=πr 2 8.扇形面积计算公式 9.圆柱侧面积和表面积公式 (1)圆柱的侧面积公式S 侧=2π rh 2360r n s π?=lr s 2 1=或

(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2 +2πrh 10.圆锥侧面积公式 从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL 注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。 (1)圆的周长计算公式为:C=2πr (2)扇形弧长的计算公式为: (3)其他几何图形周长容易计算,不直接给出。 二、用面积法解题的理论知识 1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 三、面积方法问题主要涉及以下两部分内容 1.证明面积相等的理论依据 (1)三角形的中线把三角形分成两个面积相等的部分。 (2)同底同高或等底等高的两个三角形面积相等。 180 2360r n r n l ππ=?=

几何图形的最大面积

实际问题与二次函数几何图形的最大面积 1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形中最大面积问题. 一、情境导入

孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米,矩形ABCD的面积为S平方米.当x为何值时,S有最大值?并求出最大值. 二、合作探究 探究点:最大面积问题 【类型一】利用二次函数求最大面积 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.

(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x 2, 从而表示出面积;(2)利用配方法求出顶点坐标. 解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30. (2)S =-x 2+30x =-(x -15)2+225,∵a =-1<0,∴S 有最大值,即当x =15(米)时, S 最大值=225平方米. 方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系. 【类型二】利用二次函数判断面积取值成立的条件 用长为32米的篱笆围一个矩形养鸡 场,设围成的矩形一边长为x 米,面积为y 平方米.

中考专题复习怎样证明面积问题以及用面积法解几何问题

中考专题复习——怎样证明面积问题以及用面积法解几何 问题 (一)证明面积问题常用的理论依据 1. 三角形的中线把三角形分成两个面积相等的部分。 2. 同底同高或等底等高的两个三角形面积相等。 3. 平行四边形的对角线把其分成两个面积相等的部分。 4. 同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5. 三角形的面积等于等底等高的平行四边形的面积的一半。 8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 (二)证明面积问题常用的证题思路和方法 1. 分解法:通常把一个复杂的图形,分解成几个三角形。 2. 作平行线法:通过平行线找出同高(或等高)的三角形。 3. 利用有关性质法:比如利用中点、中位线等的性质。 4. 还可以利用面积解决其它问题。 【典型例题】 (一)怎样证明面积问题 1. 分解法 例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。 分析:从图形上观察,△DEF可分为三部分,其中①是△ADE,它与△ADB同底等 ③三是△AEF,只要再证出它与△ABC的面积相等即可 由S△CFE=S△CFB 故可得出S△AEF=S△ABC 证明:∵AD//BE//CF ∴△ADB和△ADE同底等高 ∴S△ADB=S△ADE

同理可证:S△ADC=S△ADF ∴S△ABC=S△ADE+S△ADF 又∵S△CEF=S△CBF ∴S△ABC=S△AEF ∴S△AEF+S△ADE+S△ADF=2S△ABC ∴S△DEF=2S△ABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形的高为h 证明:过M作MN//AB ∵M为腰BC的中点 ∴MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题 有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等 性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比 性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等 例3. 设AD、BE和CF是△ABC的三条高,求证:AD·BC=BE·AC=CF·AB

六年级下册数学思维训练——比例法解几何图形题讲解学习

六年级下册数学思维训练——比例法解几 何图形题

六年级下册数学思维训练——比例法解几何图形题 例1在△ABC中,B D︰DC=2︰3,阴影部分的面积是27平方厘米。求△ABC的面积。 例2在△ABC 中,AD垂直于BC,CE垂直于AB,AD=8厘米,CE=7厘米,AB+BC=21厘米,△ABC的面积是多少平方厘米? 基本练习 1、如图,ABCD是一个梯形,E是AD的中点,线段CE把梯形分成甲、乙两部分,它们的面积之比是10︰7.求上底AB与下底CD的长度之比。 2、如图,平行四边形ABCD的周长为75厘米,以BC为底时,高是14厘米;以CD为底时,高是16厘米。问平行四边形ABCD的面积是多少?

巩固练习 1、如图,一个长方形被分成8个小长方形,其中五个小长方形的面积如图所示,那么其中最大的长方形面积是多少? 2、如图,梯形ABCD与△DEC的面积比为6:7,BE和EC的长度分别是多少?(单位:厘米) 拓展提高 1、如图,BF:AB=1:6,AE:AC=1;5,CD:CB=1:4,若△ABC的面积为120平方厘米,求△DEF的面积。

2、梯形ABCD 的面积为20,点E 在BC 上,△ADE 的面积是△ABE 的面积的2倍,BE 的长度为2,EC 的长度为5。问:△DEC 的面积是多少? 竞赛训练 1、例题:如图所示,甲圆和乙圆的面积之和是丙圆的53 ,甲圆内阴影部分面积占甲圆的31 ,乙圆内阴影部分面积占乙圆面积的2 1 ,丙圆内阴影部分面积占丙圆面积的4 1 ,那么甲。乙两圆面积之比是多少? 2、如图所示,长方形AEGH 与正方形BFGH 的面积比为3︰2,则正方形ABCD 的面积是正方形BFGH 的面积的多少倍?(结果写成小数) 3、如图所示,已知直角三角形ABC 中,BDEF 是一个正方形,AD 长4厘米,FC

新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题

- 1 - / 3 三视图、展开图专题 【题型一】从不同方向看几何体 1、如图所示的立体图形从上面看到的图形是( ) 2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个 3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。 4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。 A. 圆柱 B. 三棱锥 C. 球 D. 圆锥 5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( ) 6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A . 从正面看面积最大 B . 从左面看面积最大 C . 从上面看面积最大 D . 三个视图的面积一样大 A B C D 从左面看 从上面看 从正面看 A B C D

- 2 - / 3 7、5个棱长为1的正方体组成图所示的几何体. (1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形. 8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________. 【题型二】正方体的展开与折叠 1、如图是一个长方体包装盒,则它的平面展开图是( ) A . B . C . D . 2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( ) A . B . C . D . 3、把如图中的三棱柱展开,所得到的展开图是( ) A . B . C . D . 4、下列四个图形中,是三棱柱的平面展开图的是( ) A . B . C . D .

(完整word)初二几何面积法

专题复习一、面积法 何谓面积法 在求解平面几何问题的时候,根据有关几何量与涉及的有关图形面积之间的内在联系,用面积或面积之间的关系表示有关线段间的关系,从而把要论证的线段之间的关系转化为面积的关系,并通过图形面积的等积变换对所论问题来进行求解的方法,称之为面积法。 (一)证明面积问题常用的理论依据 用面积法解几何问题常用到下列性质: 1、全等三角形的面积相等; 2、三角形的中线把三角形分成面积相等的两部分; 3、同底同高或等底等高的两个三角形面积相等。 4、同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 一、证线段相等 1、已知:△ABC 中,∠A 为锐角,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,求证:BD=CE E D C B A 2、已知:等腰△ABC 中,AB=AC ,D 为底边BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F. 求证:DE=DF. 3、(1)已知: △ABC 中,AB=AC ,P 为底边BC 上一点,PD ⊥AB 于D ,PE ⊥AC 于E ,BF ⊥AC 于F ,求证:PD+PE=BF. P (2)若P 为 △ABC 的底边BC 的延长线上一点,其他条件不变,请画出图形,并猜想(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并证明。 F E C B A

A 4、(1)已知等边△ABC内有一点P,PD⊥AB,PE⊥BC,PF⊥CA,垂足分别为D、E、F,又AH 为△ABC的高,求证:PD+PE+PF=AH. P H F E D C B A (2)若P是等边△ABC外部一点,其他条件不变,(1)中的结论仍然成立吗?若成立,请说明理由;若不成立,请写出正确的结论,并说明理由。 A B C D E F H P 二、证角相等 5、点C是线段AB上一点,分别以AC、BC为边在AB同侧作等边△ACD和等边△BCE,连接BD、AE交于O点,再连接OC,求证:∠AOC=∠BOC. 1、Rt△ABC中,∠BAC=90°,AB=3,M为边BC上一点,连接AM,若将△ABM沿直线AM翻折

几何图形初步培优专题

几何图形初步培优专题 1. 已知线段AB 的长度为a ,点C 是线段AB 上的任意一点,M 为AC 中点,N 为BC 的中点,求MN 的长。 2 .已知,线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长。 3. 点C 在线段AB 上,AC=8cm ,CB=6cm ,点M 、N 分别是线段AC 、BC 的中点. (1)求MN 的长; (2)若点C 为线段AB 上任意一点,k CB AC =+,其他条件不变,则MN 的长度为多少? 4. 已知B 、C 是线段AD 上任意两点,M 是AB 中点,N 是CD 中点,若.,b BC a MN ==求AD. 5. 如图,已知线段AB 和CD 的公共部分,4 1 31CD AB BD ==线段AB ,CD 的中点E 、F 的距离是12cm ,求AB ,CD 的长。 6. 在数轴上有两个点A 和B ,A 在原点左侧到原点的距离为6,B 在原点右侧到原点的距离为4,M ,N 分别是线段AO 和BO 的中点,写出A 和B 表示的数;求线段MN 的长度。

7. (1)如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长; (2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由。 (3)若C 在线段AB 的延长线上,且满足AC -BC = b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,并说明理由。 A B C M N 8. 已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, n A 平分1n AA -, 则n AA =_________cm. 9. 过两点最多可画1条直线(1= 212?);过三点最多可画3条直线(3=2 2 3?);过同一平面内四点最多可画______________条直线;过同一平面内n点最多可画______________条直线; 10. 在一条直线上取两上点A 、B,共得几条线段?在一条直线上取三个点A 、B 、 C,共得几条线段?在一条直线 上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段? 11. 如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm/s 、2 cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上) (1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置: (2)在(1)的条件下,Q 是直线AB 上一点,且AQ -BQ=PQ ,求 AB PQ 的值。 (3)在(1)的条件下,若C 、D 运动5秒后,恰好有AB CD 2 1 =,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM -PN 的值不变;②AB MN 的值不变,可以说明, 只有一个结论是正确的,请你找出正确的结论并求值。 C A

最新张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地

张景中——面积法开辟平面几何新天地 提起张景中,景仰之情不禁油然而生,心底涌出一堆的形容词和感叹句。诸如百折不回燃烧生命、身居逆境不改其志、目光如炬睿智如芒、思维如风顶尖成就、平凡之中凸显伟大、横扫千军势如破竹、与时俱进思维超前、破除迷信引领革命,等等等等,都不足以概括张景中院士对中国教育数学的贡献,即使在整个中国科学界,诞生这样的科学巨人,也是50年来仅见。 张景中的伟大,不在于在高等数学的多少个领域内做出了贡献,恰恰在所有人都认为不可能有突破性进展的初等数学领域,其中最稳定、最古老、最不可能创新的欧式几何王国内,取得了划时代的进展,颠覆性的进展。从17世纪以来的300多年,世界范围内的大科学家,他们在科学理论上的所有发现,几乎没有普通中学生能够读懂的东西。在初等数学领域,代数是一潭百年死水,平面几何更是一潭千年死水,没有活水也没有新鲜氧气注入。 是张景中,也仅仅是张景中,只在三年的初中几何教学中,就发现了问题并开始思考教材的改革。在平面几何2000多年的古老仓库中,捡起了从不被人重视的“面积方法”这件武器,将顽铁锻造成神器,像当年的孙悟空一样,从地下到天上,从18层地狱到33天兜率宫,将2300年不变的并被公认为完美杰作的欧几里德几何体系从公理体系到定理体系,从思想方法到解题思路搅了个天翻地覆,将欧几里德几何体系彻底改造了一番,创造了一个面目一新的张氏几何,名曰新概念几何。上至各路神仙、下至黎民百姓,看得目瞪口呆,看得如醉如痴。 张景中的这项科学发现,比起60年来国内任何一个科学家的发现影响面都要大得多,因为他的受众是8700万中学生!他影响的是整个中国的下一代。 张景中的脚步没有停歇,他的眼光自然而然地投向了机器证明几何定理这个百年难题。从莱布尼兹发明数值计算机械化以来,随着计算机科学的发展,机器证明几何定理也有了一定进展。中国老一辈数学家吴文俊将平面几何坐标化,创立了吴方法——代数消元法,

求几何图形的面积法

求几何图形的面积法 (1)直接用三角形,特殊四边形,圆,扇形的面积公式来求。 (2)间接割补法,把不规则图形面积通过割补、运动、变形转化为规则易求图形面积的和或差。 (3)特殊求法,即利用相似图形的面积比等于相似比的平方,等底(等高)的三角形面积比等于高(底)比的性质来解。 其次有些乘法公式、勾股定理、三角形的一边平行四边形的比例式等性质,也可用面积法来推导。 面积法是什么? 运用面积关系解决平面几何体的方法,称为面积法。 它是几何中常用的一种方法。特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系会变成数量之间的关系。这个时候,问题就化繁为简了,只需要计算,有事甚至可以不添置补助线就迎刃而解了! 此外,用面积法还可以用来求线段长,证明线段相等(不等),角相等,比例式或等积式,求线段比等。虽然这些几乎都可以用其他方法来解决,但是面积法无疑是一种更直接、简易、有效的方法。 面积法的常用理论口诀

1.三角形的中线把三角形分成两个面积相等的部分。 2.同底同高或等底等高的两个三角形面积相等。 3.平行四边形的对角线把其分成两个面积相等的部分。 4.同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5.三角形的面积等于等底等高的平行四边形的面积的一半。 6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4 7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4 8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。面积法的常用解题思路 1.分解法:通常把一个复杂的图形,分解成几个三角形。 2.作平行线法:通过平行线找出同高(或等高)的三角形。 3.利用有关性质法:比如利用中点、中位线等的性质。 4.还可以利用面积解决其它问题

(专题精选)初中数学几何图形初步分类汇编及答案解析

(专题精选)初中数学几何图形初步分类汇编及答案解析 一、选择题 1.下列各图经过折叠后不能围成一个正方体的是() A.B.C.D. 【答案】D 【解析】 【分析】 由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图. 【详解】 解:A、是正方体的展开图,不符合题意; B、是正方体的展开图,不符合题意; C、是正方体的展开图,不符合题意; D、不是正方体的展开图,缺少一个底面,符合题意. 故选:D. 【点睛】 本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形. 2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?() A.B. C.D. 【答案】D 【解析】 【分析】 根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特

【详解】 解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱. 故选:D. 【点睛】 本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键. 3.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是() A.B. C.D. 【答案】D 【解析】 【分析】 根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可. 【详解】 解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体. 故选:D. 【点睛】 本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法. 4.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=() A.35°B.45°C.55°D.65° 【答案】A 【解析】 【分析】 【详解】 解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°

用面积法求解几何问题

人教版 初中 解决几何问题有很多方法,在这些方法中很容易被大家忽略的是面积法. 面积法既能解决题目中直接涉及面积的问题,也可解决一些题目中不涉及面积的问题. 在平时的学习、解题过程中,如果有意识的使用面积法.,可以使有些几何图形性质的证明、几何问题的解决等起到事半功倍的作用. 对有些几何题,如果单纯用图形的几何性质、全等三角形或相似三角形等知识来解答,会使计算或证明过程很复杂,而用面积法却可以轻松得到解决.下面举例说明. 例1 如图1,E 、F 分别为□ABCD 的边CD 、AD 上的点,且AE=CF ,设AE 、CF 交于P ,求证:BP 平分∠APC . 证明 连BE 、BF , ∵AE=CF , ∴ 三角形ABE 的面积等于三角形FBC 的面积 即ABE FBC S S ??= ∴ 点B 到AE 、FC 的距离相等. 即点B 到∠APC 的两边P A 、PC 的距离相等, ∴ BP 平分∠APC . 例2 如图2,已知:△ABC 中,AD 是∠BAC 的平分线. 求证:AB BD AC CD =. 分析 由于AD 是∠A 的平分线,且在△ABD 与△ADC 中,BD 、DC 边上的高相等,因此可利用三角形面积公式来证明. 证明 设△ABC 中BC 边上的高为h ,则 12 ABD S BD h ?=?, 12 ACD S CD h ?=?. 又 过D 分别作DE ⊥AB 于E ,DF ⊥AC 于F ,则 12 ABD S AB DE ?=?, 12 ACD S AC DF ?=?. 于是 11221122 ABD ADC BD h AB DE S S CD h AC DF ????==??. ∵ ∠1=∠2, ∴ DE =DF . 故 AB BD AC CD =. .1. 例3 如图3,P 为△ABC 内任意一点,连AP 、BP 、CP 并分别延长交对边 于D 、E 、F ,求证:1PD PE PF AD BE CF ++=. 分析 本题应用了线段的比转化为面积的比来解决.

学会用面积法解证几何题

学会用“面积法”解证几何题 楚雄育才学校 刘宪敏 在初中几何课教学中,常常会遇到一些与直角形有关的证明题或计算题,在解决此类问题时,若我们能够利用“面积”这一中介来求解,往往会达到异象不到的效果,下面举几个例子来说明。 例1、在矩形ABCD 中,AB=a ,BC=b ,M 是AB 的中点,DE ⊥AM ,E 为垂足,求证:2 2 42b a a b DE += 。 【分析】:1、如图(1)所示,此题的常规解法是证明Rt △ABM ∽Rt △DEA ,从而得出 AD AM DE AB =,又22BM AB AM +=代入上述比例式即可得出证明 结果。 2、考虑到此题有一些Rt △,因此,我们还可以这样来分析,如图(2所示),连结DM ,易证Rt △ABM ≌Rt △DCM ,由此利用“面积”来证明(∵S 矩形ABCD =S △AMD +2S △ABM ),证明过程如下: 证明:如图(2)所示,连结DM ∵M 是BC 的中点 ∴BM=CM ∠B=∠C=900 ?Rt △ABM ≌Rt △DMC A E B C D A E D

AB=AC 又∵S 矩形ABCD =S △AMD +2S △ABM 即:a b DE AM ab ???+?=2 121221 ∴AM ?DE=ab 又∵2 442 222 2 2 b a b a BM AB AM +=+=+= ∴2 2 42b a a b DE += . 说明:在解证与矩形有关的问题时,可将其分解成几个直角三角形,从中利用“面积”来解题。 例2、在Rt △ABC 中,BC 、CA 、AB 的长分别为a 、b 、c ,则Rt △ABC 的内切圆半径为: 。 解法一:(运用切线长定理) 如图(3)所示,设⊙0切AB 、BC 、CA 于点D 、E 、F , AE=AD=x ;BD=BF=y ,于是:x=a-R ,y=b-R ,c=x+y=a-R+b-R , ∴R= 2 c b a -+ ① 解法二:(用面积法)如图(4)所示, 连结OA 、OB 、OC 则有:S △ABC =S △AOC +S △ COB +S △BOA E C F A E C F

小学平面几何图形的十大解法

几何图形的十大解法(30例) 一、分割法 例1:将两个相等的长方形重合在一起,求组合图形的 面积。(单位:厘米) 2 例2:下列两个正方形边长分别为8厘米和5厘米, 求阴影部分面积。 例3:左图中两个正方形的边长分别为8厘米和6厘米。 求阴影部分面积。 二、添辅助线 例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。求阴影部分面积。 C P D B A 例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方

厘米,平行四边形底20.4厘米,高8厘米。梯形下底是多少厘米? 例3:平行四边形的面积是48平方厘米,BC分别是 A 这个平行四边形相邻两条边的中点,连接A、 B B、C得到4个三角形。求阴影部分的面积。 C 三、倍比法 例1: A B 已知:OC=2AO,S ABO=2㎡,求梯形ABCD O 的面积。 例2:7.5 已知:S阴=8.75㎡,求下图梯形的面积。 2.5 例3: A 下图AB是AD的3倍,AC是AE的5倍, D E 那么三角形ABC的面积是三角形ADE的多少 倍? C 四、割补平移

例1: A B 已知:S阴=20㎡, EF为中位线 E F 求梯形ABCD的面积。 D C 例2:10 求左图面积(单位:厘米) 5 5 10 例3:把一个长方形的长和宽分别增加2 厘米,面积增加24平方厘米。 求原长方形的周长。 2 五、等量代换 例已知:AB平行于EC,求阴影部分面积。 8 E 10 D (单位:m) 例2:下图两个正方形边长分别是6分米、4分米。求阴影部分面积。 例3:已知三角形ABC的面积等于三角形AED的面积(形状大小都相同),

相关主题
文本预览
相关文档 最新文档