当前位置:文档之家› 考虑交流非对称的HVDC换流器开关函数模型及其应用

考虑交流非对称的HVDC换流器开关函数模型及其应用

控制系统的数学模型及传递函数

控制系统的数学模型及传递函数 2-1 拉普拉斯变换的数学方法 拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作: 称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数 拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当时,,M,a为实常数。 2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。 —拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

1.单位阶跃函数 2.单位脉冲函数 3.单位斜坡函数 4.指数函数 5.正弦函数sinwt 由欧拉公式:

所以, 6.余弦函数coswt 其它的可见表2-1:拉氏变换对照表

三、拉氏变换的性质 1、线性性质 若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s), 则有:,此式可由定义证明。 2、位移定理 (1)实数域的位移定理 若f(t)的拉氏变换为F(s),则对任一正实数a 有, 其中,当t<0时,f(t)=0,f(t-a)表f(t)延迟时间a. 证明:, 令t-a=τ,则有上式=

由传递函数转换成状态空间模型

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211ΛΛ )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=---ΛΛ 假设1+=m n 外部描述 ←—实现问题:有了内部结构—→模拟系统 内部描述 SISO ? ??+=+=du cx y bu Ax x & 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()()()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++L L ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m ΛΛ 对上式取拉氏反变换,则 ? ??++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m &Λ&Λ1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x Λ&,于是有

?????? ?+----===-u x a x a x a x x x x x n n n n 12113 221Λ&M && 写成矩阵形式 式中,1-n I 为1-n 阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。只要系统状态方程的系数阵A 和输入阵b 具有上式的形式,c 阵的形式可以任意,则称之为能控标准型。 则输出方程 121110x b x b x b x b y m m n n ++++=--Λ 写成矩阵形式 ??????? ? ????????=--n n m m x x x x b b b b y 12101 1][M Λ 分析c b A ,,阵的构成与传递函数系数的关系。 在需要对实际系统进行数学模型转换时,不必进行计算就可以方便地写出状态空间模型的A 、b 、c 矩阵的所有元素。 例:已知SISO 系统的传递函数如下,试求系统的能控标准型状态空间模型。 4 2383)()(2 3++++=s s s s s U s Y 解:直接得到系统进行能控标准型的转换,即

传递函数模型的建模

传递函数模型的建模 一、实验目的 熟悉传递函数模型的建模方法 二、预备知识 熟练掌握互相关函数特征 三、实验内容 对数据集Lydia Pinkham进行传递函数模型的建模 四、实验仪器与材料(或软硬件环境) SAS/ETS软件 五、实验程序或步骤 传递函数模型的建模 1、开机进入SAS系统。 2、建立名为exp6的SAS数据集,输入如下程序: data sales; input x y; t=_n_; cards; 输入广告支出及销售数据 ; run; 3、保存上述程序,绘序列图,输入如下程序: proc gplot data=sales; symbol1i=spline c=red; symbol2i=spline c=green; plot x*t=1 y*t=2; run; 4、提交程序,输出图像见图1、图2.仔细观察两序列图形,发现x,y发展趋势大致相同,x与y均为非平稳时间序列,且x为领先指标。

图1 图2 5、先观察t x 和t y 的相关情况,看是否要做差分,输入如下程序: proc arima data =sales; identify var =y crosscorr =(x) nlag =12; run ; proc arima data =sales; identify var =x nlag =12; run ; 6、提交程序,观察t x 的t y 自相关和互相关系数,如图3为y 的自相关图,图4为x 的自相关图,发现它们的自相关图都衰减得很慢,表明它们均为非平稳

时间序列,对它们进行差分运算。 图3 图4 7、对x、y分别做差分运算并查看它们的自相关系数及互相关系数,输入如下 程序(输出y、x自相关图见图5、图6;图7x的偏相关系数图;互相关系数图见图7): proc arima data=sales; identify var=y(1) crosscorr=(x(1)) nlag=12; run; proc arima data=sales; identify var=x(1) nlag=12; run;

二用MATLAB建立传递函数模型

《自动控制原理》实验指导书 北京科技大学自动化学院控制科学与工程系 2013年4月

目录 实验一典型系统的时域响应和稳定性分析 (1) 实验二用MATLAB建立传递函数模型 (5) 实验三利用MATLAB进行时域分析 (13) 实验四线性定常控制系统的稳定分析 (25) 实验五利用MATLAB绘制系统根轨迹 (29) 实验六线性系统的频域分析 (37) 实验七基于MATLAB控制系统频域法串联校正设计 (51) 附录1 MATLAB简介 (58) 附录2 SIMULINK简介 (67)

实验一典型系统的时域响应和稳定性分析 一、实验目的 1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD-ACC+教学实验系统一套。 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图1-1所示。 图1-1 (2) 对应的模拟电路图:如图1-2所示。 图1-2 (3) 理论分析 系统开环传递函数为:G(s)=? 开环增益:K=? 先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟

电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中由图1-2,可以确地1-1中的参数。 0?T =, 1?T =,1?K = ?K ?= 系统闭环传递函数为:()?W s = 其中自然振荡角频率:?n ω=;阻尼比:?ζ=。 2.典型的三阶系统稳定性分析 (1) 结构框图:如图1-3所示。 图1-3 (2) 模拟电路图:如图1-4所示。 图1-4 (3) 理论分析 系统的开环传函为:()()?G s H s = 系统的特征方程为:1()()0G s H s +=。 (4) 实验内容 实验前由Routh 判断得Routh 行列式为: S 3 S 2 S 1 S 0 为了保证系统稳定,第一列各值应为正数,因此可以确定

Matlab控制系统传递函数模型

MATLAB及控制系统 仿真实验 班级:智能0702 姓名:刘保卫 学号:06074053(18)

实验四控制系统数学模型转换及MATLA实现 一、实验目的 熟悉MATLAB的实验环境。 掌握MATLAB建立系统数学模型的方法。 二、实验内容 (注:实验报告只提交第2题) 1、复习并验证相关示例。 (1)系统数学模型的建立 包括多项式模型(TranSfer FunCtiOn,TF),零极点增益模型(ZerO-POIe,ZP), 状态空间模型 (State-SPace,SS ); (2)模型间的相互转换 系统多项式模型到零极点模型(tf2zp ),零极点增益模型到多项式模型(zp2tf ), 状态空间模 型与多项式模型和零极点模型之间的转换(tf2ss,ss2tf,zp2ss …); (3)模型的连接 模型串联(SerieS ),模型并联(parallel ),反馈连接(feedback) 2、用MATLAB故如下练习。 x+2 :6{J?=——;----- (1)用2种方法建立系统?-的多项式模型。 程序如下: %?立系统的多项式模型(传递函数) %方法一,直接写表达式 s=tf('s') GSI=(S+2)∕(s^2+5*s+10) %方法二,由分子分母构造 num=[1 2]; den=[1 5 10]; Gs2=tf( nu m,de n) figure PZmaP(GS1) figure PZmaP(GS1) grid On 运行结果: 易知两种方法结果一样 Tran Sfer fun Cti on: Tran Sfer fun Cti on:

S + 2 s^2 + 5 S + 10 Tran Sfer fun Cti on: S + 2 s^2 + 5 S + 10 ^)=1°

控制系统Matlab仿真 (传递函数)

控制系统仿真 [教学目的] 掌握数字仿真基本原理 控制系统的数学模型建立 掌握控制系统分析 [教学内容] 一、控制系统的数学模型 sys=tf(num,den)%多项式模型,num为分子多项式的系数向量,den为分母多项式的系%数向量,函数tf()创建一个TF模型对象。 sys=zpk(z,p,k)%z为系统的零点向量,p为系统的极点向量,k为增益值,函数zpk()创建一个ZPK模型对象。 (一)控制系统的参数模型 1、TF模型 传递函数 num=[b m b m-1b m-2…b1b0] den=[a m a m-1a m-2…a1a0] sys=tf(num,den) 【例1】系统的传递函数为。 >>num=[01124448]; >>den=[11686176105]; >>sys=tf(num,den); >>sys Transfer function: s^3+12s^2+44s+48 ------------------------------------- s^4+16s^3+86s^2+176s+105 >>get(sys) >>set(sys) >>set(sys,'num',[212])

>>sys Transfer function: 2s^2+s+2 ------------------------------------- s^4+16s^3+86s^2+176s+105 【例2】系统的传递函数为。 >>num=conv([20],[11]); >>num num= 2020 >>den=conv([100],conv([12],[1610])); >>sys=tf(num,den) Transfer function: 20s+20 ------------------------------- s^5+8s^4+22s^3+20s^2 【例3】系统的开环传递函数为,写出单位负反馈时闭环传递函数的TF模型。>>numo=conv([5],[11]); >>deno=conv([100],[13]); >>syso=tf(numo,deno); >>sysc=feedback(syso,1) Transfer function: 5s+5 ---------------------- s^3+3s^2+5s+5 【例4】反馈系统的结构图为: R

数学模型传递函数

(1) 机械平移系统 在所有初始条件均为零的情况下,对上式进行拉氏变换,得 (2) 机械旋转系统 包含定轴旋转的机械系统用途极其广泛。其建模方法与平移系统非常相似。只是这里将质量、弹簧、阻尼分别变成转动惯量、扭转弹簧、旋转阻尼。 图3.3所示为一机械旋转系统,旋转体通过柔性轴(用扭转弹簧 表示)与齿轮连接。旋转体在粘性介质中旋转,因而承受与旋转速度成正比的阻尼力矩。 设齿轮转角 为系统输入量,旋转体转角 为系统输出量,据此建立系统的运动微分方程(忽略轴承上的摩擦)。扭转弹簧左、在此处键入公式。右端的转角分别为 、 ,设它加给旋转体的扭矩为 (当 时,弹簧的扭矩为零),则 ;旋转体上除了受弹簧的扭矩外,也受阻尼扭矩 作用,因而 有扭矩平衡方程 和旋转阻尼特性方程 由以上三式整理可得机械旋转系统运动微分方程 ()()()() 2o o o i ms X s BsX s KX s F s ++=K )(i t θ)(o t θ)(i t θ)(o t θ)(t T K o i θθ=i o ()[()()]K T t K t t θθ=-)(t T B 2o 2d ()()()d K B J t T t T t t θ=-o d ()()d B T t B t t θ=

3.6.1 机械系统 在控制系统中,经常要将旋转运动变换成直线运动。例如用电动机和丝杠螺母装置可控制工作台沿直线运动,见图3.55,这时可以用一等效惯量直接连接到驱动电动机的简单系统来表示。工作台等直线运动部件的质量 ,按等功原理可折算到电动机轴上,如图3.55b 所示,其等效惯量为 (3.96) ——丝杠螺距,定义为丝杠每转一周工作台移动的直线距离。 此外,在控制系统中常用齿轮传动装置来改变转矩、转速和角位移,使系统的能量从一处传递到系统的另一处。图3.56a 表示一对啮合的齿轮副,在理想情况下,惯量和摩擦 2o o o i 2d d ()()()()d d J t B t K t K t t t θθθθ++ =m 22πL J m ??= ?? ?L

拉氏变换、传递函数、数学模型

拉普拉斯变换的数学方法 一、拉氏变换与拉氏及变换的定义 1、拉氏变换:设有时间函数()t F ,其中0t ≥,则f(t)的拉氏变换记作: ?∞ -==0 st dt e )t (f )s (F )]t (f [L 称L —拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。 f(t)—原函数 拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件): 1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。 2)当∞→t 时,at Me )t (f ≤,M ,a 为实常数。 2、拉氏反变换:将象函数F (s )变换成与之相对应的原函数f(t)的过程。 ?+σ-σ-π= =jw jw st 1ds e )s (F j 21)]s (F [L )t (f 1L -—拉氏反变换符号 关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。 二、典型时间函数的拉氏变换 在实际中,对系统进行分析所需的输入信号常可化简成一个成几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。 1.单位阶跃函数 ()[]()s 1e s 1 dt e 0dt e .t 10t 1L 0 st st st =-=???∞=???∞=∞ --- 2.单位脉冲函数 ()?? ?=∞ ≠=δ0 t 0t 0t ()?? ?=10t 10 t 0t ≥?

?∞ -=δ=δ0 st 1dt e )t ()]t ([L 3.单位斜坡函数 4.指数函数at e ??∞ ∞ ----= ==0 t )a s (st at at a s 1e dt e e ]e [L 5.正弦函数sinwt 由欧拉公式:wt sin j wt cos e jwt += wt sin j wt cos e jwt -=- 所以,)e e (j 21wt sin jwt jwt --= 2 2 0t )jw s (t )jw s (0 st jwt jwt w s w )jw s 1jw s 1(j 21dt )e e (j 21dt e )e e (j 21]wt [sin L +=+--=-= -=?? ∞+---∞ -- 6.余弦函数coswt )e e (2 1wt cos jwt jwt -+= 2 2 w s s ]wt [cos L += 其它的可见表2-1:拉氏变换对照表 ()?? ?≥<=0 t t 0t 0t f []2 st st st s 1 dt e te s 1 dt te t L =???? ??--==-∞ ∞--∞ ? ?

传递函数模型

传递函数模型 传递函数模型是多变量时间序列分析模型这种模型表示的经济系统是用多个时间序列描述的。例如,研究某企业的销售额依时间变化的规律,不仅考虑销售额序列本身,而且研究促销活动,例如广告费,把销售额序列看作因变量序列即系统的输出,广告费支出看作自变量序列即系统的输人。两序列之间通过传递因子产生联系,建立传递函数模型。此种模型兼备了时间序列和因果关系的功能,充分描绘了广告促销活动对销售额变化产生的影响。 一、传递函数分析模型 设表示经济系统的输出序列例如某企业的销售额,是我们研究的目标变量,是因变量表示系统的输人序列(例如广告费支出),是解释变量是噪声变量,表示其它变量影响的组合。那么,系统的传递函数模型可以表示为 Y t=v B X t+e t v B=v0+v1B+v2B2+? v B是一个算子多项式,B是一个后移算子;v0,v1,…称脉冲响应权或传递函数权;e t是一个均值为零、方差固定而且与X t,X t?1,…独立的随机变量。X t在模型中部件时解释变量,而且在时间上对Y t来说是一个先行指标,即X t对Y t的影响将提前k个时期。 算子多项式v B有无穷多项,在某些一般性的条件下,可用算子B的两个有理多项式之比来估计v B,即 v B= ωB 这里ωB=ω0?ω1B???ωs B s;δB=1?δ1B???δr B r。对这两个多项式均要求他它们的根在单位圆外,也就是要求它们是平稳的。 这样,传递函数模型可写为 Y t=ωB δB X t?b+e t 其中e t不一定是白噪声,但已假定它是同X t独立的,因而可以用ARIMA模型去表示它,即e t满足 △d e t=θB φB a t 这里a t是白噪声,△d是d阶连续差分算子。φB=1?φ1B???φp B p,θB=1?θ1B???θp B p,φB、θB满足平稳可逆条件。因此传递函数模型又可写为 △d Y t=ωB △d X t?b+ θB a t 记△d Y t=y t,△d X t?b=x t?b,则有 y t=ωB x t?b+ θB a t 实际的建模运算绝不需要对每个变量施以同样的差分运算,差分的阶数只需使变量达到平稳即可。上式为一般的传递函数模型,可用下图表示。

相关主题
文本预览
相关文档 最新文档