当前位置:文档之家› 耳聋基因检测与诊断的意义修订稿

耳聋基因检测与诊断的意义修订稿

耳聋基因检测与诊断的意义修订稿
耳聋基因检测与诊断的意义修订稿

耳聋基因检测与诊断的

意义

WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

耳聋基因检测与诊断的意义

我国科学家1998年成功克隆了人类遗传性感音神经性聋疾病基因GJB3。近年研究证实,先天性颞骨畸形(主要为大前庭水管综合征)与SLC26A4基因突变显着相关。国内耳聋遗传资源收集网络调查研究表明,GJB2突变最为常见,其次是SLC26A4突变,前者突变检出率为21%,明确该基因突变致聋约15%;后者突变检出率约15%,明确该基因突变致聋约12%。迟发性显性遗传性聋患者虽然出生即携带致病突变,但幼年时听力可完全正常,随年龄增长,而逐渐出现听力减退,进行性加重。

目前已经应用于临床的耳聋基因常规检测项目主要有线粒体DNAA1555G基因、GJB2基因、PDS基因、GJB3基因等。耳聋基因筛查对先天性或遗传性聋的诊断具有一定参考价值。线粒体DNA

A1555G基因突变与氨基糖甙类药物引起耳聋有关;GJB2基因被认为我国最常见的致聋基因,患儿GJB2基因阳性,应考虑先天性或遗传性聋的可能性;PDS基因突变可以导致大前庭水管综合征,PDS全序列扫描可作为分析诊断大前庭水管综合征的客观指标;还有比较常见的GJB3基因的538C>T为目前已知可诱发耳聋的致病基因。GJB3基因的538C>T纯合突变,提示目前已经耳聋或以后发生耳聋的机率非常大;而GJB3基因的538C>T杂合突变,提示以后可能发生耳聋或不发生耳聋的可能性均存在,因此需要长时期听力监测。必须强调指出,目前的耳聋基因检测仍处于非常初级的阶段,影响因素多,临床意义有限,某个项目一次或多次的检测值异常并不一定能

得出耳聋病因的肯定性结论。而且,耳聋基因检测只是提示在耳聋病因中占很少数的先天性或遗传性聋的可能性,对在耳聋病因中占大多数的后天获得性感音神经性聋诊断仅具有排除性诊断方面的参考意义。

由于耳聋基因在正常人群中也有较高的携带率,如GJB2、SLC26A4突变在听力正常人群中携带率均为3%,线粒体DNA1555和1494突变携带率约为1/300,听力正常的育龄夫妇携带至少一种基因突变的几率为%。因此我们认为在有生育要求但无耳聋家族遗传史的听力正常育龄夫妇中进行常见耳聋基因筛查,在此基础上对携带耳聋基因突变的夫妇提供遗传咨询,这一前瞻性防治策略将阻止较大比例的先天性隐性遗传性耳聋的出生,其意义远远大于对已生育聋儿的正常夫妇进行耳聋遗传咨询和产前诊断,从根本上为预防遗传性耳聋发生提供了理论依据和方法。因此耳聋基因筛查和产前诊断可以产生巨大的经济效益和社会效益,从而真正达到提高人口质量,优生优育的目的。

一、预防避免耳聋发生或通过及时治疗延缓听力下降

药物性耳聋密切相关的母系遗传线粒体DNA12SrRNA突变相关性耳聋。突变基因携带者对氨基糖甙类抗生素敏感,这就是在携带此突变的个体中使用氨基糖甙类抗生素可以导致或者加重耳聋的原因。如果携带该突变的个体通过基因检测预知自己和家族成员携带这种突变,避免接触氨基糖甙类药物则完全可以避免耳聋的发生,

这也正是耳聋基因检测的意义所在。不仅为聋人明确病因,还要为耳聋易感个体提供个体化的遗传咨询和预防措施。

另外一种可以通过有效手段延缓听力下降的耳聋类型是由

SLC26A4基因突变导致的大前庭水管综合征。此类耳聋的特点是出生时听力多正常,生长过程中听力在诱发因素的刺激下呈波动性的下降,最终发展成重度耳聋或全聋。此类聋人一般在首次或多次听力下降发生后才会就诊,对于此类听力下降可以按突发性耳聋进行挽救性治疗,治疗及时的情况下部分患者听力会有不同程度的恢复。治疗后还要对患者进行预防听力下降的指导,如避免头外伤、剧烈体育运动、禁止倒立、预防感冒、尽量避免用力咳嗽和擤鼻等。在新生儿,如果通过基因筛查发现并通过颞骨CT证实个体患有大前庭水管后,则可以对其家长进行预防指导。

二、致聋基因诊断技术对婚配的指导与干预

致聋基因诊断就是通过对病人的DNA检测,发现是否有致聋基因,从而明确病因,对耳聋的再次发生具有良好的预防意义。目前研究表明,耳聋患者中约50%的耳聋为遗传性耳聋。GJB2是导致遗传性非综合征型耳聋最常见的基因,在我国约有21%的先天性耳聋患者与该基因相关,其次为PDS基因(即大前庭导水管,在我国接近20%)和线粒体DNA A1555G 突变(1%~2%)。确诊为遗传性耳聋的患者,如果在择偶时避免选择与自己相同致聋基因的聋哑人,就可以有效降低生育聋儿的风险率。举例来说,目前约21%的耳聋者是上面所提到的 GJB2相关性耳聋,如果这21%里的耳聋者相互之间婚

配,即双方都是GJB2基因突变导致的耳聋,那么他们生育的下一代100%是聋儿;如果GJB2相关性耳聋者从余下的80%耳聋者(即非GJB2相关性耳聋者)中选择配偶的话,那么生育聋儿的风险性将大大降低。在这里,相同耳聋基因耳聋者的婚配可以比喻为近亲结婚,因此应该是要尽量避免的。目前的致聋基因诊断技术可以为大约60%遗传性耳聋患者做出病因诊断,诊断结果可以帮助他们正确择偶,从而有效减少聋儿的出生。

三、致聋基因诊断技术对生育的指导与干预

遗传性耳聋是指来自父母的遗传物质传递给后代引起听力下降,父母至少有一方为耳聋基因携带者。均携带隐性遗传耳聋基因的父母,再生育聋儿的风险有25%,显性遗传耳聋再生育则具有50%的风险。我国每年出生聋儿约3万,约有30万对生有一个聋儿的育龄夫妇面临再次生育另一个聋儿的风险,而且生育了一胎先天性聋儿的夫妇本身就是生育聋儿的高危夫妇,他们迫切需要知道发生耳聋的准确病因并需要相应的产前诊断技术来确保再次生育成功。耳聋基因诊断则可以在60%左右的育有遗传性耳聋患儿夫妇再生育计划中发挥作用,保证第二胎不具有导致耳聋的同样缺陷基因,为计划生育和优生优育政策提供确实的技术保障和支持。

致聋基因诊断技术对正常家庭亦有同样作用。因为研究发现,GJB2和PDS基因突变导致耳聋的高发病率是有其遗传学基础的,如GJB2基因突变的正常人群携带率在西方为3%左右,而在东亚人群可能为2%左右,研究发现我国人群为3%。也就是说正常人群同样有风

险生育出GJB2和PDS耳聋的孩子。这样的话,我们建议有生育要求的夫妇都能进行常见致聋基因突变的筛查,若发现双方均带有相同的突变耳聋基因,对他们的生育要进行全程的指导和干预,这样就可以预防性的减少近1/3-2/5的先天性耳聋患者出生。

基因突变的检测方法

基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。 PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。 异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。

最新耳聋基因检测与诊断的意义资料

精品文档 耳聋基因检测与诊断的意义 我国科学家1998年成功克隆了人类遗传性感音神经性聋疾病基因GJB3。近年研究证实,先天性颞骨畸形(主要为大前庭水管综合征)与SLC26A4基因突变显著相关。国内耳聋遗传资源收集网络调查研究表明,GJB2突变最为常见,其次是SLC26A4突变,前者突变检出率为21%,明确该基因突变致聋约15%;后者突变检出率约15%,明确该基因突变致聋约12%。迟发性显性遗传性聋患者虽然出生即携带致病突变,但幼年时听力可完全正常,随年龄增长,而逐渐出现听力减退,进行性加重。 目前已经应用于临床的耳聋基因常规检测项目主要有线粒体DNAA1555G基因、GJB2基因、PDS基因、GJB3基因等。耳聋基因筛查对先天性或遗传性聋的诊断具有一定参考价值。线粒体DNA A1555G 基因突变与氨基糖甙类药物引起耳聋有关;GJB2基因被认为我国最常见的致聋基因,患儿GJB2基因阳性,应考虑先天性或遗传性聋的可能性;PDS基因突变可以导致大前庭水管综合征,PDS全序列扫描可作为分析诊断大前庭水管综合征的客观指标;还有比较常见的GJB3基因的538C>T为目前已知可诱发耳聋的致病基因。GJB3基因的 538C>T纯合突变,提示目前已经耳聋或以后发生耳聋的机率非常大;而GJB3基因的538C>T杂合突变,提示以后可能发生耳聋或不发生耳聋的可能性均存在,因此需要长时期听力监测。必须强调指出,目前

的耳聋基因检测仍处于非常初级的阶段,影响因素多,临床意义有限, 精品文档. 精品文档 某个项目一次或多次的检测值异常并不一定能得出耳聋病因的肯定 性结论。而且,耳聋基因检测只是提示在耳聋病因中占很少数的先天性或遗传性聋的可能性,对在耳聋病因中占大多数的后天获得性感音神经性聋诊断仅具有排除性诊断方面的参考意义。 由于耳聋基因在正常人群中也有较高的携带率,如GJB2、SLC26A4突变在听力正常人群中携带率均为3%,线粒体DNA1555和1494突变携带率约为1/300,听力正常的育龄夫妇携带至少一种基因突变的几率为6.3%。因此我们认为在有生育要求但无耳聋家族遗传史的听力正常育龄夫妇中进行常见耳聋基因筛查,在此基础上对携带耳聋基因突变的夫妇提供遗传咨询,这一前瞻性防治策略将阻止较大比例的先天性隐性遗传性耳聋的出生,其意义远远大于对已生育聋儿的正常夫妇进行耳聋遗传咨询和产前诊断,从根本上为预防遗传性耳聋发生提供了理论依据和方法。因此耳聋基因筛查和产前诊断可以产生巨大的经济效益和社会效益,从而真正达到提高人口质量,优生优育的目的。 一、预防避免耳聋发生或通过及时治疗延缓听力下降 药物性耳聋密切相关的母系遗传线粒体DNA12SrRNA突变相关性耳聋。突变基因携带者对氨基糖甙类抗生素敏感,这就是在携带此突变的个体中使用氨基糖甙类抗生素可以导致或者加重耳聋的原因。如果携带该突变的个体通过基因检测预知自己和家族成员携带这种突变,避免接触氨基糖甙类药物则完全可以避免耳聋的发生,这也正是耳聋

耳聋基因检测与诊断的意义

耳聋基因检测与诊断得意义 我国科学家1998年成功克隆了人类遗传性感音神经性聋疾病基因GJB3、近年研究证实,先天性颞骨畸形(主要为大前庭水管综合征)与SLC26A4基因突变显著相关。国内耳聋遗传资源收集网络调查研究表明,GJB2突变最为常见,其次就是SLC26A4突变,前者突变检出率为21%,明确该基因突变致聋约15%;后者突变检出率约15%,明确该基因突变致聋约12%。迟发性显性遗传性聋患者虽然出生即携带致病突变,但幼年时听力可完全正常,随年龄增长,而逐渐出现听力减退,进行性加重。?目前已经应用于临床得耳聋基因常规检测项目主要有线粒体DNAA1555G基因、GJB2基因、PDS基因、GJB3基因等、耳聋基因筛查对先天性或遗传性聋得诊断具有一定参考价值。线粒体DNA A1555G基因突变与氨基糖甙类药物引起耳聋有关;GJB2基因被认为我国最常见得致聋基因,患儿GJB2基因阳性,应考虑先天性或遗传性聋得可能性;PDS基因突变可以导致大前庭水管综合征,PDS全序列扫描可作为分析诊断大前庭水管综合征得客观指标;还有比较常见得GJB3基因得538C>T为目前已知可诱发耳聋得致病基因、GJB3基因得538C>T纯合突变,提示目前已经耳聋或以后发生耳聋得机率非常大;而GJB3基因得538C>T杂合突变,提示以后可能发生耳聋或不发生耳聋得可能性均存在,因此需要长时期听力监测。必须强调指出,目前得耳聋基因检测仍处于非常初级得阶段,影响因素多,临床意义有限,某个项目一次或多次得检测值异常并不一定能得出耳聋病因得肯定性结论。而且,耳聋基因检测只就是提示

在耳聋病因中占很少数得先天性或遗传性聋得可能性,对在耳聋病因中占大多数得后天获得性感音神经性聋诊断仅具有排除性诊断方面得参考意义。?由于耳聋基因在正常人群中也有较高得携带率,如GJB2、SLC26A4突变在听力正常人群中携带率均为3%,线粒体DNA1555与1494突变携带率约为1/300,听力正常得育龄夫妇携带至少一种基因突变得几率为6。3%。因此我们认为在有生育要求但无耳聋家族遗传史得听力正常育龄夫妇中进行常见耳聋基因筛查,在此基础上对携带耳聋基因突变得夫妇提供遗传咨询,这一前瞻性防治策略将阻止较大比例得先天性隐性遗传性耳聋得出生,其意义远远大于对已生育聋儿得正常夫妇进行耳聋遗传咨询与产前诊断,从根本上为预防遗传性耳聋发生提供了理论依据与方法。因此耳聋基因筛查与产前诊断可以产生巨大得经济效益与社会效益,从而真正达到提高人口质量,优生优育得目得。 一、预防避免耳聋发生或通过及时治疗延缓听力下降 药物性耳聋密切相关得母系遗传线粒体DNA12SrRNA突变相关性耳聋。突变基因携带者对氨基糖甙类抗生素敏感,这就就是在携带此突变得个体中使用氨基糖甙类抗生素可以导致或者加重耳聋得原因。如果携带该突变得个体通过基因检测预知自己与家族成员携带这种突变,避免接触氨基糖甙类药物则完全可以避免耳聋得发生,这也正就是耳聋基因检测得意义所在。不仅为聋人明确病因,还要为耳聋易感个体提供个体化得遗传咨询与预防措施、 另外一种可以通过有效手段延缓听力下降得耳聋类型就是由

基因诊断试题

基因诊断试题

————————————————————————————————作者:————————————————————————————————日期:

(一)选择题 A型题 1.判定基因结构异常最直接的方法是 A.PCR法 B.核酸分子杂交 C.DNA序列测定 D.RFLP分析 E.SSCP分析 2.不符合基因诊断特点的是 A.特异性强 B.灵敏度高 C.易于做出早期诊断 D.样品获取便利 E.检测对象仅为自体基因 3.遗传病基因诊断的最重要的前提是 A.了解患者的家族史 B.疾病表型与基因型关系已被阐明 C.了解相关基因的染色体定位 D.了解相关的基因克隆和功能分析等知识 E.进行个体的基因分型 4.若要采用Southern或Northern印迹方法分析某特定基因及其表达产物,需要 A.制备固定在支持物上的组织或细胞

B.收集组织或细胞样品,然后从中提取总DNA或RNA C.利用PCR技术直接从标本中扩增出待分析的片段D.收集组织或细胞样品,然后从中提取蛋白质 E.收集培养细胞的上清液 5.目前基因诊断常用的分子杂交技术不包括哪一项A.Southern印迹 B.Western印迹 C.Northern印迹 D.DNA芯片技术 E.等位基因特异性寡核苷酸分子杂交 6.SNP的实质是 A.碱基缺失 B.碱基插入 C.碱基替换 D.移码突变 E.转录异常 7.DNA指纹的遗传学基础是 A.连锁不平衡 B.DNA的多态性 C.串联重复序列 D.MHC的限制性 E.MHC的多样性

8.在对临床病例进行基因诊断时,若遇到不能检测出已知类型突变的情况,如果表型明确指向某种疾病,适用下列哪一类筛查技术 A.PCR法 B.ASO分子杂交 C.反向点杂交 D.变性高效液相色谱(DHPLC) E.STR拷贝异常的诊断 9.生殖细胞若发生基因结构突变可引起哪种疾病 A.肿瘤 B.高血压 C.糖尿病 D.遗传病 E.传染病 10.PCR技术容易出现 A.假阴性结果 B.假阳性结果 C.灵敏度不高 D.适用不广 E.操作繁冗 11.目前检测血清中乙肝病毒最敏感的方法是 A.斑点杂交试验 B.等位基因特异性寡核苷酸分子杂交 C.Southern印迹

耳聋基因检测

耳聋基因检测 中国耳聋现状 2006年中国第二次残疾人抽样调查显示,全国残疾人总数高达8000多万,听力语言残疾者达2780万人,其中单纯听力残疾2004万,占残疾人总数的24.16%,听力言语残疾者中7岁以下的聋儿达80万人并以每年新增3万聋儿的速度在增长。 3月3日是我国“爱耳日”。2011年(第12次)“爱耳日”的主题是“康复从发现开始—大力推广新生儿听力筛查”。 中国新生儿耳聋现状 先天性耳聋是导致语言交流障碍的常见致残性疾病之一,已成为全球关注的重大公共卫生问题。 新生儿中双侧先天性耳聋发生率约在1-3‰,在目前可筛查的出生缺陷中发病率最高,以我国每年出生1900万人口计算,平均每年大约要新增2万至6万名。 目前已在西方发达国家及我国部分城市实施的新生儿听力筛查证明,早期发现、诊断和早期干预康复,90%以上的先天性听力障碍患儿可以获得正常交流的能力和健康人一样生活。 中央政府门户网站https://www.doczj.com/doc/2a3637742.html, 2010年10月25日来源:新华社 耳聋分类 按发病原因分为:遗传性耳聋(占50-60%)和非遗传性耳聋 根据病变部位分3类:传导性、感音神经性、混合型耳聋 根据发病时间分:先天性和迟发性耳聋

根据有无伴发疾病:综合症(占1/3)和非综合征性(占2/3)耳聋 以语言功能发育程度分为:语前聋和语后聋 耳聋遗传方式 常染色体隐性遗传:占80% 常染色体显性遗传:10%-20% 性连锁遗传:1%-2% 线粒体基因突变:主要是母系遗传 耳聋致病基因 目前已鉴定的相关基因至少44个 最常见的致病基因是GJB2(connexin 26),碱基缺失与先天性中至重度耳聋有关,位于13q11-12 SLC26A4(PDS),突变与大前庭水管综合征有关,位于7q22-31.1 12SrRNA,突变与药物性耳聋有关,位于mtDNA 干预措施 GJB2耳聋:电子耳蜗移植(重度耳聋),进行早期听力恢复 大前庭水管综合征患儿:不适合剧烈体育活动,一旦头部受伤,就可能引起听力突然下降 线粒体基因突变者:用药警示,避免氨基糖苷类药物

基因表达的检测的几种方法

基因表达检测的最终技术目标是能确定所关注的任何组织、细胞的 RNA的绝对表达量。可以先从样本中抽提RNA,再标记RNA, 然后将这些标记物作探针与芯片杂交,就可得出原始样本中不同 RNA的量。然而用于杂交的某个特定基因的RNA的量与在一个 相应杂交反应中的信号强度之间的关系十分复杂,它取决于多种 因素,包括标记方法、杂交条件、目的基因的特征和序列。所以 芯片的方法最好用于检验两个或多个样本中的某种RNA的相对 表达量。样本之间某个基因表达的差异性(包括表达的时间、空 间特性及受干扰时的改变)是基因表达最重要的,而了解RNA 的绝对表达丰度只为进一步的应用或多或少地起一些作用。 基因表达的检测有几种方法。经典的方法(仍然重要)是根据在 细胞或生物体中所观察到的生物化学或表型的变化来决定某一 特定基因是否表达。随着大分子分离技术的进步使得特异的基因 产物或蛋白分子的识别和分离成为可能。随着重组DNA技术的 运用,现在有可能检测.分析任何基因的转录产物。目前有好几 种方法广泛应用于于研究特定RNA分子。这些方法包括原位杂交.NORTHERN凝胶分析.打点或印迹打点.S-1核酸酶分 析和RNA酶保护研究。这里描述RT-PCR从RNA水平上检查 基因表达的应用。8 f3 f- |2 L) K) b7 ]- ~- | RT-PCR检测基因表达的问题讨论

关于RT-PCR技术方法的描述参见PCR技术应用进展,在此主要讨论它在应用中的问题。理论上1μL细胞质总RNA对稀有mRNA扩增是足够了(每个细胞有1个或几个拷贝)。1μL差不多相当于50-100,000个典型哺乳动物细胞的细胞质中所含RNA的数量,靶分子的数量通常大于50,000,因此扩增是很容易的。该方法所能检测的最低靶分子的数量可能与通常的DNAPCR相同;例如它能检测出单个RNA分子。当已知量的转录RNA(用T7RNA聚合酶体外合成)经一系列稀释,实验结果表明通过PCR的方法可检测出10个分子或低于10个分子,这是反映其灵敏度的一个实例。用此技术现已从不到1个philadelphia染色体阳性细胞株K562中检测到了白血病特异的MRNA的转录子。因此没必要分离polyA+RNA,RNA/PCR法有足够的灵敏度来满足绝大多数实验条件的需要。 7 H+ F& _* S6 W( a8 p: [, @- d, { 将PCR缓冲液同时用于反转录酶反应和PCR反应,可简化实验步骤。我们发现整个反应过程皆用PCR缓冲液的结果相当于或优于先用反转录缓冲液合成CDNA,然后PCR缓冲液进行PCR扩增循环。当然,值得注意的是PCR缓冲液并不最适合第一条DNA链的合成。我们对不同的缓冲液用于大片段DNA 合成是否成功还没有进行过严格的研究。

耳聋基因检测与诊断的意义修订稿

耳聋基因检测与诊断的 意义 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

耳聋基因检测与诊断的意义 我国科学家1998年成功克隆了人类遗传性感音神经性聋疾病基因GJB3。近年研究证实,先天性颞骨畸形(主要为大前庭水管综合征)与SLC26A4基因突变显着相关。国内耳聋遗传资源收集网络调查研究表明,GJB2突变最为常见,其次是SLC26A4突变,前者突变检出率为21%,明确该基因突变致聋约15%;后者突变检出率约15%,明确该基因突变致聋约12%。迟发性显性遗传性聋患者虽然出生即携带致病突变,但幼年时听力可完全正常,随年龄增长,而逐渐出现听力减退,进行性加重。 目前已经应用于临床的耳聋基因常规检测项目主要有线粒体DNAA1555G基因、GJB2基因、PDS基因、GJB3基因等。耳聋基因筛查对先天性或遗传性聋的诊断具有一定参考价值。线粒体DNA A1555G基因突变与氨基糖甙类药物引起耳聋有关;GJB2基因被认为我国最常见的致聋基因,患儿GJB2基因阳性,应考虑先天性或遗传性聋的可能性;PDS基因突变可以导致大前庭水管综合征,PDS全序列扫描可作为分析诊断大前庭水管综合征的客观指标;还有比较常见的GJB3基因的538C>T为目前已知可诱发耳聋的致病基因。GJB3基因的538C>T纯合突变,提示目前已经耳聋或以后发生耳聋的机率非常大;而GJB3基因的538C>T杂合突变,提示以后可能发生耳聋或不发生耳聋的可能性均存在,因此需要长时期听力监测。必须强调指出,目前的耳聋基因检测仍处于非常初级的阶段,影响因素多,临床意义有限,某个项目一次或多次的检测值异常并不一定能

基因诊断与基因治疗

第二十一章基因诊断与基因治疗 基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 第一节基因诊断 一. 基因诊断的含义 传统对疾病的诊断主要是以疾病的表型改变为依据,如患者的症状、血尿各项指标的变化,或物理检查的异常结果,然而表型的改变在许多情况下不是特异的,而且是在疾病发生的一定时间后才出现,因此常不能及时作出明确的诊断。现知各种表型的改变是由基因异常造成的,也就是说基因的改变是引起疾病的根本原因。基因诊断是指采用分子生物学的技术方法来分析受检者的某一特定基因的结构(DNA水平)或功能(RNA水平)是否异常,以此来对相应的疾病进行诊断。基因诊断有时也称为分子诊断或DNA诊断(DNA diagnosis)。基因诊断是病因的诊断,既特异又灵敏,可以揭示尚未出现症状时与疾病相关的基因状态,从而可以对表型正常的携带者及某种疾病的易感者作出诊断和预测,特别对确定有遗传疾病家族史的个体或产前的胎儿是否携带致病基因的检测具有指导意义。 二. 基因诊断的原理及方法

(一)基因诊断的原理 疾病的发生不仅与基因结构的变异有关,而且与其表达功能异常有关。基因诊断的基本原理就是检测相关基因的结构及其表达功能特别是RNA产物是否正常。由于DNA的突变、缺失、插入、倒位和基因融合等均可造成相关基因结构变异,因此,可以直接检测上述的变化或利用连锁方法进行分析,这就是DNA诊断。 对表达产物mRNA质和量变化的分析为RNA诊断(RNA diagnosis)。 (二)基因诊断的方法 基因诊断是以核酸分子杂交(nucleic acid molecular hybridization)和聚合酶链反应(PCR)为核心发展起来的多种方法,同时配合DNA序列分析,近年新兴的基因芯片可能会发展成为一种很有用的基因诊断方法。 1.DNA诊断 常用检测致病基因结构异常的方法有下列几种。 ⑴斑点杂交:根据待测DNA 样本与标记的DNA探针杂交的图谱,可以判断目标基因或相关的DNA片段是否存在,根据杂交点的强度可以了解待测基因的数量。 ⑵等位基因特异的寡核苷酸探针(allele-specific oligonucleotide probe, ASO probe)杂交:是一种检测基因点突变的方法,根据点突变位点上下游核苷酸序列,人工合成约19个核苷酸长度的片段,突变的碱基位于当中,经放射性核素或地高辛标记后可作为探针,在严格杂交条件下,只有该点突变的DNA样本,才出现杂交点,即使只有一个碱基不配对,也不可能形成杂交点。一般尚合成正常基因同一序列,同一大小的寡核苷酸片段作为正常探针。如果受检的DNA样本只能与突变ASO探针,不与正常ASO探针杂交,说明受检二条染色体上的基因都发生这种突变,为突变纯合子;如果既能与突变ASO探针又能与正常ASO探针杂交,

什么是耳聋基因检测

什么是耳聋基因检测 我国有两千多万聋哑人,其中遗传性耳聋占50%以上。 遗传性耳聋多为隐性遗传病,即夫妻双方均为携带者时,自身听力正常,但子女有25%的机会为聋儿;而仅当夫妻中一方为携带者时,子女听力不受影响。目前正常人群中携带遗传性耳聋突变基因的比例是5-6%,因此听力正常的夫妻生出聋儿的现象时有发生,新生儿中耳聋发病率已达1-3‰。 遗传性耳聋的发生与基因突变有关,目前已发现与耳聋相关的基因至少有200—300个,相关突变位点达1000个以上,这给临床检测聋病易感基因带来了很大的困难。而对中国人而言,80%的先天性耳聋患者其致病基因为:GJB2基因235delC、SLC26A4基因919-2 A>G、线粒体12Sr RNA基因1555A>G和1494C>T。进行这四种基因的检测,可以明确大部分遗传性耳聋的原因。 进行耳聋基因检测,对于个人、家庭及下一代都十分重要。 (1)避免“一针聋”: 原本听力正常的人,在使用抗生素药物后,出现听力下降或者耳聋俗称“一针聋”。既往人们不知道是什么原因引起,现已经明确是由携带线粒体基因被氨基糖甙类药物损伤所致。 抗生素用于预防感染和抗炎治疗,氨基糖甙类抗生素如庆大霉素、链霉素、丁胺卡拉霉素等,因其价格便宜和疗效好的原因,在临床被广泛应用,用药途径包括静脉、肌肉和局部,抗生素都均有一定的副作用,氨基糖甙类抗生素可导致耳聋,其中一部分患者(线粒体DNA A1555G基因突变)对上述药物极其敏感,少剂量短时应用此类抗生素后也有可能发生耳聋,所谓“一针致聋”。在用药前进行耳聋基因检测是非常必要的。除了明确耳聋的病因,尚可指导携带线粒体DNA A1555G基因突变但未发病母亲家族中的亲属用药,避免他们因使用氨基糖甙类药物也发生耳聋的悲剧。 (2)减缓耳聋的发展。 PDS基因突变导致大前庭水管综合征,此类患者应尽量避免头部外伤等原因引起颅压增高,损伤内耳,从而可减缓耳聋的发展;GJB2、GJB3基因突变可导致双侧感音神经性耳聋,部分婴儿出生就会耳聋,还有部分在幼儿或青少年时期发生耳聋。 ????

基因诊断和治疗的医学应用

基因诊断和治疗的医学应用 郭龙飞 (保山学院资源环境学院云南保山678000) 摘要:各种癌症和恶性肿瘤是目前危害人类健康最为严重的疾病之一,且死亡率很高,现在还没有一种有效的治疗方法。传统的手术、放疗和化疗等方法对中晚期的患者治疗疗效已经明显不足。因此。找到一种新的治疗癌症和恶性肿瘤的治疗方法对人类健康发展是意义重大的。而基因治疗则是用各种手段从基因水平上来治疗各种疾病。于是,基因治疗为众多患者提供了希望,成为了现在医学界的热门话题。本文就是依据前人的研究成果,以基因治疗癌症和恶性肿瘤为主来论述基因治疗在医学上的应用。 关键词:基因诊断基因治疗癌症恶性肿瘤 1基因治疗概述 基因治疗的基本含义是通过遗传或分子生物学技术在基因水平上治疗各种疾病[1]。它是指将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞,以纠正基因缺陷或者发挥治疗作用,从而达到治疗疾病的目的。广义的基因治疗是指利用基因药物的治疗,而通常所称狭义的基因治疗是指用完整的基因进行基因替代治疗,一般用DNA序列[2]。它是运用基因工程技术直接纠正肿肿瘤细胞基因的结构及(或)功能缺陷,或者间接通过增强宿主对肿瘤的杀伤力和机体的防御功能来治疗肿瘤。通过外源基因的导入,激活机体抗瘤免疫,增强对肿瘤细胞的识别能力、抑制或阻断肿瘤相关基因的异常表达或增加肿瘤细胞对药物的敏感性,这些基因主要包括细胞因子基因、抗肿瘤基因、肿瘤药物相关基因和病毒基因等[3]。 目前基因治疗的方式(type of gene therapy)主要有3种:①基因矫正或置换:即对缺陷基因的异常序列进行矫正,对缺陷基因精确地原位修复,或以正常基因原位置换异常基因,因此不涉及基因组的任何改变。②基因增补:不去除异常基因,而是通过外源基因的导人,使其表达正常产物,从而补偿缺陷基因的功能。③基因封闭:有些基因异常过度表达,如癌基因或病毒基因可导致疾病,可用反义核酸技术、核酶或诱饵转录因子来封闭或消除这些有害基因的表达[4]。 2基因诊断应用 2.1基因诊断新生儿脊髓性肌萎缩 目前报道有一些较严重的SMA I型患儿会出现关节挛缩、骨折、呼吸困难和感觉神经元受损的表现,但机制还不清楚,可能与5ql3缺失大小有关。SMA尚无特异的治疗方法,临床主要是对症治疗,如早期发现SMA患儿呼吸系统受累并干预性通气治疗可以延长疾病的病程、改善患儿生活质量、减少肺部继发性感染及呼吸衰竭发生。本例患儿经抗炎、吸氧、吸痰、补充维生素、给予丙种球蛋白等对症治疗和支持治疗,呼吸困难逐渐缓解,双肺痰鸣音减少,但最终家长考虑远期预后不良而放弃治疗[5]。 最近,在体外实验研究中发现丁酸纳、丙戊酸和Htra—ISl的调节因子可以增加SMN2基蛋白的作用,而且对细胞几乎没有毒性作用,但研究工作还处于动物实验阶段,没有正式应用于临床,该类药物可能为SMA的治疗开辟了新的途径[5]。 2.2早期胰腺藩的基因诊断 近年来,胰腺癌的发病率和死亡率呈逐渐上升趋势,每年有新发病例约20万人,占全部恶性肿瘤发病的2%。其发病匿,早期缺乏特异表现,恶性程度高,极易出现转移,80%-90%的胰腺癌病人就诊时,已经到了晚期,手术切除率只有15%,年生存率为1%-5%。而早期胰腺癌的手术切除率为90-100%,5年生存率可达70%- 100%。另有研究表明,肿瘤的大小是重要的生存率预测因子,如果直径

基因检测相关问题及答案

十个问题及答案 问题1:基因检测有什么用途? 回答: 1. 辅助临床诊断:很多疾病表现出来的症状类似,临床上很难进行鉴别诊断,容易混淆。若是通过基因检测,在基因层面找到致病原因,可以辅助临床医生鉴别诊断甚至纠正临床上的诊断。 举例:某基因检测机构通过对一个临床疑似“先天性白内障-小角膜综合症”的家系进行了基因检测,最后在基因层面发现他们家系患的其实是“玻璃体视网膜脉络膜病”而非“先天性白内障-小角膜综合症”,帮其纠正了临床诊断。 又如:糖尿病中有一型特殊类型的糖尿病为“单基因糖尿病”(由单个基因突变引起,为孟德尔遗传病)由于其基因存在缺陷,使得患者在代谢特征、临床表现和治疗方案等方面,都与1型或者2型糖尿病患者有着明显的区别。但是,由于认识上的不足,单基因糖尿病常常被误认为1型或2型糖尿病。英国一项流行病学的调查显示,有80%的青春晚期糖尿病(MODY)患者未被正确诊断。在欧美国家的单基因糖尿病的研究中,发现有10%的1型糖尿病和2-5%的2型糖尿病其实是单基因糖尿病。所以,通过对正常人群体,特别是有糖尿病家族史的人群,进行单基因糖尿病致病基因的筛查,可以尽早发现基因缺陷,从而把单基因糖尿病患者从1型或者2型糖尿病患者中区分出来。 2.携带者筛查:最常见的是唐氏综合征的筛查。传统的唐氏综合征筛查是利用血清学筛查进行的,检出率为65%-75%,容易漏检。而无创产前基因检测则可以准确地筛查出唐氏综合征患儿,还包括对18三体综合征和13三体综合征的筛查。此外,针对具有某些单基因遗传病(尤其是隐性遗传病)家族史的高危人群进行相关致病基因的筛查,可以及时发现该家族中致病基因的携带情况,进而分析后代患病的风险,为家属成员提供有效的遗传信息,防止缺陷基因向下一代遗传。 3指导治疗:现在医生开药的遵循的是经过广泛测试后提供的剂量信息。但所有的药物在测试过程中都是以群体作为样本的,因此药物剂量在对于大多数人是合适的。但是由于每个人的基因不同,会导致正常剂量下的药物对一些人产生致命的作用。导致原本挽救健康的药可能反而对健康造成伤害。这样的现象就称为药物不良反应(adverse drug reactions, ADR)。如药物warfarin是一种抗凝剂,是防止血液凝固的一种药物,病人服用这种药物可以大大减轻血栓形成的危险。但是抗凝剂服用过多,血液便不容易凝固,会造成出血,甚至有生命危险。在我们身体中有一种酶叫CYP2C9,它可以代谢这种抗凝剂,把它分解成小分子物质,使之失去抗凝血作用。正常情况下warfarin发挥作用后被代谢,完成它的药物治疗作用,也并不对人身体造成危害。但是,如果一个人CYP2C9发生突变,代谢功能降低,是弱代谢型

基因多态性的检测方法

基因多态性的检测方法 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变,用限制酶切割基因组时,所产生的片段数目和每个片段的长度就不同,即所谓的限制性片段长度多态性,导致限制片段长度发生改变的酶切位点,又称为多态性位点。最早是用Southern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行

耳聋基因检测与诊断的意义

耳聋基因检测与诊断的意义 我国科学家1998年成功克隆了人类遗传性感音神经性聋疾病基因GJB3。近年研究证实,先天性颞骨畸形(主要为大前庭水管综合征)与SLC26A4基因突变显著相关。国内耳聋遗传资源收集网络调查研究表明,GJB2突变最为常见,其次是SLC26A4突变,前者突变检出率为21%,明确该基因突变致聋约15%;后者突变检出率约15%,明确该基因突变致聋约12%。迟发性显性遗传性聋患者虽然出生即携带致病突变,但幼年时听力可完全正常,随年龄增长,而逐渐出现听力减退,进行性加重。 目前已经应用于临床的耳聋基因常规检测项目主要有线粒体DNAA1555G基因、GJB2基因、PDS基因、GJB3基因等。耳聋基因筛查对先天性或遗传性聋的诊断具有一定参考价值。线粒体DNA A1555G 基因突变与氨基糖甙类药物引起耳聋有关;GJB2基因被认为我国最常见的致聋基因,患儿GJB2基因阳性,应考虑先天性或遗传性聋的可能性;PDS基因突变可以导致大前庭水管综合征,PDS全序列扫描可作为分析诊断大前庭水管综合征的客观指标;还有比较常见的GJB3基因的538C>T为目前已知可诱发耳聋的致病基因。GJB3基因的 538C>T纯合突变,提示目前已经耳聋或以后发生耳聋的机率非常大;而GJB3基因的538C>T杂合突变,提示以后可能发生耳聋或不发生耳聋的可能性均存在,因此需要长时期听力监测。必须强调指出,目前的耳聋基因检测仍处于非常初级的阶段,影响因素多,临床意义有限,某个项目一次或多次的检测值异常并不一定能得出耳聋病因的肯定

性结论。而且,耳聋基因检测只是提示在耳聋病因中占很少数的先天性或遗传性聋的可能性,对在耳聋病因中占大多数的后天获得性感音神经性聋诊断仅具有排除性诊断方面的参考意义。 由于耳聋基因在正常人群中也有较高的携带率,如GJB2、SLC26A4突变在听力正常人群中携带率均为3%,线粒体DNA1555和1494突变携带率约为1/300,听力正常的育龄夫妇携带至少一种基因突变的几率为6.3%。因此我们认为在有生育要求但无耳聋家族遗传史的听力正常育龄夫妇中进行常见耳聋基因筛查,在此基础上对携带耳聋基因突变的夫妇提供遗传咨询,这一前瞻性防治策略将阻止较大比例的先天性隐性遗传性耳聋的出生,其意义远远大于对已生育聋儿的正常夫妇进行耳聋遗传咨询和产前诊断,从根本上为预防遗传性耳聋发生提供了理论依据和方法。因此耳聋基因筛查和产前诊断可以产生巨大的经济效益和社会效益,从而真正达到提高人口质量,优生优育的目的。 一、预防避免耳聋发生或通过及时治疗延缓听力下降 药物性耳聋密切相关的母系遗传线粒体DNA12SrRNA突变相关性耳聋。突变基因携带者对氨基糖甙类抗生素敏感,这就是在携带此突变的个体中使用氨基糖甙类抗生素可以导致或者加重耳聋的原因。如果携带该突变的个体通过基因检测预知自己和家族成员携带这种突变,避免接触氨基糖甙类药物则完全可以避免耳聋的发生,这也正是耳聋基因检测的意义所在。不仅为聋人明确病因,还要为耳聋易感个体提供个体化的遗传咨询和预防措施。 另外一种可以通过有效手段延缓听力下降的耳聋类型是由

第九章 基因诊断[1]

第九章基因诊断 基因诊断是通过检测基因的存在状态或缺陷对疾病作出诊断的方法。 基因诊断的主要技术: 1、核酸分子杂交 2、聚合酶链反应(PCR) 3、基因芯片技术 第一节核酸分子杂交技术 核酸杂交(Nucleic acid hybridization)是指具有一定同源性的两条单链核酸在一定条件下,按碱基互补的原则重新配对形成双链的过程。 一、核酸杂交的基本原理 DNA的变性和复性: 在一定的条件(如适当的温度、有机溶剂存在等)下,DNA的双链可解开成为单链,这一过程称为DNA的变性(Denaturatioin)。高温、低盐和有机溶剂促进DNA变性。 Tm值是反映DNA的热稳定性的一个参数,称为DNA的熔化温度,系指一半的双链DNA解离成为单链时的温度。 DNA的热稳定性或Tm值直接与其碱基组成特别是GC碱基对含量有关,GC碱基对含量越高,Tm值也越高。 DNA的杂交即复性(Renaturation)是变性的单链DNA在一定的条件下(低于Tm的温度下)与其互补序列退火形成双链的过程,因此杂交与Tm值相关。 影响杂交的主要因素: 温度:一般在低于Tm约15至25度的温度下杂交速率最快。 盐浓度:钠离子增加杂交分子的稳定性,降低钠离子浓度强烈地影响Tm值和复性速率。但当钠离子浓度超过0.4M时,对复性速度和Tm值影响不大。 甲酰胺:有机溶剂如甲酰胺能减少双链核酸的稳定性。每增加1%的甲酰胺,DNA/DNA或DNA/RNA双链的Tm值减少0.72℃。常用50%甲酰胺

硫酸葡聚糖:使杂交速率增加,但有时可能增加杂交本底。 二、核酸探针的选择和标记 核酸探针是指能与待检测的靶核酸序列互补杂交的某种已知核酸片段,它必须具有高度的特异性,并且带有某种适当的标记以便被检测。 (一)核酸探针的类型 1、克隆的DNA片段,常用cDNA探针。 2、RNA探针(Riboprobe) RNA探针的优点是特异性高;杂交效率(灵敏度)更高。适合于Northen杂交、原位杂交等。主要缺点是不稳定,易被降解,另外其制备较困难。 3、寡核苷酸探针可用化学方法人工合成,制备较方便,但灵敏度稍差。 4、聚合酶链反应扩增产物是很好的探针来源,其优点是制备和标记相对容易。(二)核酸标记的类型 放射性同位素目前应用最广,优点是灵敏度高,特别适用于单拷贝基因或低丰度mRNA检测,缺点是易造成放射性污染以及半衰期短,使用不便。 核酸探针标记常用的同位素有以下几种: 1、32P:其放射性强,自显影时间短,灵敏度较高,缺点是半衰期短(14.3天),放射线散射较严重,因此对分辩率有影响。 2、35S :放射性较低,半衰期长(87.1天),灵敏度较高;低散射,因此在用X-光片自显影时分辩率高,特别适用于核酸序列分析和原位杂交等 实验。 3、33P :是一种较理想的同位素,它的放射性较低,灵敏度高,分辩率好,半衰期也较长(25.4天),适用范围较广。但价格偏高。 非同位素标记:常用地高辛或生物素系统。 优点:无放射性污染,较稳定;缺点:灵敏度、特异性稍差。 (三)核酸探针的标记 1、随机引物法(Random priming) 随机引物是人工合成的含有各种可能的排列顺序的六核苷酸片段的混合物,因此可以与任何核酸片段杂交,并作为聚合酶反应的引物。 标记酶:大肠杆菌DNA聚合酶Ⅰ的大片段-klenow片段。

关于基因检测方法

关于基因检测方法 一、Southern印迹法(Southern blot) 基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA 变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。 当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。 二、聚合酶链反应 近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA 片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。 三、扩增片段长度多态性 小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析. 四、等位基因的特异寡核苷酸探针诊断法 当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来. PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。 五、单链构象多态性诊断法 单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。

儿童耳聋基因检测详解

儿童耳聋基因检测 耳聋是临床上最常见的遗传病之一。在我国60%以上的先天性耳聋都是由遗传因素导致的。因此明确致聋病因,对于防聋治聋有重要的意义。一个家庭生育一个聋儿后,再生育二胎时,建议夫妻双方和胎儿都要做耳聋基因检测,及早治疗,降低聋哑的发生率。 导致耳聋的原因有环境因素、遗传因素或者环境因素与遗传因素共同作用,其中遗传因素是主要的部分。在大量的迟发性听力下降患者中,亦有许多患者也是由于自身的基因缺陷致病,或由于基因缺陷和多态性造成对致聋环境因素易感性增加而致病。以往受检测条件所限,耳聋病因学诊断一直是临床上的难题之一,医生诊断到“神经性耳聋”这一步就无法再深入。近年来,随着人类基因组计划的完成,使得遗传性耳聋的病因学研究取得很大进展。 耳聋基因检测可为相当比例的遗传性耳聋患者提供准确的分子诊断,并可依据遗传模式对患者或突变携带者进行相关婚育指导和后代遗传性耳聋风险的评估。结合产前诊断,还可以在孕早期对胎儿的基因突变遗传情况进行检测,进而有效地减少遗传性聋病的发生。 80%的听障儿童由听力正常父母所生 有一些家长会非常疑惑,父母都没有耳聋,为什么生出孩子会是遗传性耳聋呢?这就涉及到遗传性耳聋的隐性遗传和新发突变的问题。顾主任解释说,数据显示,80%的听障儿童由听力正常父母所生,但事实上每100个正常人就有6个人携带耳聋致病突变基因。但是,他们大多数属于常染色体隐性遗传,如果父母各自携带一条致病的耳聋基因,他们自身只是携带者,不发病,但是会有25%的概率将两条致病基因都遗传给孩子,孩子就患上了遗传性耳聋。 另一种情况很少见,就是胚胎在发育过程中,受病毒感粱、环境毒害因素等导致基因发生新发突变,从而导致孩子出现耳聋。 如果在新生儿的听力筛查中采取“基因检测+物理听力筛查”的联合筛查方式,则能抓住很多“漏网之鱼”。基因检测非常简单,只需抽一点血就可以了,而这种检测将常规听力筛查可能漏掉的药物性耳聋(一针致聋)、迟发性耳聋(一巴掌致聋)的检出,及早干预避免耳聋发生,并为携带致病基因的患儿家庭提供后续生育指导的依据。从而有效阻断遗传性耳聋在家庭成员中的传递,降低了生育聋儿的风险。

相关主题
文本预览
相关文档 最新文档