当前位置:文档之家› 高光谱图像分类

高光谱图像分类

高光谱图像分类
高光谱图像分类

《机器学习》课程项目报告

高光谱图像分类

——基于CNN和ELM

学院信息工程学院

专业电子与通信工程

学号 35

学生姓名曹发贤

同组学生陈惠明、陈涛

硕士导师杨志景

2016 年 11 月

一、项目意义与价值

高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。

在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。

相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。

高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统的分类方法往往需要很多数目的已知类别的训练样本,从而导致计算量大,时间复杂度高。另外,如果训练样本的数目较少,采用传统分类算法进行分类时分类精度往往是很低的,因此提高分类精度并减少运算量成为高光谱领域的热点问题。

高光谱遥感图像的波段数目多,并且波段与波段间存在着很大的相关性,因此在进行遥感图像的处理(例如分类)之前通常需要进行降维预处理,这样做不仅可以降低数据空间的维数,减少冗余信息,而且还有利于人工图像解译和后续分类处理和地物识别,从而为解决高光谱遥感分类的难点提供了方便[5]。

二、高光谱图像分类的发展与现状

高光谱图像分类作为高光谱图像的基础研究,一直是高光谱图像重要的信息获取手段,它的主要目标是根据待测地物的空间几何信息与光谱信息将图像中的每个像素划分为不同的类别。高光谱图像分类按照是否有已

知类别的训练样本的参与,高光谱图像的分类方式分为监督分类与非监督分类[6]。

在遥感图像自动分类中,传统的基于数理统计的分类方法,主要包括最小距离分类、最大似然分类、波谱角分类、混合距离法分类等,主要依赖地物的光谱属性,基于单个像元进行分类。统计模式识别方法本身的不足:

1、最大似然法计算强度大,且要求数据服从正态分布

2、K-means聚类分类精度低,分类精度依赖于初始聚类中心

3、最小距离法没有考虑各类别的协方差矩阵,对训练样本数目要求低

近年来对于神经网络分类方法的研究相当活跃。它区别于传统的分类方法:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射是通过网络自组织完成的。在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。人工神经网络(ANN)分类方法一般可以获得更高精度的分类结果,因此ANN方法在遥感分类中被广泛应用,特别是对于复杂类型的地物类型分类,ANN方法显示了其优越性。

专家系统分类法也在遥感分类取得了一定的应用。专家系统是模拟人类逻辑思维的智能系统,将其应用于遥感分类最大的优点就是可以充分利用更多的辅助分类数据。不过由于专家系统知识库难以建立,影响了它的进一步发展。

支持向量机(SVM)具有严格的理论基础,能较好地解决小样本、非线性、高维数等问题,被成功地应用到多光谱、高光谱遥感图像分类领域。

对于高光谱数据而言,由于波段多、数据量大、数据不确定性等,易受Hughes现象(即训练样本固定时,分类精度随特征维数的增加而下降)影响。而样本的获取在高光谱分类中往往是一项比较困难的工作,特别是采用高维特征向量时要求每类的样本数都要比特征维数高,因此在高维信息处理中的精度与效率和高光谱遥感信息精细光谱与大数据量之间仍然存在着极大的矛盾。

三、卷积神经网络理论基础

卷积神经网络是人工神经网络的一种,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少的权值的数量以节约训练和测试的计算时间。该优点在网络的输入是多维图像时表现得更加明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维数据而专门设计的一个多层感知机,其网络对平移、比例变化和倾斜等具有高度不变性[7]。

在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显着的特征。这个方法能够获取对平移、缩放和旋转不变的观测数据的显着特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘或者角点。

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,每个平面又由多个独立的神经元组成。图2为卷积神经网络的整体结构图。

一般地,C层(卷积层)为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层(下采样层)是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用sigmoid函数等映射函数作为卷积网络的激活函数,使得特征映射具有位移不变性。

此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变

容忍能力。

卷积神经网络采用有监督学习的方式进行训练,即任何一个训练样本的类别是已知的,训练样本在空间中的分布不再是依据其自然分布倾向来划分,而是根据同类样本和不同类样本中的空间关系进行划分,这需要不

断调整网络模型的参数用以划分样本空间的分类边界的位置,是一个耗时且复杂的学习训练过程[8]。

神经网络在进行训练时,所有的网络权值都用一些不同的小随机数进行初始化,这些小的随机数能偶保证网络不会因为权值过大而进入饱和状态,导致训练失败。神经网络训练算法包括4个主要部分:

(1)样本集中取出样本(X,y

p )并将其输入网络,X代表图像数组,y

p

代表其类别;

(2)计算此次输入相应的实际输出O p ,这是一个前向传播的过程;

(3)用一个指定的损失函数计算出实际输出O p与理想输出Y p的误差;

(4)按极小化误差的方法反向传播调整网络权值。

四、极限学习机

极限学习机(extreme learning machine)ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。2004年由南洋理工大学黄广斌副教授提出。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。

极限学习机的网络训练模型采用前向单隐层结构。设,,

m M n分别为网络输入层、隐含层和输出层的节点数,()

g x是隐层神经元的激活函数,

i b 为阈值。设有N 个不同样本(),i i x t ,1i N ≤≤ ,其中

[][]1212,,...,,,,...,T T

m n i i i im i i i in x x x x R t t t t R =∈=∈ ,则极限学习机的网络训练模

型如图1所示。

图1 极限学习机的网络训练模型

极限学习机的网络模型可用数学表达式表示如下:

()1

,1,2,...,M

i i

i i j i g x b o j N βω

=+==∑

式中,[]12,,...,i i i mi ωωωω= 表示连接网络输入层节点与第i 个隐层节点的输入权值向量;[]12,,...,T

i i i in ββββ= 表示连接第i 个隐层节点与网络输出层节点的输出权值向量;[]12,,...,T

i i i in o o o o = 表示网络输出值。 极限学习机的代价函数E 可表示为

()1,N

j j j E S o t β==-∑

式中,(),,1,2,...,i i s b i M ω== ,包含了网络输入权值及隐层节点阈值。Huang 等指出极限学习机的悬链目标就是寻求最优的S ,β,使得网络输出值与对应实际值误差最小,即()()min ,E S β 。

()()min ,E S β可进一步写为

()()()111,,min ,min ,...,,,...,,,...,i i M M N b E S H b b x x T ωβ

βωωβ=-

式中,H 表示网络关于样本的隐层输出矩阵,β表示输出权值矩阵,T 表示样本集的目标值矩阵,H ,β,T 分别定义如下:

()()()()()111111111,...,,,...,,,...,M M M M N N m N M N M g x b g x b H b b x x g x b g x b ωωωωωω?++????

=??

??

++?

? 11,T T T T M N M N N N

t T t βββ??????

????==????????????

极限学习机的网络训练过程可归结为一个非线性优化问题。当网络隐层节点的激活函数无限可微时,网络的输入权值和隐层节点阈值可随机赋值,此时矩阵H 为一常数矩阵,极限学习机的学习过程可等价为求取线性系统H T β= 最小范数的最小二乘解?β ,其计算式为

?H T β

+= 式中H +时矩阵H 的MP 广义逆。

五、 具体实现及主要代码

1、

训练的样本及其样本图

2、原图及进行分类后的图和各个高光谱数据集每一类的分类精度

The result of Pavia University

The result of Pavia Center

The result of Salinas

3、主要代码

The main code of Pavia University of Matlab

%% Convolution Neural Network And Extrem Learning Machine

%%Test 1 for PaviaUniversity

%% STEP 1: Initialize

cnnConfig=config();

[theta, meta] = cnnInitParams(cnnConfig);

n_class = {}.dimension;

load PaviaU;

load PaviaU_gt;

[images, labels, indexs,samimage] = loadtrain(paviaU, paviaU_gt);

d = {1}.dimension;

images = reshape(images,d(1),d(2),d(3),[]);

%% STEP 2: Train (The Cnn And Elm)

= 1;

= 30;

= ;

newtheta = minFuncSGD(@(x,y,z)

cnnCost(x,y,z,cnnConfig,meta),theta,images,labels,options);

K = cnnExtract(newtheta,images,cnnConfig,meta); [TrainingTime,TrainingAccuracy,InputWeight,BiasofHiddenNeurons, OutputWeight,NumberofOutputNeurons] =elmtrain(K,labels' ,1, 900); %% STEP 3: Test

[testImages, testLabels, testIndexs] = loadtest(paviaU,

paviaU_gt);

testImages = reshape(testImages,d(1),d(2),d(3),[]);

[row, col] = size(paviaU_gt);

testK = cnnExtract(newtheta,testImages,cnnConfig,meta); [TestingTime, TestingAccuracy,testoutputlabel,actualoutputs] = elmpredict(testK,testLabels',testIndexs,1,InputWeight,BiasofHid denNeurons,OutputWeight,NumberofOutputNeurons,row,col); predimage1=zeros(row,col);

predimage1(testIndexs)=testoutputlabel;

figure,imagesc(predimage1);

axis off;

[OA,kappa,AA,CA]= calcError(testLabels, predimage1(testIndexs), 1:n_class);

fprintf('cnn+elm Overall Accuracy is %f\n',OA);

fprintf('cnn+elm Average Accuracy is %f\n',AA);

fprintf('cnn+elm CA Acuuyracy is %f\n',CA);

fprintf('cnn+elm kappa is %f\n',kappa);

figure,imagesc(paviaU_gt);

axis off;

The main code of Pavia Center of Matlab

%% Convolution Neural Network And Extrem Learning Machine

%%Test 2 for Pavia center

cnnConfig = config3();

[theta, meta] = cnnInitParams(cnnConfig);

n_class = {}.dimension;

load Pavia;

load Pavia_gt;

[images, labels, indexs] = loadtrain3(pavia,pavia_gt);

d = {1}.dimension;

images = reshape(images,d(1),d(2),d(3),[]);

%% STEP 2: Train (The Cnn And Elm)

= 1;

= 25;

= ;

newtheta = minFuncSGD(@(x,y,z)

cnnCost(x,y,z,cnnConfig,meta),theta,images,labels,options);

K = cnnExtract(newtheta,images,cnnConfig,meta); [TrainingTime,TrainingAccuracy,InputWeight,BiasofHiddenNeurons, OutputWeight,NumberofOutputNeurons] =elmtrain(K,labels' ,1, 850); %% STEP 3: Test

[testImages, testLabels, testIndexs] = loadtest3(pavia, pavia_gt); testImages = reshape(testImages,d(1),d(2),d(3),[]);

[row, col] = size(pavia_gt);

testK = cnnExtract(newtheta,testImages,cnnConfig,meta);

[TestingTime, TestingAccuracy,testoutputlabel] =

elmpredict(testK,testLabels',1,InputWeight,BiasofHiddenNeurons, OutputWeight,NumberofOutputNeurons,row,col);

predimage1=zeros(row,col);

predimage1(testIndexs)=testoutputlabel;

figure,imagesc(predimage1);

axis off

[OA,kappa,AA,CA]= calcError(testLabels, predimage1(testIndexs), 1:n_class);

fprintf('cnn+elm Overall Accuracy is %f\n',OA);

fprintf('cnn+elm Average Accuracy is %f\n',AA);

fprintf('cnn+elm CA Acuuyracy is %f\n',CA);

fprintf('cnn+elm kappa is %f\n',kappa);

figure,imagesc(pavia_gt);

axis off

The main code of Salinas of Matlab

%% Convolution Neural Network And Extrem Learning Machine

%%Test 1 for Salinas

%% STEP 1: Initialize

cnnConfig=config();

[theta, meta] = cnnInitParams(cnnConfig);

n_class = {}.dimension;

load Salinas_corrected;

load Salinas_gt;

[images, labels, indexs,samimage] = loadtrain(salinas_corrected, salinas_gt);

d = {1}.dimension;

images = reshape(images,d(1),d(2),d(3),[]);

%% STEP 2: Train (The Cnn And Elm)

= 1;

= 30;

= ;

newtheta = minFuncSGD(@(x,y,z)

cnnCost(x,y,z,cnnConfig,meta),theta,images,labels,options);

K = cnnExtract(newtheta,images,cnnConfig,meta);

[TrainingTime,TrainingAccuracy,InputWeight,BiasofHiddenNeurons, OutputWeight,NumberofOutputNeurons] =elmtrain(K,labels' ,1, 2300);

%% STEP 3: Test

[testImages, testLabels, testIndexs] =

loadtest(salinas_corrected,salinas_gt);

testImages = reshape(testImages,d(1),d(2),d(3),[]);

[row, col] = size(salinas_gt);

testK = cnnExtract(newtheta,testImages,cnnConfig,meta);

[TestingTime, TestingAccuracy,testoutputlabel,actualoutputs] = elmpredict(testK,testLabels',testIndexs,1,InputWeight,BiasofHid denNeurons,OutputWeight,NumberofOutputNeurons,row,col); predimage1=zeros(row,col);

predimage1(testIndexs)=testoutputlabel;

figure,imagesc(predimage1);

axis off;

[OA,kappa,AA,CA]= calcError(testLabels, predimage1(testIndexs), 1:n_class);

fprintf('cnn+elm Overall Accuracy is %f\n',OA);

fprintf('cnn+elm Average Accuracy is %f\n',AA);

fprintf('cnn+elm CA Acuuyracy is %f\n',CA);

fprintf('cnn+elm kappa is %f\n',kappa);

figure,imagesc(salinas_gt);

axis off;

六、参考文献

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

高光谱遥感期末考复习材料

1、地面光谱测量的作用: ①地面光谱辐射计在成像光谱仪过顶时,常用于地面野外或实验室同步观测,获取下 行太阳辐射,以用于遥感器定标。 ②在一些反射率转换模型中,需要引入地面光谱辐射计测取得地面点光谱来完成 DN 值图像到反射率图像的转换。 ③地面光谱辐射计可以为图像识别获取目标光谱和建立特征项。但是,这时地面光谱 测量要在空间尺度上与图像像元尺度相对应,且要具有代表性;另外,地面光谱测 量要与高光谱图像获取条件相一致。 ④通过地面光谱辐射计测量数据和地面模拟,可以帮助人们了解某一地物被高光谱遥 感探测的可能性,理解其辐射特性,确定需要采用的探测波长、光谱分辨率、探测 空间分辨率、信噪比、最佳遥感探测时间等重要参数。 ⑤地面光谱辐射计还可以勇于地面地质填图。它可以用于矿物的光谱吸收特征,识别 地面矿物或矿物的集合,从而直接完成野外矿物填图。 ⑥可以用来建立地物的表面方向性光谱反射特性。 ⑦建立目标地面光谱数据与目标特性间的定量关系。 2、高光谱成像特点: ①高光谱分辨率。高光谱成像光谱仪能获得整个可见光、近红外、短波红外、热红外 波段的多而窄的连续光谱,波段多至几十甚至数百个,其分辨率可以达到纳米级, 由于分辨率高,数十、数百个光谱图像可以获得影像中每个像元的精细光谱。 ②图谱合一。高光谱遥感获取的地表图像包含了地物丰富的空间、辐射和光谱三重信 息,这些信息表现了地物空间分布的影像特征,同时也可能以其中某一像元或像元 组为目标获得他们的辐射强度以及光谱特征。 ③光谱波段多,在某一光谱段范围内连续成像。成像光谱仪连续测量相邻地物的光谱 信号,可以转化城光谱反射曲线,真实地记录了入射光被物体所反射回来的能量百 分比随波长的变化规律。不同物质间这种千差万别的光谱特征和形态也正是利用高 光谱遥感技术实现地物精细探测的应用基础。 3、高光谱遥感图像数据表达: ①图像立方体——成像光谱信息集。 ②二维光谱信息表达——光谱曲线。 ③三维光谱信息表达——光谱曲线图。(书本44页) 4、成像光谱仪的空间成像方式: (1)摆扫型成像光谱仪。摆扫型成像光谱仪由光机左右摆扫和飞行平台向前运动完成二维空间成像,其线列探测器完成每个瞬时视场像元的光谱维获取。扫描镜对地左右平行扫描成像,即扫描的运动方向与遥感平台运动方向垂直。其优点:可以得到很大的总视场,像元配准好,不同波段任何时候都凝视同一像元;在每个光谱波段只有一个探测元件需要定标,增强了数据的稳定性;由于是进入物镜后再分光,一台仪器的光谱波段范围可以做的很宽,比如可见光一直到热红外波段。其不足之处是:由于采用光机扫描,每个像元的凝视时间相对就很短,要进一步提高光谱和空间分辨率以及信噪比比较困难。 (2)推扫型成像光谱仪。是采用一个垂直于运动方向的面阵探测器,在飞行平台向前运动中完成二维空间扫描,它的空间扫描方向是遥感平台运动方向。其优点是:像元的凝视

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

高光谱遥感影像的光谱匹配算法研究概要

https://www.doczj.com/doc/2a3032911.html, 中国科技论文在线高光谱遥感影像的光谱匹配算法研究 蔡燕1,梅玲2作者简介:蔡燕,(1984-),女,硕士研究生,主要研究方向:高光谱遥感 通信联系人:梅玲,(1984-),女,助理工程师,主要研究方向:水文地质. E-mail: meilingcumt@https://www.doczj.com/doc/2a3032911.html, (1. 中国矿业大学环境与测绘学院,江苏徐州 221008; 2. 江苏煤炭地质勘探四队,南京 210046) 摘要:在高光谱遥感影像处理中,光谱匹配技术是高光谱地物识别的关键技术之一。本文主要围绕光谱匹配算法的研究展开,分析讨论了常用的几种光谱匹配技术的特点,根据先验知识建立了多种地物标准光谱库,并将其读入程序存储,基于Visual C++平台实现了最小距离匹配,光谱角度匹配,四值编码匹配法,最后基于混淆矩阵对分类图像进行精度比较分析并对三种编码匹配法进行比较。 关键词:高光谱;光谱匹配;最小距离匹配;光谱角度匹配;四值编码 中图分类号:TP751 The Study on the Spectral Matching Technique of hyperspectral romote sensing Cai Yan1, Mei Ling2 (1. School Of Environment Science and Spatial Informatics China University of Mining and Technology, JiangSu XuZhou 221008;

2. JiangSu Geological Prospecting Team Four, NanJing 210046 Abstract: In the hyperspectral image processing, the spectral match technique is one of key techniques to identify and classify materials in the image. This paper addresses some issues of spectral matching methods. Several algorithms are analyzed and compared, such as minimum distance matching, spectral angle mapping and quad-encoding. According to the prior knowledge, standard spectral library including typical land-cover types is built, which is stored and used for spectral matching. All of work is done in the programming environment of Visual C++. Finally, the experimental results are tested and compared when classification accuracies are computed based on confusion matrixes. Keywords:hyperspectral; spectral match; minimum distance matching; spectral angle mapping; quad-encoding 0 引言 高光谱遥感技术的发展和广泛应用是20世纪最具有标志性的科学技术成就之一,与传统的多光谱遥感技术相比,高光谱分辨率遥感的核心特点是图谱合一,即能获取目标的连续窄波段的图像数据[1]。高光谱遥感信息的分析处理集中于光谱 维上进行图像信息的展开和定量分析。 高光谱影像分类与地物识别是建立在传统的遥感图像分类算法基础之上,结合高光谱数据特点,对高光谱图像数据进行目标识别,是对遥感图像基本分类方法的扩展与延伸。高光谱遥感影像有着很高的光谱分辨率,且光谱通道连续,因此对于影像中的任一像元均能获取一条平滑而完整的光谱曲线,将其与地物波谱库中的光谱曲线进行匹配运算,实现地物识别与定量反演[2-4]。光谱匹配技术是成像光谱地物识别的关键技术之一,主要通过对地物光谱与参考光谱的匹配或地物光谱与数据库的比较,求算他们之间的相似性或差异性,突出特征谱段,有小提取光谱维信息,以便对地物特征进行详细分析[5]。本文紧紧围绕光谱匹配的算法分析了最小 距离法,光谱角度匹配法,以及四值编码法,进行精度分析与方法比较。

高光谱遥感影像分类算法 - SVM

高光谱遥感影像分类算法——SVM 1高光谱遥感简介 20 世纪 80 年代以来,遥感技术的最大成就之一就是高光谱遥感技术的兴起[1]。高光谱遥感技术又称成像光谱遥感技术,始于成像光谱仪的研究[2]。所谓高光谱遥感(Hyperspectral Remote Sensing)通俗地说就是指利用很多很窄的电磁波波段从感兴趣的物体中获取有关数据的方法。高光谱遥感的最大特点是,在获得目标地物二维空间影像信息的同时,还可以获得高分辨率的可表征其地物物理属性的光谱信息,即人们常说的具有“图谱合一”的特性。可见,与全色、彩色和多光谱等图像数据相比,高光谱影像革命性地把地物的光谱反射信息、空间信息和地物间的几何关系结合在了一起[3]。因此,可以很客观地说,高光谱遥感是代表遥感最新成就的新型技术之一,同时也是目前国内外学者,特别是遥感领域的学者的研究热点之一[4-5]。 2高光谱遥感研究背景 在以美国为代表的成像光谱仪研制成功,并获得高光谱影像数据后,高光谱遥感影像由于其蕴含了丰富的信息(包括地物的空间位置、结构以及光谱特性等信息)使得人们对地物的识别有了显著的提高,并且在许多方面和领域(比如,农业、林业、地质勘探与调查和军事等)都体现出了潜在的巨大应用价值[6]。虽然高光谱影像数据的确为我们的提供了丰富的对地观测信息,但也正是因为高光谱庞大的数据量和高维数的问题使得我们目前对高光谱数据的处理能力显得较为低效,而这也在一定程度上制约了高光谱数据在现实生产和生活的广泛应用与推广[7-8]。因此,为了响应人们对高光谱影像数据处理方法所提出的新的迫切要求,也为了充分利用高光谱数据所包含的丰富信息以最大程度地发挥高光谱的应用价值,我们必须针对高光谱数据的独有特点,在以往遥感图像数据处理技术的基础上,进一步改善和发展高光谱遥感影像处理分析的方法与技术。 3高光谱遥感分类研究 3.1分类的意义 分类是人类了解和认识世界的不可或缺的基本手段。人类的日常生活和生产实践都离不开,也不可能离开分类活动。面对海量数据,人类需要借助计算机来对自身感兴趣的数据进行自动、高效和准确地分类。这一迫切需求已体现在各个

高光谱图像分类实验报告

实验报告 姓名专业:学号日期:2015 年12 月22 日 课程名称:高光谱遥感指导教师(学生填写): 成绩:教师签名: 一、实验项目:高光谱遥感图像的分类 二、实验类型(√选):0演示实验;1验证实验;2综合实验;3设计性实验;4创新实验 三、实验目的:利用ENVI软件实现高光谱遥感图像的分类 四、实验准备:电脑一台,ENVI Classic软件,HSI数据 五、实验简要操作步骤及结果: 1、EFFORT Folishing处理。 本次实验所用HIS数据是进行了大气校正等处理后的数据,由于数据光谱曲线呈明显的锯齿状。所以先利用EFFORT Folishing工具进行处理。 1)选择Spectral->EFFORT Folishing 2)出现“Select EFFORT Input File”对话框,选择数据,点击OK。 3)出现“EFFORT Input Parameters”窗口,进行目标的选择以及参数的设置。

处理完成后生成数据Memory1 4)将处理前后同一像元的光谱曲线进行比较

处理前光谱曲线处理后光谱曲线 可以明显看出,经过EFFORT Folishing处理后的数据,其波谱曲线比较平缓,明显的锯齿状消失。 2、Spectral Angle Mapper 光谱角填图 光谱角填图是一种监督分类技术。该算法是将图像波谱直接同参考波谱匹配的一种交互式分类方法,是一种比较图像波谱与地物波谱或波谱库中地物波谱的自动分类方法。 定义示意图

计算公式 1)选择Spectral->Mapping Methods->Spectral Angle Mapper. 2)选择Memory1数据进行处理。出现Endmember Collection:Sam窗口。 3)在#3窗口选择Overlay->Region of Interest.用Zoom视野在图像上选择感兴趣区域(明显的地物类型区域)

基于深度学习的高光谱图像分类方法

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2017, 6(1), 31-39 Published Online February 2017 in Hans. https://www.doczj.com/doc/2a3032911.html,/journal/airr https://https://www.doczj.com/doc/2a3032911.html,/10.12677/airr.2017.61005 文章引用: 袁林, 胡少兴, 张爱武, 柴沙陀, 王兴. 基于深度学习的高光谱图像分类方法[J]. 人工智能与机器人研究, A Classification Method for Hyperspectral Imagery Based on Deep Learning Lin Yuan 1, Shaoxing Hu 1, Aiwu Zhang 2, Shatuo Chai 3, Xing Wang 3 1School of Mechanical Engineering and Automation, Beihang University, Beijing 2 Colledge of Resource Environment and Tourism, Capital Normal University, Beijing 3 Animal husbandry and Veterinary Hospital of Qinghai University, Xining Qinghai Received: Feb. 3rd , 2017; accepted: Feb. 18th , 2017; published: Feb. 24th , 2017 Abstract Remote sensing hyperspectral imaging can obtain abundant spectral information, which provides the possibility for the analysis of high precision terrain. The hyperspectral image has the charac-teristics of “map in one”, and the full use of spectral information and spatial information in hy- perspectral image is the premise of obtaining accurate classification results. Deep learning stack machine model in automatic encoding (Stack Auto-Encoder SAE) can effectively extract data in nonlinear information, and convolutional neural network (Convolutional Neural Network, CNN) can automatically extract features from the image. Based on this, this paper presents a classifica-tion method of hyperspectral images based on deep learning. Firstly, the spectral dimension of the hyperspectral data is reduced using automatic encoding machine, then convolutional neural net-work is used as the classifier, and the pixel and its neighborhood pixels are classified together as the input of the classifier, so as to realize the hyperspectral image classification with spectral space. Keywords Hyperspectral, Image Classification, Depth Learning, Automatic Coding Machine, Convolutional Neural Network 基于深度学习的高光谱图像分类方法 袁 林1,胡少兴1,张爱武2,柴沙陀3,王 兴3 1北京航空航天大学机械工程及自动化学院,北京 2 首都师范大学资源环境与旅游学院,北京 3 青海大学畜牧兽医院,青海 西宁 收稿日期:2017年2月3日;录用日期:2017年2月18日;发布日期:2017年2月24日

相关主题
文本预览
相关文档 最新文档