当前位置:文档之家› SubaruHDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy

SubaruHDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy

SubaruHDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy
SubaruHDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy

a r X i v :a s t r o -p h /0411332v 1 12 N o v 2004

PASJ:Publ.Astron.Soc.Japan ,1–??,

c

2008.Astronomical Society of Japan.Subaru/HDS Abundances in Three Giant Stars in

the Ursa Minor Dwarf Spheroidal Galaxy ?

Kozo Sadakane

Astronomical Institute,Osaka Kyoiku University,Kashiwara-shi,Osaka 582-8582

sadakane@cc.osaka-kyoiku.ac.jp

Nobuo Arimoto ,Chisato Ikuta ,Wako Aoki

National Astronomical Observatory,2-21-1Osawa,Mitaka,Tokyo 181-8588

Pascale Jablonka

Observatoire de Paris,5place Jules Janssen,F-92195Meudon Cedex,France

and

Akito Tajitsu

Subaru Telescope,National Astronomical Observatory of Japan,650North A’ohoku Place,

Hilo,HI96720,USA

(Received 2004April 19;accepted 2004October 27)

Abstract

With the HDS (High Dispersion Spectrograph)on the Subaru telescope,we obtained high resolution optical region spectra of three red giant stars (cos 4,cos 82,and cos 347)in the Ursa Minor dwarf spheriodal galaxy.Chemical abundances in these stars have been analysed for 26elements including α–,iron–peak,and neutron capture elements.All three stars show low abundances of α–elements (Mg,Si,and Ca)and two stars (cos 82and cos 347)show high abundance of Mn compared to Galactic halo stars of similar metallicity.One star (cos 4)has been con?rmed to be very metal de?cient ([Fe/H]=?2.7)and found to show anomalously low abundances of Mn,Cu,and Ba.In another star cos 82([Fe/H]=?1.5),we have found large excess of heavy neutron-capture elements with the general abundance pattern similar to the scaled solar system r –process abundance curve.These observational results are rather puzzling:low abundances of α–elements and high abundance of Mn seem to sugggest a signi?cant contribution of SNe Ia at low metallicity,while there is no hint of s –process (i.e.,AGB stars)contribution even at [Fe/H]=?1.5,suggesting a peculiar nucleosynthetic history of the UMi dSph galaxy.

Key words:Stars:abundances —Galaxies:abundances —Galaxies:dwarf —Galaxies individual:Ursa Minor 1.

Introduction

The origin of the Galactic dwarf spheroidal (dSph)galaxies is closely related to the formation and evolution-ary history of the Milky Way.Modern cosmological mod-els based on the Cold Dark Matter paradigm demonstrate the importance of hierarchical structure formation on all scales.Galaxies like the Milky Way and M31form as part of a local overdensity in the primordial matter distribu-tion via the agglomeration of numerous smaller building blocks which independently can develop into dwarf galax-ies.In the Local Group the leftovers of this process are seen in the distribution and properties of the dwarf galax-ies,with the dwarf spheroidals found mainly close in to the giant spirals,while the dwarf irregulars are more evenly distributed throughout the Local Group.

The gravitationally bound dwarf galaxies that have managed to avoid tidal destruction and subsequent merg-ing have undergone episodic star formation over a Hubble time.The relatively gas-rich dwarf irregulars still exhibit

2K.Sadakane et al.[Vol.,

on the ESO8.2m Kueyen telescope(VLT).Bonifacio et al.(2004)analysed high resolution data of10giant stars in the Sgr dSph galaxy and obtained abundances of O,Mg, Si,Ca and Fe.They concluded that a substantial metal rich population exists in the Sgr dSph.High dispersion data of a total of13giant stars in Draco,Ursa Minor and Sextans dSph galaxies were analysed by Shetrone et al.(2001).They found large internal dispersions in metal-licity of all three galaxies.They also found that the rela-tive abundances ofα–elements,[α/Fe],are lower in dSph galaxies compared with those found in the halo?eld stars over the same range in metallicity,which hints a non-negligible contribution of Type Ia Supernovae(SN Ia)dur-ing early stage of chemical enrichement,but the number of stars observed is too small to conclude.Shetrone et al.(2003)and Tolstoy et al.(2003)carried out extensive abundance analyses of15red giant stars in the Sculpter, Fornax,Carina,and Leo I dSph galaxies and discussed the implications for understanding the history of galaxy formation.Shetrone et al.(2003)found that certain abun-dance patterns appear to be very similar between these four dSph galaxies and Ursa Minor,Draco,Sextans,and Sagittarius dSph galaxies examined in the literature;i.e., iron—peak elements,second s–and r–process elements all show Galactic halo-like patterns.Theα–elements,how-ever,can vary from galaxy to galaxy.Sculpter,Leo I, Sextans,Ursa Minor,and Sagittarius dSph galaxies show a slightly decreasing[α/Fe]pattern with increasing metal-licity,while Fornax and Draco show roughly constant [α/Fe].No uniform picture for nucelosynthesis in dSph galaxies yet appeared,and clearly more abundance data are desperately required.

In order to investigate in more detail the abundance patterns in giant stars of northern dSph galaxies,we have initiated a program to observe high resolution spectra of bright stars in the Ursa Minor dSph galaxy in2001.The previous study for this galaxy by Shetrone et al.(2001) was based on rather low S/N(~30)spectra.We obtained high resolusion spectra with higher quality(S/N>50) using the Subaru Telescope to con?rm the previous study and investigate the chemical composition in more detail. In this paper,we report abundance analyses of three stars observed in2002.

2.Observational Data

Spectroscopic observations of three target stars(cos4, cos82,and cos347;designations are taken from Cudworth et al.(1986))and one reference star(M92-III-13,a mem-ber of the globular cluster M92)were carried out with the Subaru telescope using the High Dispersion Spectrograph (HDS)on2002May16and17.Figures1and2show our three target stars on the sky and on the color-magnitude diagram(CMD)of the UMi dSph galaxy.These target stars are located near the tip of the red giant branch of the UMi dSph galaxy and show somewhat peculiar color indices.Two stars(cos82and cos347)are slightly redder while cos4is slightly bluer than the mean locus,suggest-ing that they might represent higher or lower metallicities with respect to the mean of the red giants in the UMi dSph galaxy.Data of two additional reference stars(BD +30?2611and HD216143)were obtained on2001June3 using the same instrumental setup.These reference stars were selected from a list of well studied and relatively bright metal de?cient giant stars(Burris et al.2000).All of our reference stars are cooler than4500K in T e?,have log g values smaller than1.0,and their metallicity,[Fe/H], range from-1.4to-2.5.

The echelle grating of this spectrograph is a mosaic of two31.6gr mm?1gratings,and the dispersion is1?A mm?1at4300?A.The detector is a mosaic of two4k

x2k EEV CCD’s with13.5μm pixels.We used a slit width of1”.0(0.5mm)and the2x2binning mode,which enabled us to achieve a spectral resolution of about45000 by a3.5pixels sampling.Technical details and the per-formance of the spectrograph are described in Noguchi et al.(2002).Our observations covered the wavelength re-gion from4400?A to7160?A with a gap between5720–5800?A.Multiple exposures of1800sec were obtained for our target stars.The journal of our observation is given in table1.For?at-?elding of the CCD data,we obtained Halogen lamp exposures(?at images)with the same setup as that for the object frames.

The reduction of two-dimensional echelle spectral data(bias subtraction,?at-?elding,scattered-light sub-traction,extraction of spectral data,and wavelength calibration)was performed using the IRAF software package in a standard manner.Spectral data extracted from multiple object images were averaged in order to improve the signal-to-noise(S/N)ratio.The wavelength calibration was done using the Th-Ar comparison spectra obtained during the observations.The measured FWHM of the weak Th lines is0.13?A at6000?A,and the resulting resolution is around46000.The S/N ratios of the resulting spectra were measured at several continuum windows between6100?A and6200?A.The averaged S/N ratio(per pixel)ranges from50to60for three UMi stars.Those of the comparison stars are between190 and360in the same wavelength region.Measurements of radial velocities of three UMi stars were carried out using the D lines of Na i.All three UMi stars show large negative velocities(ranging from-235to-255km s?1), consistent with the mean value of the six UMi stars given in Shetrone et al.(2001).

In order to illustrate the quality of our data,a small sec-tion of the spectra of three target stars together with three reference stars covering the region between6160?A and 6171?A is shown in?gure3.In this region,we?nd?ve Ca i lines as well as a Na i line at6160.75?A.Additionally, we?nd a Pr ii line at6165.89?A in cos82and cos347, which is not visible in the reference stars.We identify an Er ii line at6170.06?A in cos82.On the other hand, we notice only one line(Ca i6162.18?A)in cos4,which suggests that the star is very metal de?cient.

No.]Abundances in the UMi Dwarf Galaxy3

3.Abundance Analysis

3.1.Line Identi?cation and EW Measurement

In order to prepare a list of absorption lines to be used in abundance analyses,we?rst registered all symmetric and clean lines observed in the spectrum of the reference star BD+30?2611between4600and7100?A.We do not use the spectral region below4600?A,because the SN ra-tio of the data of UMi stars become very low in the re-gion.Next,we tried to?nd unblended absorption lines consulting the line list of Kurucz and Bell(1995).In the process,we use the spectrum synthesis program SPTOOL developed by Y.Takeda(private communication)which incorporates the line list and can simulate any required spectral segment using an appropriate model atmosphere for any combination of assumed abundances.As a re-sult,we prepared a list of about700clean absorption lines which includes27chemical elements(from O to rare earths).The list contains260Fe i lines together with many lines of other iron peak elements such as Cr i and Ni i.Nine rare earth elements(from La to Er)are in-cluded in the list.Then,we examined the spectra of three UMi stars comparing with the list of BD+30?2611and selected lines to be measured in each star.In this process, we noticed that lines of heavy rare earth elements(Eu, Gd,Dy,and Er)are extraordinarily strong in cos82as illustrated in?gure3.Shetrone et al.(2001)found a very large abundance of Eu in this star(star199in their table 4C),but no abundances were reported for Gd,Dy,and Er.Equivalent widths were measured with the program SPTOOL using a Gaussian?tting technique.Equivalent widths measured in the present analysis for two stars(cos 347and HD216143)are compared with published data in ?gure4.For cos347,our results are compared with those given in Shetrone et al.(2001).Results for HD216143 are compared with data given in Johnson(2002).In both cases,we can?nd no systematic trend or o?set.The scat-ter in the comparison of cos347is very large compared to that in the case of HD216143.The di?erence clearly demonstrates the e?ect of the S/N ratio on the equivalent width measurements.

3.2.Atmospheric Parameters and the Fe Abundance Atmospheric parameters(T e?,log g,ξt,and[Fe/H])for each program star have been determined spectroscopically based on the equivalent widths for a set of selected Fe I and Fe II lines.We use in the present analyses those lines listed in the tables of critically evaluated log gf values given in Lambert et al.(1996).Measured equivalent widths of Fe I and Fe II lines used in the analyses are given in table2.Interpolating model atmospheres given in Kurucz(1993),we tried to?nd a solution for each star which satis?es the following three requirements simultaneously.

(1)the abundances derived from selected Fe I lines should not show any dependence on the lower excitation potential(χ)(excitation equilibrium),

(2)the averaged abundances derived from Fe I and Fe II lines should be equal(ionization equilibrium),and (3)the abundance derived from Fe I lines should show no dependence on the equivalent width(matching of the shape of the curve-of-growth,i.e.,independence on the equivalent widths).

For each of our target and reference stars,we constructed diagrams such as shown in?gure5(for HD216143)and?gure6(for cos4)in order to examine the relations between the Fe abundance and the observed equivalent widths and the lower excitation potential (χ).We repeated calculations changing the relevant parameters until we obtain a satisfactory ful?llment of the above three requirements.In the process,we used only those lines with equivalent widths smaller than200 m?A for each star.Resulting parameters for six stars are summarized in table3.Uncertainties in T e?,log g, andξt are estimated from these diagrams,while that in [Fe/H]is the rms scatter in the derived abundances.We list previously published data of atmospheric parameters for?ve stars in https://www.doczj.com/doc/2812441062.html,paring these two tables, we generally?nd good agreements in the obtained Fe abundances.Shetrone et al.(2001)obtained parameters (T e?,log g,ξt,and[Fe/H])for the two common stars in the UMi dSph galaxy(cos82and cos347)using nearly the same method as in our analysis.Their results are in agreements with ours within the expected errors including the reference star M92-III-13.

We?nd that one of the UMi stars,cos4,is very metal poor([Fe/H]=?2.7).This star is analysed for the?rst time in our analysis.This is the most metal–poor star found in UMi to date.Shetrone et al.(2001) found similarly metal–de?cient stars in Draco(star119, [Fe/H]=?2.97)and Sextans(S49,[Fe/H]=?2.85)dSph galaxies.There is no object with such a low metalliciy in Carina,Sculptor,Fornax,and Leo I dSph galaxies anal-ysed by Shetrone et al.(2003).Thus,the UMi star cos 4is one of the lowest metallicty objects found in dSph galaxies so far.

3.3.Elemental Abundances

Abundances of elements other than Fe have been ob-tained starting from the list of unblended lines prepared for BD+30?2611.Only those lines for which we can?nd reliable data of transition probabilities(log gf values)were selected from this list to be used in abundance analyses. Generally,we prefer to use log gf values given in the home page of NIST Atomic Spectra Database of the National Institute of Standards and Technology(NIST2003),or in the VALD atomic line database(Kupka et al.1999). When we can?nd data in both sources,we use data given in the NIST database.For Si and several heavy elements, we use new log gf values found in recent papers.We use log gf values given by Bodaghee et al.(2003)for Si I,Lawler et al.(2001a)for La II,Bi′e mont et al.(2002)for Ce II, Bi′e mont et al.(1989)for Sm II,and Lawler et al.(2001b) for Eu II.

Measured equivalent widths of absorption lines other than Fe are listed in table5together with adopted log

4K.Sadakane et al.[Vol.,

gf values and their sources.Averaged abundances of26 elements in our six target stars are summarized in table 6.

3.3.1.Light Elements

For the light element Na,we use equivalent widths of two subordinate lines(5682.63?A and5688.21?A)and the D lines to obtain the abundances.The damping con-stants of the D lines are taken from the VALD atomic line database(Kupka et al.1999).In cos4and cos82, we could use only the D lines,because the subordinate lines were found to be too weak.The derived abundances of Na([Na/Fe])in our target stars are generally nega-tive(under–abundant)except for the reference star M92-III-13.In cos82,we?nd a signi?cant underabundance of Na,[Na/Fe]=?1.11.The abundances of Mg are ob-tained from only one line of Mg I at5528.41?A.The re-sulting abundance of Mg([Mg/Fe])ranges from+0.4to +0.7dex in the reference stars,while it ranges from+0.1 to+0.4dex in three UMi stars.Thus,we?nd a slight under–abundance of Mg in UMi stars when compared to our reference stars.We use two weak lines of Si I to ob-tain the abundance of Si.For these lines,we adopt re-cently published solar log gf values given in Bodaghee et al.(2003).The resulting abundances of Si([Si/Fe])show solar values except for cos4,in which we?nd an over–abundance,[Si/Fe]=+0.66.Considering the weakness of the Si I lines and the relatively poor S/N ratio for cos4, the apparent over–abundance of Si in this star should be interpreted with caution.For Ca,we measured equiva-lent widths of at least12Ca I lines.The resulting abun-dances of Ca([Ca/Fe])in UMi stars show no signi?cant di?erences from the reference stars.Shetrone et al.(2001) noted that all their sample stars belonging to three dSph galaxies show a statistically signi?cant under–abundances of Mg and Ca when compared with Galactic halo stars with the same metallicity.They obtained a mean value of [α/Fe]of+0.13±0.04for UMi dSph stars.They noted that the mean value of[α/Fe]for halo?eld stars over the same metallicity range is+0.28±0.02dex.We ob-tained from our three UMi stars a mean value of[α/Fe] to be+0.16,which is nearly coincident with the result of Shetrone et al.(2001)

3.3.2.Iron Peak Elements

For V,Cr,Co,and Ni,our results of abundances ([X/Fe])in three UMi stars do not show signi?cant dif-ferences from the three reference stars.The abundances of Mn are determined from equivalent widths of nine Mn I lines.We?nd that the Mn I lines are strikingly weak in cos4.In?gure7,we compare the strongest line of Mn I in cos4,cos347,and BD+30?2611.The Mn I line at 5394.68?A is fairly strong in the latter two objects,while the line is invisible in cos4.Assuming an upper limit of the equivalent width of the Mn I line to be10m?A,we estimate the upper limit of the abundance of Mn in cos 4to be[Mn/Fe]≤?0.70.The abundance of Mn found in cos4is lower than in any other dSph stars analysed by Shetrone et al.(2001).We can?nd no dSph object which shows such a low abundance of Mn in Shetrone et al.(2003),either.

The abundances of Cu are obtained from the Cu I line at 5105.54?A.The Cu I line in cos4is compared with those observed in cos347and BD?+302611in?gure8.We?nd that the Cu I line at5105.54?A is invisible in cos4.From an estimated upper limit of the equivalent width(10m?A) of the line,we obtain the upper limit of the Cu abun-dance in cos4to be[Cu/Fe]≤?0.76.The upper limit of Cu found for cos4is among the lowest values found in Shetrone et al.(2001).

3.3.3.Heavy Elements

From the measured equivalent widths of two Y II lines, we?nd a low abundance of Y in cos4,[Y/Fe]=?0.56. The abundances of Y found in cos82and in cos347are in agreement with results given in Shetrone et al.(2001). We obtain a high abundance of Zr in cos82from the Zr II line at5112.28?A.No data of the Zr abundances in dSph stars are given in Shetrone et al.(2001),nor in Shetrone et al.(2003).The abundances of Zr([Zr/Fe])in three reference stars are found to coincide with the solar value. We use three Ba II lines in deriving the abundances of Ba.The Ba II line at6496.90?A in three stars(cos4,cos 82and cos347)is compared with that in the reference star BD?+302611in?gure9.We notice that the Ba II line is very weak in cos4.The resulting abundance of Ba in cos4is[Ba/Fe]=?1.28,which is the lowest abundance of Ba in all dSph stars analysed by Shetrone et al.(2001). Absorption lines of nine rare earth elements(La through Er)have been surveyed in our three dSph stars.We could identify and measure only two weak lines of Nd II in cos 4.On the other hand,we identi?ed absorption lines of heavy rare earths Gd(Z=64),Dy(Z=66),and Er(Z =68)in cos82.Figure10shows the identi?cation of the Dy II line at5090.39?A in cos82.Although the Dy II line is weakly visible in the reference star BD+30?2611,the line is extraordinally stong in cos82.Each three Gd II and Er II lines are clearly identi?ed in cos82,and abundances of these heavy rare earth elements have been determined for the?rst time in this star.

For several odd–Z rare earth elements such as La,Pr and Eu,we have to take the e?ects of hyper–?ne splitting (hfs)into account in abundance determinations.Data of hfs for La II,Pr II,and Eu II lines were provided by Lawler et al.(2001a),Aoki et al.(2001),and Lawler et al.(2001b), respectively.For each line of these elements,we computed curves of growth with and without the e?ect of hfs for each target star.Then,the necessary correction factors have been evaluated and applied to each line to obtain the ?nal abundances.When a line has a large splitting and large observed equivalent width(stronger than120m?A),

a correction factor as large as?0.9dex has to be applied.

4.Discussion

Two stars(cos82=199;cos347=297)are common in Shetrone et al.(2001)and our sample.Both analy-ses give very similar abundances for iron andα–elements

No.]Abundances in the UMi Dwarf Galaxy5

and show no sign of systematic di?erence,con?rming ba-sic results of Shetrone et al.(2001),although the signal–to–noise ratio are not exactly the same.In?gure11, [Ca/Fe]and[Mn/Fe]for three stars(cos4,cos82,cos 347)are plotted against[Fe/H],together with four stars (177,K,O,168)taken from Shetrone et al.(2001).We ?nd that[Ca/Fe]of UMi dSph stars are systematically lower than Galactic metal-poor stars at[Fe/H]

Mn is supposed to come from SNe Ia(e.g.,Nakamura et al.1999),thus its abundance would provide a crucial test for distinguishing the two cases given above.We?nd that both cos82([Mn/Fe]=?0.15)and cos347([Mn/Fe]= +0.05)show noticeable enhancement of Mn with respect to the Galactic halo stars of similar metallicity,which may suggest that SNe Ia had contributed already signi?cantly at this early stage of chemical enrichment.We should point out that cos4is enriched in Mg([Mg/Fe]=0.31), Si([Si/Fe]=0.66),and Ca([Ca/Fe]=0.21),while show-ing considerably low Mn abundance([Mn/Fe]

If the star formation has been ine?cient as suggested by Ikuta and Arimoto(2002),the chemical enrichement in Ursa Minor dSph,or in dSph galaxies in general,might have been inhomegeneous and the observed stars may re-?ect the local enrichement due to particular supernovae exploded in the vicinity of these stars.We have com-pared the abundance patterns of cos4,cos82,and cos 347from Mg to Zn with metal-poor stars(?2<[Fe/H]?1). The abundance patterns from Mg to Zn suggest that SNe Ia had already contributed signi?cantly to the enrichment before cos82and cos347were formed.We therefore ten-tatively conclude that the three stars we observed were not a?ected by local supernovae explosions,instead they all keep the record of global enrichment history of Ursa Minor dSph.

Figure12shows relative abundances of neutron capture elements(Y through Er)in the heavy element-enhanced stars cos82([Eu/Fe]=0.97)and cos347([Eu/Fe]=0.61). We compare the observed abundance patterns with the solar–system r–process and s–process abundance patterns. We take the total solar–system abundances from Grevesse and Sauval(1998)and use the r–process and s-process fractions in the solar–system given by Burris et al.(2000). Surprisingly,we?nd that the general features of heavy rare earth elements agree quite well with the scaled so-lar system r–process abundance curve.The agreement of the abundance pattern with that of the solar system r–process component was already suggested by Shetrone et al.(2001),but our study clearly con?rms this includ-ing the heavier elements Gd,Dy,and Er.This implies that the heavy rare earth elements of these stars are of r–process origin,and the contribution from the s–process is still considerablly small,even though the metallicities of these stars are remarkablly high.The abundance pat-terns of heavy rare earth elements are very close to that of Galactic metal-poor stars,in particular,we?nd the ratio [Ba/Eu]=?0.59and?0.43for cos82and cos347,respec-tively,again showing that the ratios are clearly associated with the r–process(as is shown in McWilliam(1998)), rather than the s–process,although the contribution from the s–process may not be negligible in cos347.

The abundance patterns of individual elements prevent us from deriving a fully consistent picture of chemical en-richement in the Ursa Minor dSph galaxy:low abundances ofα–elements and high abundance of Mn imply a signif-icant contribution from SNe Ia(lifetime of the progenitor ~109yrs)at low metallicity([Fe/H]

6K.Sadakane et al.[Vol.,

years.Unfortunately,very small number of observed stars prevents us from further analysis.A systematic study of extremely metal-de?cient stars([Fe/H]

5.Summary

Our main?ndings concerning the abundances of the three UMi dSph stars are as follows.

1.We?nd a very metal poor star cos4in which Fe is

more under–abundant than other stars in the UMi

dSph analysed so far.

2.In cos4,we?nd that three elements Mn,Cu and Ba

are extra–ordinally de?cient.The underabundance

of Mn implies that SNe Ia had little contribution in

this star.Y appears to be under–abundant in this

star,too.

3.We?nd that the light element Na is signi?cantly

under–abundant in cos82.

4.Abundances ofαelements(especially Ca)in cos82

and cos347are found to be lower,while that of Mn

in these two stars to be higher than the correspond-

ing values in Galactic metal poor stars.

5.At the same time,we?nd large excesses of heavy

neutron-capture elements in these two stars with the

general abundance pattern similar to the scaled solar

system r–process abundance curve.

These results appear to be rather puzzling:low abun-dances ofα–elements and high abundance of Mn seem to sugggest a signi?cant contribution of SNe Ia at[Fe/H]=?1.5,while there is no hint of s–process(i.e.,AGB stars) contribution even at this metallicity,probably suggesting a peculiar nucleosynthesis history of the UMi dSph galaxy. We thank Dr. A.Schweizter for providing us with unpublished data of proper motion and photometry of the UMi dSph and also thank all sta?members of the Subaru telescope,NAOJ,for their help during the obser-vation.Thanks are also due to M.Ohkubo for her help in preparing the manuscript.This research was partly sup-ported by a Grant-in-Aid,No.13640230(to N.A.)and No.15540236(to K.S.)from the Ministry of Education, Culture,Sports,Science and Technology,Japan.

References

Aoki,W.et al.,2001,ApJ,561,346

Bi′e mont,E.,Grevesse,N.,Hannaford,P.,&Lowe,R.M.1989, A&A,222,307

Bi′e mont, E.,Palmeri,P.,&Quinet,P.2002, http://www.umh.ac.be/astro/dream.shtml Bodaghee,A.,Santos,N.C.,Israelian,G.,&Mayor,M.2003, A&A,404,715Bonifacio,P.,Hill,V.,Molaro,P.,Pasquini,L.,Di Marcantonio,P.,&Santin,P.2000,A&A,359,663 Bonifacio,P.,Sbordone,L.,Marconi,G.,Pasquini,L.,&Hill, V.2004,A&A,414,503

Burris,D.L.,Pilachowski,C.A.,Armandro?,T.E.,Sneden,

C.,Cowan,J.J.,&Roe,H.2000,ApJ,544,302 Carretta,E.,&Gratton,R.G.1997,A&AS,121,95 Cayrel,R.et al.2004,A&A,416,1117

Cudworth,K.M.,Olszewski,E.W.,&Schommer,R.A.1986, AJ,92,766

Edvardsson,B.,Andersen,J.,Gustafsson,B.,Lambert,D.L., Nissen,P.E.,&Tomkin,J.1993,A&A,275,101 Francois,P.1996,A&A,313,229

Fulbright,J.P.2000,AJ,120,1841

Gratton,R.G.1989,A&A,208,171

Gratton,R.G.&Sneden,C.1988,A&A,204,193 Gratton,R.G.&Sneden,C.1991,A&A,241,501 Gratton,R.G.&Sneden,C.1994,A&A,287,927 Grevesse,N.&Sauval,A.J.1998,Space Science Reviews,85, 161

Ikuta,C.&Arimoto,N.2002,A&A,391,55

Johnson,J.A.2002,ApJS,139,219

Kupka,F.,Piskunov,N.,Ryabchikova,T.A.,Stempels,H.C., &Weiss,W.W.1999,A&AS,138,119

Kurucz,R.L.1993,Kurucz CD-ROM,No.13(Harvard-Smithsonian Center for Astrophysics)

Kurucz,R.L.&Bell, B.1995,Kurucz CD-ROM,No.23 (Harvard-Smithsonian Center for Astrophysics)

Lawler,J.E.,Bonvallet,G.,&Sneden,C.2001a,ApJ,556, 452

Lawler,J.E.,Wickli?e,M.E.,den Hartog,E.A.,&Sneden,

C.2001b,ApJ,563,1075

Lambert,D.L.,Heath,J.E.,Lemke,M.,&Drake,J.1996, ApJS,103,183

McWilliam,A.1998,AJ,115,1640

McWilliam,A.,Preston,G.W.,Sneden,C.,&Searle,L.1995, AJ,109,2757

Mishenina,T.V.,&Kovtyukh,V.V.2001,A&A,370,951 Nakamura,T.,Umeda,H.,Nomoto,K.,Thielemann,F.-K., Burrows,A.1999,ApJ,517,193

NIST2003,https://www.doczj.com/doc/2812441062.html,/PhysRefData/contents-atomic.html

Nissen,P.E.,&Schuster,W.J.1997,A&A,326,751 Noguchi,K.,et al.,2002,PASJ,54,855

Pilachowski,C.A.,Sneden,C.,&Kraft,R.P.1996,AJ,111, 1689

Shetrone,M.D.1996,AJ,112,1517

Shetrone,M.D.,Bolte,M.,&Stetson,P.B.1998,AJ,115, 1888

Shetrone,M.D.,Cote,P.,&Sargent,W.L.W.2001,ApJ, 548,592

Shetrone,M.,Venn,K.A.,Tolstoy,E.,Primas,F.,Hill,V.,& Kaufer,A.2003,AJ,125,684

Smecker-Hane,T.,&McWilliam,A.1999,in ASP Conf.Ser.

192,Spectrophotometric Dating of Stars and Galaxies,ed.

I.Hubeny,S.R.Heap&R.H.Cornett(San Fransisco,

ASP),150

Sneden,C.,Gratton,R.G.,&Crocker,D.A.1991,A&A,246, 354

Sneden,C.,Pilachowski,C.A.,&Kraft,R.P.2000,AJ,120, 1351

Stephens,A.1999,AJ,117,1771

Tolstoy,E.,Venn,K.A.,Shetrone,M.,Primas,F.,Hill,V., Kaufer,A.,&Szeifert,T.2003,AJ,125,707

No.]Abundances in the UMi Dwarf Galaxy7 Tsujimoto,T.,&Shigeyama,T.2002,ApJL571,L93

8K.Sadakane et al.[Vol.,

Table1.Observational Log.

Object V B?V Exposure Obs.Date SN(per pixel)

(Min.)(at6100?A)

Table2.Equivalent widths of Fe i and Fe ii lines.

ion Wevelengthχlog gf cos4cos82cos347BD+30?2611HD216143M92-III-13

(?A)(eV)

No.]Abundances in the UMi Dwarf Galaxy9

Table2.continued.

ion Wevelengthχlog gf cos4cos82cos347BD+30?2611HD216143M92-III-13

(?A)(eV)

Table3.Atmospheric parameters.

Object T e?log gξt[Fe/H]

(K)(km s?1)

10K.Sadakane et al.[Vol.,

Table4.Previously published atmospheric parameters.

Object T e?log gξt[Fe/H]Reference*

(K)(km s?1)

*References:1.Francois(1996),2.Pilachowski et al.(1996),3.Shetrone(1996),4.Fulbright(2000),5.Burris et al.(2000),6.Mishenina and Kovtyuk(2001),7.Johnson(2002),8.Carretta and Gratton(1997),9.Shetrone et al.(1998),10Sneden et al.(2000),11.Shetrone et al.(2001)

No.]Abundances in the UMi Dwarf Galaxy11

Table5.Equivalent widths of other elements.

ion Wevelengthχlog gf Ref cos4cos82cos347BD+30?2611HD216143M92-III-13 (?A)(eV)

12K.Sadakane et al.[Vol.,

Table5.continued.

ion Wevelengthχlog gf Ref cos4cos82cos347BD+30?2611HD216143M92-III-13 (?A)(eV)

No.]Abundances in the UMi Dwarf Galaxy13

Table5.continued.

ion Wevelengthχlog gf Ref cos4cos82cos347BD+30?2611HD216143M92-III-13 (?A)(eV)

14K.Sadakane et al.[Vol.,

Table5.continued.

ion Wevelengthχlog gf Ref cos4cos82cos347BD+30?2611HD216143M92-III-13 (?A)(eV)

References:1.NIST(2003)2.Kupka et al.(1999)3.Bodaghee et al.(2003)https://www.doczj.com/doc/2812441062.html,wler et al.(2001a)5.Bi′e mont et al.(2002)6.Bi′e mont et al.(1989)https://www.doczj.com/doc/2812441062.html,wler et al.(2001b)

No.]Abundances in the UMi Dwarf Galaxy15

Table6.Abundances in Target Stars.

cos4cos82cos347

S.D.N S.D.N S.D.N

Table6.continued.

BD+30?2611HD216143M92-III-13

S.D.N S.D.N S.D.N

16K.Sadakane et al.[Vol.,

Fig.1.A map of the sky area containing three target stars cos4,cos82,and cos347.The?gure is centered at R.A.(2000) 15h09m10.s0and Dec(2000)+67?12′52′′.

No.]Abundances in the UMi Dwarf Galaxy17

Fig.2.B-V color-magnitude diagram for the UMi dSph.Only stars with the membership probability higher than90%are plotted on the?gure.Diamond marks represent the RGB stars for which we took spectra.Photometric data and membership probability are taken from a catalogue prepared by A.Schweitzer(private communication).

18K.Sadakane et al.[Vol.,

Wavelength (?)

N o r m a l i z e d I n t e n s i t y

Fig.3.A small portion of the observed spectra of target stars.Strong lines of Ca i are identi?ed for the reference star BD +30?2611.Unusually strong lines of heavy rare earth elements Pr and Er are identi?ed in cos 82.In cos 4,only one line (Ca i 6162?A )can be

No.]Abundances in the UMi Dwarf Galaxy 19

HDS

E .W . (m ?)J o h n s o

n E.W. (m?)E.W. (m?)E .W .S C S (m ?)

HDS https://www.doczj.com/doc/2812441062.html,parisons of observed equivalent widths.Our measurements are compared with results given in Shetrone et al.(2001)

for cos 347(upper panel)and those given in Johnson (2002)for HD 216143(lower panel).

20K.Sadakane et al.[Vol.,

(eV)

A (F e )

E.W. (m?)

A (F e )

Fig.5.Analyses of Fe i and Fe ii lines in HD 216143.The relations between A (Fe)and the equivalent widths (upper panel)and those with the lower excitation potential (lower panel)are displayed.The Fe i and Fe ii lines are denoted by ?lled circles and plus

捷安特自行车参数

FCR 3700---3998-4200 注意颜色和车架大小 尺寸: 700Cx430MM/700Cx480MM 车架: GIANT 新款700C铝合金6011S车架,, 前叉: HEAD SHOCK避震前叉 变速系统: SHIMANO components 27S 刹车系统“V”刹系统(带快速拆卸功能的夹器导管) 轮组:培林700C 轮组 轮胎: HUTCHINSON 700X32C轮胎 其他: SHIMANO 大齿盘(带集成中轴设计),GIANT TWINS铝合金横把、竖杆、座垫杆BK,ALEX 700C圈,运动舒适型座垫,带铝环GIANT把套,培林脚踏,整车配色备注: 产品、规格、颜色以实车为准,本公司保留变更权利,恕不另行通知 2010 FCR 3500----3000 注意颜色和车架大小 尺寸:700Cx430MM/700Cx480MM 车架:GIANT 10’款铝合金平把公路车车架 前叉:Head shock 铝合金前叉 变速系统:SHIMANO COMPONENTS 变速系统27S 刹车系统:“V”型夹器刹车系统 圈:700C双层铝合金圈 轮胎:建大700X28C轮胎 其他:SHIMANO大齿盘;无牙隐藏式车首零件,铝合金横把、竖杆和座垫杆,舒适座垫,铝合金快拆式花鼓 备注:产品、规格、颜色以实车为准,本公司保留变更权利,恕不另行通知 TROOPER 3500(帝柏3500)2800---3000 注意颜色和车架大小棕色 尺寸:700C×18M 车架:GIANT设计铝合金碟刹版车架 前叉:700C避震前叉大齿盘:SHIMANO FC-M191 28T/38T/48T 齿盘 变速系统:SHIMANO ALIVIO 24S(FD-M412,RD-M410,SL-M410) 刹车系统:彦豪机械式碟刹 轮圈:700C双层铝合金圈 花鼓:SHIMANO DEORE花鼓 轮胎:MICHELIN轮胎700×40C 其他:培林式主轴,铝合金零件SIL,无牙式车首零件SIL,铝合金蝴蝶把喷沙SIL,防漏内胎,铝合金双支撑停车架,维乐座垫,标配铝合金前货架、后货架及高分子复合材料泥除 捷安特FCR3500 和3700的区别以及性价比- 满意答案好评率:0% 两款车子的价格相差2000快左右3700跟3300的配置来说相差的是3700的变速比3300稍微好些是SORA27速 3300虽然也是SORA的但是是18速前面只有两个齿盘第二个明显的区别是3700有避震前叉公路用的减震叉子 骑行的效果更舒适最后就是3700的三轴都是轴承的3300的前后轴不是轴承还有类似指拨等变速系统的区别不是很明显可以不考虑 外胎也是3700好一些车把3300是羊角吧3700是直把性价比来说的话是3300要高些但是舒适度跟骑行的感觉是3700比较好评价答案

捷安特的精益历程

捷安特的精益历程 捷安特公司 全球每六秒钟,就有一辆捷安特自行车或电动车被售出。为了实践让消费者快乐骑乘的承诺,从原料采购到生产过程,全面的检测体系和包装配送,通路管理到销售服务,无不追求精益求精,持续改善,为顾客创造更好的价值。 1992年,捷安特来到中国大陆,在中国经济最发达的长三角地区,昆山经济技术开发区,设立了捷安特中国有限公司。这是台湾捷安特公司投资一亿美元在全球设立的第六家投资企业。 以丰田为师,植入改善基因 捷安特从1970年代末期就开始学习丰田式管理。但是之前总是一知半解,跌跌撞撞的摸索、学习。只学到应用工具,没有学到真正的精神。比如捷安特开始实施之初,发现一个问题明明之前已经改善了,但不久后有出现,仔细探索发现原因在初期没有掌握系统化分析问题,没有找到真正的问题原因及源头。也就是一旦发现问题,必须从源头开始分析资料,不断的追根究底,以找出真正核心问题的做法。2000年,在工业局、中卫发展中心及国瑞汽车的协助之下,捷安特才真正打通TPS的任督二脉。

学习丰田是对管理层的一种挑战,不能只学习丰田成功的手法,却不知道背后成功的真正意涵。换言之,丰田的持续改善、彻底消除浪费、零库存、等精神还是一样,但是使用的工具手法如看板管理、JIT(Just InTime)、自动化等耳熟能详的丰田式管理,就不能一样画葫芦,照单全收了。应该依照行业个别的特性,在执行时做适当的调整。 举例而言,自行车是零件品项少,但是种类繁多;汽车则是零件品项多,但种类相对少的工业。两者在生产流程的安排上,自然就会有所不同。丰田百分之一百使用后补充的生产模式,这套流程在自行车产业就很难行得通。自行车因为车型太多所以零件繁多,厂商也多,有很多是客户指定或客户自设的零件,不像汽车业可以不用换零件,一道工序接着一道。捷安特调整后的“顺序后补充“的生产模式,目的是告诉作业员下一轮的车型以及使用的零件。 捷安特仿效TPS演绎出一套符合自行车行业的GPS(Giant Production System)。GPS的精神是随时否定现状,通过持续不断的改善,随时随地找出可以把事情做得更好的方法。以平准化的排程为基础,及时化的顺序后补充系统与自动化的品质停线为两大支柱。建立起有思想及有自律神经的生产线。同时透过PDCA管理循环来训练人才与团队合作。 捷安特各地制造厂的系统流程是复制台湾母厂的GPS经验,不过为了适应当地的产业环境及生产特性会有些许的差异。捷安特中国

捷安特塔龙系列参数图

GIANT捷安特台湾原产2012 TALON1 山地自行车27速油碟 品牌:捷安特型号:2012 TALON1 材质:铝合金车 用途:山地车 尺寸规格:26 英寸 车架结构:整体车 是否折叠:否 本公司供应自行车,品牌捷安特,型号2012 TALON1。参数为:材质:铝合金车,用途:山地车,尺寸规格:26,车架结构:整体车,是否折叠:否。质量保证,欢迎咨询洽谈。 品牌: Giant/捷安特 FRAME/车架 尺寸XS/S/M/L 颜色黑/银/白,白/黑/红 车架Giant ALUXX aluminium, 液压成型 前叉Rock Shox XC30 100mm Turnkey线控锁死 后避震器N/A Components/组件 车把Giant Connect, low rise 31.8 车首竖杆Giant Connect 座垫杆Giant Connect, 375x30.9 座垫Giant Cross Trail, D2 脚踏Giant platform Drivetrain/传动系统 变速把手Shimano Deore 27速 前变速器Shimano Deore

后变速器Shimano SLX shadow 刹车Avid Elixir 1, [F] 180mm [R] 160mm 刹车把手Avid Elixir 1 飞轮Shimano HG50 11-34 链条KMC X9 大齿盘Shimano M430 Octalink 44/32/22 主轴Shimano Octalink Wheels/轮组 轮圈Giant CR70 双层 花鼓Giant S-Elite 钢丝Black Stainless steel 14G 轮胎MAXXIS CROSSMARK, 26x2.1

捷安特山地自行车参考价格表

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 捷安特山地自行车参考价格表 ATX系列山地车 ATX 660 1098元 ATX 670 1198元 ATX 680 1298元 ATX 690 1398元 ATX 740 1598元 ATX 750 1698元 ATX 755 1998元 ATX 760 2998元 ATX 770 1998元 ATX 775 2998元 ATX 780 5998元 ATX 790 2998元 ATX PRO 1998元 ATX ELITE 2598元 ATX 830 4998元 ATX 870 7998元 其他系列山地车

熔岩(LAVA)530 698元 熔岩(LAVA)550 798元 熔岩(LAVA)660 998元 熔岩(LAVA)630 1198元 尖叫(SCREAM) 698元 激活(SPRY)-1 1198元 激活(SPRY)-2 998元 激活(SPRY)II代 1598元 风云 1098元风云-1 898元 优肯(UCAN)-1 1298元 优肯(UCAN)-2 998元 优肯(UCAN)-3 898元 优肯(UCAN)-4 748元 克洛克(CROCK)-1 2998元 捷安特公路车报价表 1.捷安特SPEED-X 798元 2.捷安特SPEED-LX 998元 3.捷安特风标-2 1298元 4.捷安特风标-1 1598元 5.捷安特风标-x 1598元 6.捷安特风标 2998元 7.捷安特OCR II 1898元 8.捷安特OCR 3300 1898元

9.捷安特OCR 3500 2598元 10.捷安特OCR 22288元 11.捷安特TEAM REPLICA 6998元 12.捷安特FCR-1 9100元 13.捷安特TCR AERO-1 26000元 14.捷安特TCR COMPOSITE-1 28388元 15.捷安特TCR COMPOSITE-2 24180元 16.捷安特TCR C1 361000元 17.捷安特TCR C3 15500元 捷安特自行车价格表如下: 1.捷安特99戴安娜 26X16L 浅槟黄 370元 2.捷安特2000艾丽斯 26X16L 银粉红 395元 3.捷安特2000艾丽斯24 24X15L 荷橙 395元 4.捷安特2001追逐者 24X16M 亮银兰 798元 5.捷安特2001喜美—M 26X18M 亮黑/珍珠蓝 316元 6.捷安特2001丘比特—M 26X17M 亮蓝/亮银 998元 7.捷安特2001丘比特—L 26X15.5L 浅兰/亮银 998元 8.捷安特2001柯洛克 26X19M 亮黑/棕红/美芒黄 1998元 9.捷安特2001柯洛克—1 26X19M 亮黑/水晶绿/珍珠钛白 2998元 10.捷安特艾丽斯26—铝 26X16L 法国兰 698元 11.捷安特艾丽斯24—铝 26X15L 法国兰 698元 12.捷安特ATX680 26X16.5M 丽面兰/亮黑 1198元 13.捷安特ATX660 26X13M 浅兰/珍珠钛白 998元

捷安特ATX系列参数对比

FRAME/车架 尺 寸 26X15.5M/17M/19M/21M 颜 色 亮白/涂鸦绿 车 架 GIANT ALUXX 车架 前叉TWINS-3 MLO 铝合金机械锁死避震前叉 Components/组件 车把GIANT 铝合金 31.8横把座垫杆GIANT BUTTED座垫杆 座垫SELLE ROYAL座垫 Drivetrain/传动系统 变速 把手 ST-EF65 前变 速器 SHIMANO FD-M310 后变 速器 SHIMANO RD-M410 刹车GIANT TWINS DA5N 双边作动机械碟刹 大齿盘GIANT TWINS 铝合金锻造22/32/42大齿盘 Wheels/轮组 轮圈双层铝合金轮圈 花鼓GIANT 花鼓 轮胎正新 26X1.9 27TPI山地车轮胎 FRAME/车架 尺 寸 26X15.5M/17M/19M/21M 颜 色 亮黑/金属灰 车 架 GIANT ALUXX 车架 前 叉 SR XCM-V3 MLO 铝合金机械锁死避 震前叉 Components/组件 座垫杆GIANT BUTTED座垫杆 座垫WTB PURE座垫 Drivetrain/传动系统 前变 速器 SHIMANO ALIVIO 套件 后变 速器 SHIMANO ALIVIO 套件 刹车SRAM SDG3 V刹 大齿 盘 GIANT TWINS 铝合金锻造 22/32/42大齿盘 Wheels/轮组 轮 圈 双层铝合金轮圈 花 鼓 GIANT 花鼓 轮 胎 GIANT SM3 26*1.95防刺 60TPI 低阻力山地车轮胎

FRAME/车架 尺寸26X15.5M/17M/19M/21M 颜色亮黑/葡萄紫 车架GIANT ALUXX 车架 前叉SR XCM铝合金避震前叉 Components/组件 车把GIANT 铝合金 31.8横把 座垫GIANT运动座垫 Drivetrain/传动系统 变速把 手 ST-EF51 前变速 器 SHIMANO FD-M310 后变速 器 SHIMANO RD-M360 刹车NOVELA 机械碟刹 大齿盘22/32/42铝合金曲柄大齿盘 Wheels/轮组 轮圈双层铝合金轮圈 花鼓GIANT 花鼓 轮胎正新 26X1.9 27TPI山地车轮胎 FRAME/车架 尺 寸 26X15.5M/17M/19M/21M 颜 色 珠黑/亮白 车 架 GIANT ALUXX 车架 前 叉 TWINS-3 TNL 铝合金油压锁死避 震前叉 Components/组件 车把GIANT 铝合金 31.8横把 座垫杆GIANT BUTTED座垫杆 座垫WTB PURE座垫 Drivetrain/传动系统 前变 速器 SHIMANO ALIVIO 后变 速器 SHIMANO ALIVIO 刹车SRAM BB7 机械碟刹 刹车 把手 FR-5 刹把 大齿 盘 GIANT TWINS COMP 22/32/42 中 空一体大齿盘 Wheels/轮组 轮 圈 意大利 VUELTA MTB-COMP 26‘’ 山地车轮组 轮 胎 MAXXIS CROSSMARK 26*1.95 60TPI 山地车轮胎

新车友们买自行车前必须知道的8个问题

《新车友们买自行车前必须知道的8个问题》 第一问:搞清楚自己的需求及选择车种、车型。 1、搞清楚自己的需求。 为什么要“搞清楚自己的需求呢?”,就是要问自己“想买一辆什么样的车”。 买自行车其实就象买鞋一样,除了要合脚,也要适应场合与功能需求。就象是在雨天要穿雨鞋,上班应穿皮鞋,运动穿运动鞋一样,根据不同的场合穿着不同的鞋,反之因为不同的场合不适合也不舒服。所以,买自行车也一样,一定要先确认自己的用途,才不会花冤枉钱又骑得不开心。 2、选择车种(车型)。 自行车的分类众多,若从入门级消费者的“使用角度”来说,以最简单的用途来看,可以将一般常见的车种粗略分为登山车、公路车、折叠车、通勤车和特殊车等。 ①登山车或叫山地车(包含:速降车、飞包车、越野和自由骑): 登山车不但有速降车、飞包车、越野和自由骑。还又分为单避震和双避震(其它帖子里都有较详细的分类与说明,这里就不一一细述了,只简单说明用途)。 速降车是从山上往下冲坡竞速用,骑平路累,不适合骑太远,对于新手来说,这里不推荐。 飞包车是玩腾空跳跃的,对新手这里也不推荐。 这里推荐的是:有舒适的避震、轻松的操控,和范围较大的齿轮比的——越野车和自由骑,是登山车中大家应该主选的车型。 ②公路车(俗称:弯把赛): 公路车也叫弯把赛,是主要的竞赛车种。历史较悠久。 弯把加上窄胎,让骑士者能尽情享受高速的快感。不过窄胎加上没有避震,操控性和舒适性都远不如登山车。

而公路车特有的弯把必须弯腰骑车也让许多人敬而远之,所以,近来平把公路车也有一定的市场。 喜欢竞速的可以选择公路车。 ③折叠车: 主要用在城市、休闲和轻度骑行。 其体积小、可折叠、方便入纳、可随时变换交通方式等是主要优点。 汽车族们可考虑常年放在后背箱中,以便汽车没油时使用(^-^)(开个玩笑);坐车或骑车或步行走路,想咋整就咋整。 ④通勤车(包含:普通民用车、旅行车): 通勤车大多由于价格相对便宜,多半附有泥瓦、链盖和货架,作为代步之用是相当方便。 普通民用车大多为铁(碳钢)制,耐用,不需更多的保养。作为短程交通代步之用,车身较重、变速少,不容易骑得太远,并不适合作为长时间的运动使用。 我这里把“旅行车”归到通勤车类,是想说“旅行车”,是通勤车中的“交通工具”车。“旅行车”是为长时间骑行而设计的,适合于一个城市到另一个城市的长途骑行,比如骑个长线、周游全国等。但“旅行车”不适合骑较虐的山地路线。 ⑤特殊车(包含:小轮车、攀爬车等): 小轮车、攀爬车等是青少年追求刺激、追求车技的车型,不适合一般车友。 以下询问,请慎重选择—— 现在请问自己:“买车的目地是什么?”是竞速、是运动、玩车技、还是交通代步。这是最重要,必须首先考虑选择的,以便确定车型…… 接着再问自己:“买完车后准备以什么样的方式骑行?”是骑行具有挑战式的山地路线、还是骑行郑开大道式的公路

购买公路自行车参考(价位1500左右)

购买公路自行车参考(价位1500左右) 网上论坛资料总结:车友强烈推荐的还是捷安特比较多。 一、捷安特: 1、FCR系列(平把公路):直把公路车,骑乘非常轻松,最关键的是变速不再前三角而在车把上。兼顾了公路车的轻松和山地车的控车。 原装正品:2012捷安特ESCAPE 2平把公路车(1498-1598) (1)FCR3100,大约1500元,骑起来非常轻快,跟队伍骑行不会落后,又有山地车的舒适性(因为是平把,不是羊角把,腰不用弯得太低)(多人推荐,淘宝上很多,1478元)(2)更好的选择是捷安特OCR 3700F(淘宝价3300-4000元,很少) 2、玛斯特123(多人推荐,淘宝上很多,858元,北京有家节日特价808元) (1)840元订货 (2)玛斯特123再用,每周六都骑车远游一次,折返都在60公里左右,半天儿时间,不累,也好维护,后车架很结实,能载人,内三速可以适应不同地形和天气,免维护,链条定期清理上油。平时上班骑,在城区也很轻巧,也不扎眼,很普通的造型 (3)玛斯特123,一辆内三速城市休闲车,大约850元,还可以载人,那个变速系统是免维护的,唯一不足就是钢架,稍重。 3、山地可以选择捷安特GIANT-680,美利达MERIDA-DUKE 公路可以选择捷安特GIANT-2500(淘宝上较多,1600-1700元),美利达MERIDA-F830 二、美利达: 1、300和500,550,300是870元,500是1150元.(北京的淘宝店,地质大学那) 2、勇士500, 1200元;300, 900元。如果楼主坚持1000元以下的车子,勇士300不错, 3、美利达r900,车把有横握刹车位,比专业公路车方便实用,但变速在前三角,不很方便。淘宝价:公爵300(1780起价-2000元),勇士300(1000元左右)勇士500(1200-1300)r900(788-838元左右,广州有特价680元,该店信誉很低) 学习一下: 1、现在很多新车友就是屌丝心态“一样的钱我干嘛不买个带减震的呢?”好像占了便宜似的,平把公路,轻快不懈力双避震的你想买没人拦你买好自己骑几天就知道多累了 2、公路车气压大,气量小,舒适度比山地稍差 3、山地车的凹凸纹轮胎并不会感觉震动,而是影响速度,但走山地苛刻路时作用大。 4、关于尺寸的问题,19寸的大了吗?我176应该骑17寸的?如果买美利达的是不是应该选18寸的? 5、在骑行中,在安静的地方听听中轴、前后轴有没有异响,刹车是否正常,前叉避震是否太硬。尽量找毛病杀价。 6、想买个自行车上下班,和平时代步,什么样的比较适合呢?是山地车好,还是普通的好,求推荐。路程大约4公里,有上下坡:毫无疑问选择公路车,可以选择代步公路。 三、千里达 ra275:950元质量好速度快属于平把公路不可高强度越野走乡间小道泥沙碎石的路没压力还能加装货架别买山寨那种双碟刹双减震的白瞎

捷安特旅行车参数图集

o捷安特自行车旅行车帝柏3500 TROOPER3500(男款 o o o o品牌: Giant/捷安特 o颜色分类: 消光灰 o货号: TROOPER COMP FRAME/车架 尺寸26*17M 颜色消光蔷薇灰/消光金属、宝石红/亚麻色 车架GIANT 2011款 26寸超轻量铝合金铝合金车架 前叉GIANT 镁合金TNL(锁死)旅行车避震前叉 后避震器N/A Components/组件 车把铝合金蝴蝶把 车首竖杆GIANT TWINS 铝合金竖杆,25.4 座垫杆铝合金坐垫杆(可调水平长度),30.9 座垫SELLE ROYAL 硅胶旅行车坐垫 Drivetrain/传动系统 变速把手SHIMANO SL-M590 前变速器SHIMANO FD-M590 后变速器SHIMANO RD-M591 刹车AVID BB5碟刹系统 刹车把手AVID FR5刹车把手 飞轮SHIMANO CS-HG61 9-SPEED 11-32T 链条KMC HG53 大齿盘PROWHEEL PRIM 22*32*44T Wheels/轮组 轮圈WTB FREEDOM 铝合金轮圈 花鼓培林铝合金快拆花鼓 钢丝不锈钢 轮胎W TB FREEDOM 26*1.5 27TPI带反光防刺轮胎

Other/其他 附件标配高分子复合材料泥除、前后铝合金货架、停车架、码表及车首灯 产品规格 车架几何 尺寸车首管角度坐管角度上管长度车首管长度R C值两轮中心距跨高厘米Degrees Degrees 厘米厘米厘米厘米厘米26*17M 71 72 59 14.5 43.5 106.36 29.44

向新手推荐几款入门级休闲运动山地车

休闲运动的范畴,山地车、公路车、折叠车、旅行车四大类型都很适合。山地车操控性好,结构坚固,骑行姿势比较帅;公路车轮细车轻速度快,在平路和好路上很占优势,骑行姿势显得专业;折叠车方便携带,外观新颖,骑行起来很时尚;旅行车朴实无华,能驮能带。下面,楼主重点向单车新手推荐几款入门级休闲运动山地车。 出于对知名大品牌的信赖,在此,楼主还是强烈推荐GIANT(捷安特)和MERIDA(美利达)两个品牌。值得说明的是,这两个品牌都是来自台湾,为世界自行车制造界知名品牌。这两个品牌的共同点是:所有的高端产品都是选择在台湾生产,其产品主要销往欧美,与世界其他国家知名自行车品牌进行竞争;而其入门级和中低端产品生产线则分别迁到了大陆的江苏昆山(捷安特)和广东深圳(美利达),这些产品主要满足国内的市场。下面推荐的入门级车型全部由其大陆生产线生产制造的。 一、车型推荐: GIANT (捷安特) ATX 755 1998元新款车,很值得推荐购买,使用了全套shimano的传动。

ATX 770 1998元,除了一个shimano的牙盘,全车没有一个日本零件。 ATX 790 2998元,超过2千很多,但是性价比超高。ATX 830 4998元,比较贵,但性能对得起它的价格,作为有钱人的入门车还算称职。 MERIDA (美利达) 勇士 998元,推荐的入门车型,好看,实用。 勇士pro 1298元,稍微有米点的推荐入门车型,几乎没啥子要改的。 公爵 1598元,性价比超高,米人一步到位的选择,推荐。 挑战者 2898元,与ATX790的档次和级别差不多。 另外,美利达还有勇士COMP、亚历山大、维多利亚几款车可以作为入门选择,价格相差不大,性价比还算不错,后面还将详细讲解。 二、选择车的档次 当然,主要是经济能力和爱好程度决定的,有人骑几百的山地一样很舒服,有人骑1、2万的车子还觉得不得劲。这得看个人情况。但最好是用自己的钱买。相信我,人才是战争胜利之本。体力和技术是关键。就算我骑世界上最贵最好的

捷安特XTC系列图集参数

GIANT捷安特自行车捷安特山地车XTC C1 山地车 品牌:捷安特Giant型号:XTC C1 材质:铝合金车 用途:山地车 尺寸规格:26 英寸 车架结构:整体车 是否折叠:否 FRAME/车架 尺寸颜色车架前叉后避震器 26*14M/15.5M/17M/19M 亮黑/亮红、亮黑/捷安特蓝 全新设计2011款GIANT碳纤山地车架 ROCKSHOX TORA SL Q带线控锁死气压避震前叉,T100MM N/A COMPONENTS/组件 车把车首竖杆座垫杆座垫 GIANT TWINS SL铝合金横把,31.8 GIANT TWINS SL竖杆,31.8 GIANT TWINS SL喷砂亮黑坐垫杆,30.9 FIZIK GOBI XM OEM坐垫 DRIVETRAIN/传动系统 变速把手前变速器后变速器刹车刹车把手飞轮链条大齿盘主轴 SHIMANO SL-M660 SHIMANO FD-M661 SHIMANO RD-M663 A VID ELIX5油压碟刹 A VID ELIX5刹把 SHIMANO CS-HG81-10S 11-34T SHIMANO CN-HG74 SHIMANO FC-M660 42*32*24T 一体式

WHEELS/轮组 花鼓轮胎 MA VIC CROSSRIDE 碟刹轮组 MAXXIS 26*2.0 TPI120折叠轮胎 FRAME DESIGN/车架设计 蕴藏TCR ADVANCED SL与TCR ADVANCED 竞赛灵魂与性能,全新TCR COMPOSITE 让碳纤公路车不再遥不可及! 运用创新改良的GIANT COMPOSITE 一体式碳纤结构制程,全新TCR COMPOSITE车系承袭了GIANT顶级公路设计主张轻量化、性能导向、POWERCORE及OVERDRIVE等先进技术,让速度的渴望不需再妥协。 FEATURES /特点 新设计的ADVANCED车架使用进口高强度航太级碳纤维一体成型设计,有着均衡的纵向舒适性与侧向刚性,提供良好力量传导,同时在长时间骑乘下也不会牺牲车架的舒适度;采用加大车首管强化设计,提供最佳的操控性与转向精准度;整合式五通下叉动力传导设计,更有效地提升兼容性与踩踏效率。绝佳操控精准度,如刀刃般精准犀利地杀弯,将陡坡化做平坦,经典的XTC 车款带给您畅快的驾驭感,给您无比的操控信心。

捷安特公路车系列参数图集

TCR ADV ANCED SL RABOBANK ISP 捷安特台湾/顶级碳纤维 TCR ADVANCED SL RABOBANK ISP 單飛攻擊,衝刺爭先,在頒獎台上享受勝利的香檳滋味!這是環義冠軍DENIS MENCHOV以及RABOBANK車隊所指定的競賽武器。如果贏得勝利是您最在乎的事,TCR ADVANCED SL也會是您的最佳選擇! 顏色 TCR ADVANCED SL RABOBANK ISP 車架—全新GIANT ADVANCED SL ISP超輕碳纖維車架 前叉—全新GIANT ADVANCED SL 碳纖維前叉(一體式碳纖維 OverDrive 2 Steerer) 速別— 20 前變速器— SHIMANO Dura Ace FD-7900 後變速器— SHIMANO Dura Ace RD-7900 尺寸— M(74), S(71), XS(68) 顏色— Rabobank車隊版 重量— 6.8 KG-M (不含腳踏)(不含腳踏) 台湾出货需预定详情请咨询

2012 TCR C2 捷安特自行车碳纤维公路自行车 Frame design/车架设计 上瘾的极速从此开始,全方位运动竞速利器! 蕴藏TCR ADVANCED SL与TCR ADVANCED竞赛灵魂与性能,全新TCR Composite让碳纤公路车不再遥不可及!运用创新改良的GIANT COMPOSITE 一体式碳纤结构制程,全新TCR COMPOSITE车系承袭了GIANT顶级公路设计主张轻量化、性能导向、POWERCORE及OVERDEIVE等先进技术,让速度的渴望不需再妥协。 Features /特点 采T60碳纤纱加上GIANT累计20多年的生产技术力量,打造出外型流线、流体力学最为出众的COMPOSITE,优异的平路巡航性能,令人迷恋不已。全新TCR COMPOSITE车系承袭了GIANT顶级公路设计主张轻量化、性能导向、POWERCORE及OVERDRIVE等先进技术,让追求性能的骑士拥有神奇的加速。... 下面的图表代表最新配置,取代任何打印或PDF格式的信息。规格和价格如有变更,恕不另行通知。 FRAME/车架 尺寸700C*430MM/465MM/500MM/535MM 颜色白月光/蓝

捷安特山地自行车参考价格表

捷安特山地自行车参考价格表ATX系列山地车 ATX 660 1098元 ATX 670 1198元 ATX 680 1298元 ATX 690 1398元 ATX 740 1598元 ATX 750 1698元 ATX 755 1998元 ATX 760 2998元 ATX 770 1998元 ATX 775 2998元 ATX 780 5998元 ATX 790 2998元 ATX PRO 1998元 ATX ELITE 2598元 ATX 830 4998元

ATX 870 7998元 其他系列山地车 熔岩(LAVA)530 698元 熔岩(LAVA)550 798元 熔岩(LAVA)660 998元 熔岩(LAVA)630 1198元 尖叫(SCREAM) 698元 激活(SPRY)-1 1198元 激活(SPRY)-2 998元 激活(SPRY)II代 1598元 风云 1098元风云-1 898元 优肯(UCAN)-1 1298元 优肯(UCAN)-2 998元 优肯(UCAN)-3 898元 优肯(UCAN)-4 748元 克洛克(CROCK)-1 2998元捷安特公路车报价表

1.捷安特SPEED-X 798元 2.捷安特SPEED-LX 998元 3.捷安特风标-2 1298元 4.捷安特风标-1 1598元 5.捷安特风标-x 1598元 6.捷安特风标 2998元 7.捷安特OCR II 1898元 8.捷安特OCR 3300 1898元 9.捷安特OCR 3500 2598元 10.捷安特OCR 22288元 11.捷安特TEAM REPLICA 6998元 12.捷安特FCR-1 9100元 13.捷安特TCR AERO-1 26000元 14.捷安特TCR COMPOSITE-1 28388元 15.捷安特TCR COMPOSITE-2 24180元 16.捷安特TCR C1 361000元 17.捷安特TCR C3 15500元

2011 捷安特 美利达 山地车 官方报价

xx11款车子的官方报价山地健身 ATX730===》1998元 ATX750===》2198元 ATX770===》2298元 ATX770D==》2598元 ATX790===》3298元 XTC750===》3398元 XTC770===》4398元 XTC790===》5398元 山地休闲 熔岩530===》798元 xx1.0===》798元 xx狼====》998元 xx2.0===》1098元 汉特1.0===》858元 汉特2.0===》1098元 汉特3.0===》1598元 ATX660===》1298元 ATX690D==》1898元 女款山地

ME3==》2698元METONGUE==》3498元METONGUE 2==》4498元山地竞赛 XTC C1===》10800元XTC C2===》8800元 公路休闲 风速770===》858元 风速900===》1198元 风标2200===》1298元风标2500===》1698元风标2700===》2098元公路健身 OCR3300===》2498元OCR3500===》2998元TCR6300===》4398元TCR6500===》5398元 公路竞赛 TCR6700===》8598元TCR6900===》11998元平把公路

FCR3100===》1598元 FCR3300===》2198元 FCR3500===》2998元 FCR3700===》4398元 旅行车 xx3300===》1898元 xx3500===》2898元 xxELITE===》4598元 xxPRO===》5598元 折叠车 xx===》598元 xx2.0RD===》858元 xx8.0RD===》2198元 xx8.0DB===》2998 全都是官方价格,在专卖店买车时可用这个价格作参考。 以下是美利达2011款自行车价格(湖北价格)可做全国价格参考勇士300:998 勇士350:1148 勇士550:1348 勇士600:1548 公爵300:1798

捷安特自行车价格表

捷安特山地自行车参考价格表 ATX系列山地车 ATX 660 1098元 ATX 670 1198元 ATX 680 1298元 ATX 690 1398元 ATX 740 1598元ATX 750型: 1698元 ATX 755 1998元 ATX 770 1998元 ATX 775 2998元 ATX 780 5998元 ATX 790 2998元 ATX PRO 1998元 ATX ELITE 2598元 ATX 830 4998元 ATX 870 7998元 其他系列山地车 熔岩(LAVA)530 698元熔岩(LAVA)550 798元熔岩(LAVA)660 998元 熔岩(LAVA)630 1198元尖叫(SCREAM) 698元激活(SPRY)-1 1198元 激活(SPRY)-2 998元激活(SPRY)II代 1598元风云 1098元风云-1 898元 优肯(UCAN)-1 1298元优肯(UCAN)-2 998元优肯(UCAN)-3 898元 优肯(UCAN)-4 748元克洛克(CROCK)-1 2998元 捷安特公路车报价表 1.捷安特SPEED-X 798元 2.捷安特SPEED-LX 998元 3.捷安特风标-2 1298元 4.捷安特风标-1 1598元 5.捷安特风标-x 1598元 6.捷安特风标 2998元 7.捷安特OCR II 1898元8.捷安特OCR 3300 1898元9.捷安特OCR 3500 2598 捷安特FCR 3100 型号价:1500元 3300型号:2800元 12.捷安特FCR-1 9100元 13.捷安特TCR AERO-1 26000元 休闲车捷安特2010 iSee(爱喜) 350 2358元 美利达 一、勇士系列 勇士300(牛仔):868元勇士550 (勇士):1098元勇士600(勇士-PRO)统一价:1398元 勇士700(勇士-COMP) 全国统一价:1748元勇士TEAM 全国统一价:1998元 二、公爵系列 公爵500(公爵)全国统一价:1798元公爵600(新车)全国统一价:2198元 公爵700(公爵-PRO)全国统一价:2680元 三、挑战者系列 挑战者300(挑战者)全国统一价:3080元挑战者500(挑战者-PRO)统一价:3980元 挑战者600(新车)全国统一价:5180元挑战者700(战神)全国统一价:6480元 挑战者800(挑战者-comp) 全国统一价:7980元挑战者HFS 全国统一价:11800元

捷安特与美利达山地车选购指南

山地车选购 山地车,顾名思义,山地车,被设计用来跑山地的单车,这是设计初衷,不过相信大家也不能成天在山路上跑,所以在非山地路面玩车的话就没有讨论的必要了。所谓入门山地车,就是让新手认识山地车的构造及基本原理和掌握部分维修技术的车,基本上只要玩下去,这车肯定是要换掉的,因为随着自己的提升,对车车的要求越来越高,况且入门级的山地车的强度几乎不能保证长时间的激烈运动。这类车也没什么性价比可言。新手挑选山地车的时候会问“xxx的山地车好还是xxx的山地车好呢?”这样的问题数不胜数,那我要问你,你需要一辆什么样的山地车呢?什么是“好”?实话告诉你吧,入门级别的山地车几乎都一个样,与其纠结配置型号啥的不如多骑一下找个正确的姿势为以后做准备(如果有以后)。 车架的选择: 165cm以下的使用16寸以及15.5寸车架 165~175cm,giant车架用S号,其他用17寸的车架 175~185cm,18寸 185~195cm,19寸 195以上的可以自己取试试20寸或者21寸的,以上仅供参考,因人而异。 品牌的选择 山地车品牌众多,即使玩车已几年,目前仍有一些小众品牌不认识。为避免新手选购到一些山寨品牌,在此我简单介绍下比较大牌的品牌(品牌只介绍国内规模较大、认可度较高的,其他例如SANITCRUZ(外号:三条裤子)、GT(美国自行车生产厂家神话)、SPECIALI ZED(闪电)、CANNONDALE(佳能戴尔)、BIANCHI(比安奇)等,虽然是大牌,但是并不普及,而且在国内不容易买到,在此就不做介绍了)。 No.1 TREK 美国崔克,全球最大的自行车品牌,其产品价格从3000-500000不等,但是崔克在中国目前还只是一个奢侈品的概念,因为经营策略、关税等等的原因,崔克20000元以下的车配置在同价位中偏低,尤其几千元级别的山地车,价值主要集中在其车架上,其他配件不敢恭维。No.2 GIANT 台湾捷安特,中国最大的自行车品牌,捷安特的车型涵盖城市休闲车、山地车、旅行车、折叠车、公路车,产品线非常广,可供选择的车型非常多,其山地车从代步用的通勤车到大强度专业级别的速降车都有。目前中国市场上呈现捷安特、美利达两足鼎立的形势,捷安特万元以上车型尤其是软尾(前后双避震车型)为全世界性价比最高的车型,没有之一。捷安特XTC系列车架,是其铝合金车架的核心产品,因为采用7系铝合金,强度高、重量轻、管壁薄、硬度高,这些赋予了XTC系列车型很强的踩踏刚性,能量损失较小,无论是长途骑行,还是越野,XTC系列车架都会让你感到得心应手。 No.3 MERIDA 台湾美利达,中国第二大的自行车品牌,相比捷安特,美利达更专注于山地车研发和生产,其生产的勇士、公爵系列车型,是进藏最多的车型,由此可见美利达在业内的地位和认可度;美利达的核心技术是HFS一次性液压成型技术,如果说捷安特的XTC系列偏竞赛,那么美利达的HFS则更注重舒适性和车架的造型工艺。很多人奇怪为什么美利达既然有HFS这项技术,

捷安特山地车各型号详解

捷安特山地车各型号详解 Giant 捷安特A TX790 尺寸: 26x17M/26x19M/26x21M 车架: GIANT铝合金硬模成型梯型车架 前叉: MANITOU 避震前叉 变速系统: SHIMANO ALIVIO 变速系统24S(FD-M410、RD-M410-L、SL-M410 变把)轮圈: 32H ALEX 双层CNC 铝圈 轮胎: MAXXIS 26X2.1轮胎 其他: ALIVIO 大齿盘、A VID BB5机械碟刹和刹把,前后碟刹花鼓,铝合金零件SAND BK (OVER SIZE),维乐座垫和把套 备注: 产品、规格、颜色以实车为准,捷安特(中国)有限公司保留变更权利,恕不另行通知 Giant 捷安特A TX660 车架: GIANT优质铝合金车架 前叉: 避震前叉 飞轮: SHIMANO EF28一体变把21速 配备: 双层铝圈,建大26x2.1轮胎 Giant 捷安特A TX670 铝合金硬模成型车架避震前叉 铝合金零件建大26*1.95轮胎 禧玛诺21S 维乐座垫后置式停车架 Giant 捷安特A TX770 尺寸: 26x17M/26x19M/26x21M 车架: GIANT铝合金硬模成型梯型车架 前叉: MANITOU避震前叉 变速系统: SHIMANO ALIVIO 24S (FD-M410、RD-MC410、EF-35变把) 轮圈: GIANT双层铝圈(铆钉式) 轮胎: 正新26*1.95胎 其他: 铝合金蝶刹花鼓、SHIMANO ACERA大齿盘、铝合金SAND BK零件,彦豪自动中心定位设计铝合金夹器(带可调导管),维乐座垫和把套、CNC 座垫杆、预留专用后置式停车架设计

捷安特自行车

捷安特自行车,是台湾巨大机械工业股份有限公司的自行车产品,该公司是全球自行车生产及行销最具规模的公司之一,其网络横跨五大洲,五十余个国家,公司遍布中国大陆、美国、英国、德国、法国、日本、加拿大、荷兰等地,掌握着超过1万个销售通路。 捷安特自行车 公司旗下拥有世界著名的自行车品牌——捷安特(GIANT),是享誉全球的自行车品牌。捷安特以30多年生产各类自行车的专业经验,将先进的生产技术、管理模式以及行销全球的成功理念,精心打造每一个零部件,并使得每一个消费者都能够感受到我们的人性服务。 捷安特正在创造中国自行车文化的新世纪,并与每个人共同分享生活的喜悦,因为坚信:生活可以更美好! 发展简史 捷安特自1972年创业以来,巨大机械工业股份有限公司秉持永续经营的态度,精耕发展的新世纪经营哲学,并将"人性理念服务生活"作为企业的重要文化组成。 1992年,捷安特(中国)有限公司于江苏省昆山市经济技术开发区成立,并以其执着之心,创造着中国自行车文化的新纪元。 紧随西部大开发的战略和机遇,巨大机械于2003年12月28日决定在成都龙泉经济技术开发区设立捷安特(成都)有限公司,项目投资一千两百万美金,占地135亩。 捷安特以"全球品牌,当地生根"的行销哲学与自我创意和人性科技,使品牌已成为了国际时尚与尖端科技的代名词。始终创造与生产最佳综合价值的产品及服务,来满足全球消费者的需求。捷安特确信自行车在休闲、娱乐与运动领域里具有多元化的发展空间,同时,它也将是我们明天生活最不可或缺的伙伴. 捷安特大事纪 1972年创立巨大机械工业股份有限公司(台湾) 1981年成立捷安特股份有限公司(台湾),以自有品牌行销台湾市场 1986年于荷兰设立捷安特欧洲公司,进军欧洲市场 1987年成立捷安特美国公司,拓展北美市场 1989年成立捷安特日本及加拿大公司,成立财团法人捷安特体育基金会 1990年成立捷安特澳洲公司,拓展纽澳市场 1992年成立捷安特(中国)有限公司 1997年于荷兰建成捷安特欧洲工厂 2004年捷安特(成都)有限公司成立 2006年成立捷安特电动车(昆山)有限公司 带着30余年生产各类自行车的专业经验,将先进的生产技术、经营管理以及全球行销的成熟理念,与中国广阔的市场和丰富的资源结合,以生产行销全球全世界的著名自行车品牌----捷安特(GIANT)而享誉全球的台湾巨大集团,于1992年9月,于江苏省昆山市经济技术开发区设立捷安特(中国)有限公司,并以其执着之心,创造中国自行车文化的新纪元。企业文化 进入大陆10年以来,捷安特秉持着“以客为尊,顾客所欲,长在我心;品质是第一工作”的品质方针,将人类对于未来的执着汇入自身对于自行车的设计理念中,将对生活的热爱展现在它的每一个细节;维系自然和人的交流,在充满机遇的全新时代,以科技、时尚、人本为主题,为中国人民的美好生活创建更完善的产品。 捷安特在以全新的产品回报大陆人民的同时,秉持着“全球经营,当地深根;全球品牌当地经营”的新世纪经营哲学,坚持以自身通路来带动自行车文化的发展。目前已发展有12家直营店和28家经销商,700余家专卖店,合计1500余家经销网点,使得消费者可以享受“一地购车,全国服务”的服务。并且在关心中国自行车体育运动的同时,也注重自行车休闲文

捷安特山地车各型号详解

GIANT ATX 660 (山地车) 品牌:Giant(捷安特) 年份:2011 年 尺寸:26X15.5M、17M、19M 速比:21 速 刹车类型:V刹 避震类型:前避震 性别类型:男女均可 参考价格 ¥1298元 GIANT MEME (山地车) 品牌:Giant(捷安特) 尺寸:26x16" 速比:21 速 刹车类型:V刹 避震类型:前避震

性别类型:女性适用. 参考价格 ¥1698元 GIANT MEKNACK FS (山地车) 品牌:Giant(捷安特) 年份:2010 年 尺寸:26X15\/26X17 速比:24 速 刹车类型:V刹 避震类型:无避震 性别类型:女性适用 参考价格 ¥1798元 GIANT MEKNACK (山地车) 品牌:Giant(捷安特) 年份:2008 年 尺寸:26x16"

速比:24 速 刹V刹车类型: 避震类型:无避震 性别类型:男女均可 参考价格 ¥1798元 GIANT TALLERWAY8.0 RD (折叠车) 品牌:Giant(捷安特) 年份:2011 年 尺寸:22X15L/15M 速比:8 速 刹车类型:V刹 性别类型:女性适用 参考价格 ¥1898元

GIANT ATX 730 (山地车) 品牌:Giant(捷安特) 年份:2011 年 21M 、19、17、26X15.5尺寸: 速比:24 速 刹车类型:V刹 避震类型:前避震 性别类型:男女均可 参考价格 ¥1988元 GIANT MEME 2 (山地车) 品牌:Giant(捷安特) 尺寸:26x16" 速比:24 速 刹车类型:碟刹 避震类型:前避震 性别类型:女性适用 参考价格

相关主题
文本预览
相关文档 最新文档