当前位置:文档之家› 氧化锌非线性电阻测试电源系统.

氧化锌非线性电阻测试电源系统.

氧化锌非线性电阻测试电源系统.
氧化锌非线性电阻测试电源系统.

氧化锌非线性电阻测试电源系统

氧化锌非线性电阻广泛用于电力系统过压保护和浪涌能量吸收。研究了一种对其进行测试的电源。测试电源用容量电抗器来提供非线性电阻测试所需要的浪涌能量。试验结果表明,测试电源工作可靠,能完成对氧化锌非线性电阻的有效测试。

0 引言

氧化锌非线性电阻是一种压敏电阻器,用于电力系统保护已有30多年的历史了,它具有保护效果好,节能、价廉等一系列优点,因此,在发电机转子过电压保护,剩磁吸收,及避雷器中有着不可替代的保护作用[1][2]。由于电力系统中感性元件的存在,电力设备中故障电流出现时将导致严重的过电压现象,因此,抑制过电压对设备和操作人员的安全都是极为重要的[3]。随着我国电力事业的迅猛发展,电网容量不断扩大,发电机的单机容量也越来越大,为保证电网的安全运行,对发电机的快速灭磁,过压保护越来越重要。

ZnO电阻的能容量大,通流性能好,可以起到快速灭磁的作用。而ZnO电阻结构的均匀程度对其能容量有直接影响,均匀度差会降低其对能量的吸收能力。测试电源系统就是要模拟ZnO快速灭磁时所吸收的瞬间能量,并监控ZnO电阻的工作情况,得出测试结果和参数。

1 电路基本原理

测试电源由整流、换向、放电三部分组成,如图1所示。三相交流电通过整流桥对电抗器L进行充电,L充电完成后换向电路(图1中K)动作,使L与整流桥断开并对ZnO非线性电阻放电,完成测试。电抗器L是整个电源的核心,其合理设计对测试电源的性能有决定性作用。因此,电抗器设计是测试电源设计的核心。

图1 原理图

2 电抗器L优化设计

原理图中的直流电源由380V三相电整流得到,即

Ud=1.35U2Lcosα(1)

电抗器中存储的能量(即被测电阻阀片的能容量)为

W=(1/2LI2(2)

式中:I为被测电阻阀片的短时间可以承受的电流。

电抗器的电阻为

RL=Ud/I(3)

由式(1)~式(3)可得出设计电抗器所需参数L和RL。

如果以W=20kJ,I=200A,设计电抗器,则由式(1)~式(3)可得L=1H,

RL=2.55Ω。

在设计电抗器的过程中要考虑很多方面的因素,为保证电源满足测试要求,取L>1H,RL<2.4Ω。我们首先采用矩形截面的设计,经过多次试验后发现,很难满足要求,于是就改用了正方形截面的设计,最终设计出了满足要求的电抗器。电抗器线圈截面图如图2所示。

图2 电抗器线圈截面图

2.1 导线型号的选取

采用BVR型导线,参数如下:

横截面积S=35mm2;

导线最大外径dm=12.5mm;

导线电阻率ρ=0.0217×10-6Ω·m;

线圈绕制系数K=1.05;

取线圈的轴向层数和径向匝数相等,径向匝数取32匝,故

线圈匝数N=32×32=1024;

轴向高度a=12.5×32×1.05=420mm=0.42m;

径向宽度b=12.5×32×1.05=420mm=0.42m;

线圈内径d1=0.76m;

线圈平均直径d=d1+b=0.76+0.42=1.18m;

线圈总长l=πdN=π×1.18×1024=3796m(取3800m);

线圈电阻R1=ρl/s=0.0217×10-6×3800/35×10-6=2.356Ω。

2.2 检测电感值是否满足要求

电感的计算公式如下:

L=N2dΦ(4)

式中:Φ为由线圈结构决定的系数,可从电感计算手册中查得Φ=16.26;

N为线圈匝数;

d为线圈的平均直径;

μ0为空气的导磁率,它的值是4π×10-7。

则线圈电感为

L=N2dΦ=×10242×1.18×16.26×10-7=1.006H,

线圈电感满足要求。

3 换向电路原理

换向电路如图3所示,要求当电抗器L充电完成后即直流侧电流达到I时,切断主电路,让电抗器对氧化锌电阻阀片放电。换向电路中采用LC振荡电路反向阻断晶闸管的办法。

图3 换向电路电路图

当L充电完成之后,通过二次侧的逻辑控制使继电器ZJ动作,V3关断,V2导通,此时正向电流存在V1仍导通,L1与C所组成的振荡电路开始振荡,电容C开始通过L1放电,其电流方向与主电路电流相反,当流过V1的电流值降为0时,V1将被强制关断,换向过程结

束。这就要求C要先于L完成充电。

由于电抗器L时间常数τL=L/RL,充电时间t≈4τL。则电容器C时间常数取

τC=τL/4=R1C。

为保证振荡电路可靠阻断主电路,其峰值振荡电流取1.5I,即

ImL1C=Ud/ωL1

振荡电路频率ω=1/

L1=CUd2/ImL1C2

图3中R5是一个对主电路进行过压保护的氧化锌非线性电阻,其电压等级高于待测电阻。待测非线性电阻故障时,R5可限制电抗器两端的高电压。

4 试验

为验证上述测试电源系统的可行性,进行了试验,试验电路参数如下:

1)被测氧化锌电阻阀片能量W=20kJ;

2)测试电源直流侧电流I(>=200A;

3)电抗器的电气参数L(>=1H,RL(<=2.55Ω;

4)换向电路L1=0.43mH,C=150μF,R1=550Ω。

试验表明,直流侧电流达到200A时,交流侧电流幅值为245A,据此整定交流侧的电流互感器,使电流继电器动作,控制电路驱动继电器ZJ动作,L1C振荡电路开始强制换向。测试表明电容C先于L完成充电,并且其反向振荡电流可以强制关断晶闸管,断开主电路,强制换向能够顺利进行,使电抗器能量注入氧化锌非线性电阻阀片,可以完成测试。

图4为换向电流图。图5为电抗器电流图。

图4 换向电流图

图5 电抗器电流图

5 结语

经过试验,此电源达到了测试氧化锌非线性电阻器的要求,测试结果与计算比较吻合,通过调整参数,可调节系统的工作情况。该测试系统切实可行,结构合理简单。

氧化锌非线性电阻片的技术

氧化锌非线性电阻片的技术 随着氧化锌非线性电阻片性能的提高和设计技术的进步,由氧化锌非线性电阻片组装成的金属氧化物避雷器得到了广泛应用及发展,目前国际上的氧化锌非线性电阻片技术已经发展到了第4代。 第1代氧化锌非线性电阻片于20世纪60年代末产生,延续使用至20世纪80年代中期,它的应用是电力系统防护雷电过电压和操作过电压方面的一次革命。但它还存在V-A曲线不够平坦、荷电率低、泄漏电流大、老化性能劣化等缺陷。 第2代氧化锌非线性电阻片自80年代初产业化以来一直延续使用至今,与第1代氧化锌非线性电阻片相比,它在添加物配合的优化方面做了很多的改良,使其抗老化性能和非线性性能得到了较大的改善。我国抚顺电瓷厂和西安高压电瓷研究所于80年代中期引进了日本公司的第二代电阻片技术,通过20多年的技术消化、吸收及改良,现在其技术性能已经在第2代基础上有了进一步的改进。 第3代氧化锌非线性电阻片技术产生于80年代中期,以日本的东芝公司的技术为代表。其主要特点是U-I特性曲线更平坦,保护特性提高,荷电率更高,非线性电阻片抗老化性能更好;2ms方波耐受能力提高近1倍,在同等吸收能量的情况下电阻片体积减少近50%,既节省了原材料,又实现了避雷器的轻型化;侧面采用低铅玻璃釉,

具有耐受4/10μs大电流的能力,同时耐湿性能增强,适应各种绝缘介质。因此可以在各种气体、绝缘油以及直接注射成形的硅橡胶中使用。 第3代氧化锌非线性电阻片被誉为高性能阀片。 第4代氧化锌非线性电阻片在90年代实现了产业化,它存第3代氧化锌非线性电阻片技术的基础上通过添加新的成分。将单位高度的参考电压提高了2~3倍,达到了400V /mm 和600V/mm,即存等参考电压将片高度减至原来的1.2倍以上。目前,它主要应用于组合电器用罐式避雷器中,它的应用可大大减小罐式避雷器的体积,使其实现小型化。现阶段正在进行将其应用于复合型带串联间隙线路避雷器的研究,它的开发应用将可以使线路避雷器实现小型化与轻型化,更便于安装。 第4代电阻片被称之为高梯度电阻片。电阻片技术的发展情况见表2-1。综上所述,随着电阻片技术的飞速发展及电阻片性能的不断提高,避雷器的结构也相应发生了很大改变,且保护性能也越来越好。

氧化锌非线性电阻测试电源系统.

氧化锌非线性电阻测试电源系统 氧化锌非线性电阻广泛用于电力系统过压保护和浪涌能量吸收。研究了一种对其进行测试的电源。测试电源用容量电抗器来提供非线性电阻测试所需要的浪涌能量。试验结果表明,测试电源工作可靠,能完成对氧化锌非线性电阻的有效测试。 0 引言 氧化锌非线性电阻是一种压敏电阻器,用于电力系统保护已有30多年的历史了,它具有保护效果好,节能、价廉等一系列优点,因此,在发电机转子过电压保护,剩磁吸收,及避雷器中有着不可替代的保护作用[1][2]。由于电力系统中感性元件的存在,电力设备中故障电流出现时将导致严重的过电压现象,因此,抑制过电压对设备和操作人员的安全都是极为重要的[3]。随着我国电力事业的迅猛发展,电网容量不断扩大,发电机的单机容量也越来越大,为保证电网的安全运行,对发电机的快速灭磁,过压保护越来越重要。 ZnO电阻的能容量大,通流性能好,可以起到快速灭磁的作用。而ZnO电阻结构的均匀程度对其能容量有直接影响,均匀度差会降低其对能量的吸收能力。测试电源系统就是要模拟ZnO快速灭磁时所吸收的瞬间能量,并监控ZnO电阻的工作情况,得出测试结果和参数。 1 电路基本原理 测试电源由整流、换向、放电三部分组成,如图1所示。三相交流电通过整流桥对电抗器L进行充电,L充电完成后换向电路(图1中K)动作,使L与整流桥断开并对ZnO非线性电阻放电,完成测试。电抗器L是整个电源的核心,其合理设计对测试电源的性能有决定性作用。因此,电抗器设计是测试电源设计的核心。 图1 原理图 2 电抗器L优化设计 原理图中的直流电源由380V三相电整流得到,即 Ud=1.35U2Lcosα(1) 电抗器中存储的能量(即被测电阻阀片的能容量)为 W=(1/2LI2(2) 式中:I为被测电阻阀片的短时间可以承受的电流。 电抗器的电阻为 RL=Ud/I(3) 由式(1)~式(3)可得出设计电抗器所需参数L和RL。

电路板自动测试系统

电路板自动测试系统简介 一.概述 随着电子技术及印制板制造技术的发展,现代电子产品日趋复杂,印制电路板的密度日趋增加,随之而来的是印制板的检测及修理也愈加困难。为了提高印制电路板的检测及维修的自动化程度,国际上从七十年代开始,进行印制板自动测试系统的研制。经过二十多年的发展,各种印制板自动测试系统层出不穷。 目前,印制电路板自动测试技术发展迅速,印制板在线测试系统(ATE)广泛应用于印制板光板及各种产品的印制电路板的生产、检测和维修等。ATE的测试方法可分接触式测试和非接触式测试两大类。其中接触式测试分为在线测试、功能测试、BIST和边界扫描测试等;非接触式测试又可分为非向量测试、自动视觉测试、红外热图象测试、X射线和激光测试。随着计算机技术及VXI总线技术的应用,各种建立在VXI测试平台上的印制电路板的ATE和功能测试也得到迅速发展。由之而来对测试过程中所需要的工装(夹具)不断提出要求,于是电路板测试仪(又称电子测试工装)应运而生。二.工作原理 1、印制电路板手动测试治具介绍: 手动电路板测试治具是指:通过针床、手动测试治具、印制板插脚、输入/输出接口,向被测电路板施加控制信号及输入信号,并实时读取被测电路板的输出信号,通过一系列的数据分析处理,进而判断被测电路板的性能(或功能)正确与否。 由于用户的测试要求、测试对象各不相同,其具体的性能(或功能)测试原理及测试方法也各不相同。它需要量体裁衣,单台定制才

能满足用户的要求。 例如:某日资录象机专业企业——录象机主板功能测试工装 ㈠、要求 1)检测录象机主板的功能是否正确(录象、放象、倒带、暂停、向录象机输入生产编号、录入时钟等) 2)测试设备:计算机(RS232接口)、音频发生器、电源供给系统、录象机、音频接收器、电视机、示波器等。 ㈡、试框图(检测录象机的主板)

开关电源测试报告模板

开关电源测试报告模板 篇一:电源测试报告模板 电源技术认证报告 关键词: AC/DC、电源模块、认证测试 摘要:该报告对电源进行了详细的测试,并对其中测试的问题进行总结和 记录,以供产品选型参考。 一、测试项目 二、测试仪器列表 三、测试结论 四、原始数据记录 1、负载动态响应(必须提供测试波形) (/us, 1ms) (1)常温工作 (2)高温工作 (3)低温工作 2、纹波及噪声记录表(必须提供测试波形) (1)常温

特性 (2)高温特性 (3)低温特性 注1:纹波VPP电容,示波器20MHz频率。 3、开关机性能(必须提供测试波形) (输入电压:220VAC,负载:满载) (1)常温特性 (2)高温特性 (3)低温特性 注1注2:开关机的方式有开关和插拔2种,均需进行试验。 4、启动性能(常温下) 注110%额定值上升到90%额定值的时间。 5、 7、整机效率 (1)常温特性 (2)高温特性

(3)低温特性 9 10、 注1注2:过压保护各路相对独立,一路保护不影响其他路。 注2:可用电子负载“Short”短路或导线直接短路。 篇二:开关电源适配器测试报告模板 适配器12V/1A测试报告 方案基本参数一览 修订更新版本 注: 在原板上进行了以下修改: 1、变压器参数更新(进行成本优化) 2、输入电容修改为15uF/400V 3、输出二极管修改为SR3100 4、可去除次级吸收回路(R21、C7)(纹波指标仍然优秀) 一. 说明

此文档是针对FD9020D 12V/1A适配器的测试报告,可用于90~264Vac全电压输入 范围下工作。适合12W以内的适配器电源及小家电产品的应用。 二 . 测试主要项目 1)电气参数测试 2)电性能参数测试 3)转换效率及空载功耗测试 4)常温老化测试 5)关键元件温度测试 三. 测试使用的仪器 1.输入交流调压器:AC POWER SOURCE APS-9501 2.输出电子负载:FT6301A 3.示波器:DSO-X-2022A (Agilent Technologies)4.交流输入功率计:WT210 DIGITAL POWER METER 5.数字万用表34970A 6.红外热成像仪 Fluke Ti200 四. 方案的实物图

氧化锌压敏电阻的原理

压敏电阻原理概述 本文就氧化锌压敏电阻的原理、特性、正确选用等问题进行简介,并提供一些应用电路实例供各位参考。 ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏,它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为 3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。 压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示 压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因

而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。

氧化锌电阻片使用说明书

氧化锌电阻片使用说明书 乐清市天极高压电气有限公司的氧化锌电阻片(以下简称电阻片),用于220伏~500千伏电压等级氧化锌避雷器,采用先进的配方和工艺生产,正确使用可避免产生质量问题,使其优越性能得到充分发挥。为此目的,并为了广大用户充分保证避雷器的装配质量,现就阀片使用中的要求与注意事项说明如下: 1.电阻片在芯体装配前的干燥 为了加强电阻片侧面绝缘强度,在电阻片侧面涂敷了具有高绝缘性能的有机涂料。目前国内普遍使用的有机涂料都有一定吸潮性,加上还有吸附水和表面凝露现象(如:夏天的自来水管表面产生水珠的现象即明显的表面凝露现象),因此,避雷器芯体装配前必须对电阻片进行干燥处理。 注:避雷器是保护电器。如避雷器内部有潮气,或者密封不良潮气侵入了内部,就不仅起不了保护作用,自身还会爆炸。因此避雷器装配工艺中的一个带关键性的要点,就是装配中必须确保避雷器内部干燥,并采取严密的密封措施确保长期使用过程中潮气不能侵入。避雷器芯体装配前对电阻片进行干燥处理,是确保避雷器内部干燥的重要措施。 对电阻片进行干燥处理应注意以下几点: ⑴.电阻片干燥处理应使用有热风循环的烘箱进行,烘箱内温差不大于5℃。没有热风循环的烘箱时必须用水银温度计测定确认烘箱内上下左右的温差,温差大于10℃的应慎重使用。 ⑵.电阻片摆放烘箱内应分行、分层摆放,行间层间必须留有一定的通风空间,不可堆放成一大堆。同时要注意电阻片必须远离加热器(如:电阻丝、加热管)放置,不堵塞通风孔(道),以避免局部温度过高使有机涂层老化。 ⑶.电阻片干燥的温度以100℃±5℃,保温3~4小时为佳。对升温速度无要求,但保温时间必须是温度到达100℃后再开始计时。 ⑷.保温后电阻片必须随烘箱冷却到60℃以下方可开门取出使用。需要加速冷却时可将烘箱门打开1~10cm,但当烘箱内温度降到60℃时必须将烘箱门关严。取出使用必须随用随取,每次取出少量,不可一次大量取出放置,以免再次吸潮。 ⑸.当天没有用完的电阻片,必须放入60℃烘箱内保管,或者下次使用前重新干燥。 2. 芯体装配 避雷器芯体装配间应安装空调机和除湿机,控制装配间温度在20℃~25℃、相对湿度不大于45%. 温度、湿度达到要求并且做好了各项准备工作后,再取出电阻片装配。装配中应注意电阻片的方向,全部电阻片都必须是印有电压数字的一端朝上(避雷器高压端),印有批号的一端朝下(避雷器接地端)。装配好的芯体保管中必须采取防潮措施,不可在没有防潮措施的情况下长时间放置。110kV 及以上电压等级的避雷器,阀片以外的其他零部件(包括金属零部件)装配前也都必须进行干燥处理。 3. 芯体固化 无纬带缠绕芯体烘烤固化,必须注意以下几点: ⑴.应使用有热风循环的烘箱进行,烘箱内温差不大于5℃。没有热风循环的烘箱同样必须用水银温度计测定确认烘箱内上下左右的温差,温差大于10℃的应慎重使用。 ⑵.芯体装入烘箱内相互之间必须留有一定通风间隙,芯体也不可贴近加热器,不要堵塞通风孔(道),以防止局部温度过高导致树脂老化。 ⑶.固化时必须逐渐升温,并在100℃左右保温1小时再逐渐升温至最高温度。

非线性电阻灭磁原理及阀片的配置原则

课程论文/研究报告 课程名称:水力机组控制 任课教师: 论文/研究报告题目: 非线性电阻灭磁原理及阀片的配置原则 完成日期:2013 年11 月13 日 学科:水利工程 学号: 姓名: 非线性电阻灭磁原理及阀片的配置原则

摘要: 本文叙述了非线性电阻灭磁的原理,及实际应用中非线性电阻阀片的合理配置原则。 关键词:非线性电阻,氧化锌阀片,过电压,保护 前言: 在同步发电机的运行过程中,由于种种原因,可能会是励磁装置的主要部件和发电机的转子励磁绕组中呈现过电压。这些过电压往往会对励磁装置和同步发电机本身构成较大的危害,因此分析发电机转子过电压产生的原因并采取相应的措施对电力系统的安全运行有重要的意义。其中,励磁系统最常见的过电压为灭磁过电压,本文针对灭磁过电压进行了分析,着重叙述了非线性电阻灭磁方法及非线性电阻灭磁时非线性电阻阀片的配置原则。 1、灭磁过电压及其保护 图1.1 灭磁等效电路 励磁系统最常见的过电压为灭磁过电压。灭磁过电压是指当励磁电源断开时, 励磁绕组的大电感释放能量所产生的高电压,此过电压值为。这个电压值如超过励磁回路绝缘允许值,就要发生绝缘击穿。为避免发生这种现象,就要正确处理灭磁速度和过电压之间的矛盾。 理想灭磁条件是:在保证灭磁过电压不超过转子励磁绕组容许值的前提下,

励磁电流保持最大速度衰减,直到灭磁过程结束。 发电机灭磁工况有空载灭磁、事故甩负荷灭磁等。灭磁过电压保护的设计首先需要对可能出现的各种故障下的灭磁进行磁场能量的计算,最大灭磁能量计算的准确是灭磁装置设计的关键,灭磁时间的快慢是判断灭磁装置优劣的关键指标。 通常使用的灭磁方法有:线性电阻灭磁、灭磁开关灭磁、逆变灭磁和非线性电阻灭磁。目前,应用广发的是非线性电阻灭磁。 非线性电阻灭磁目前有两种构成方式,一种是利用碳化硅(SiC)非线性电阻构成的,另一种是利用氧化锌(ZnO)非线性电阻构成。两者的基本工作原理相同。前者非线性系数0.4~0.8,后者为0.04~0.08,相比之下前者换流电压较低,但泄漏大,易发热,相应灭磁时间略长于后者;氧化锌泄漏电流小,导通后电压恒定,伏安特性极其优越,且体积小,能容大,灭磁条件理想,虽然导通电压较碳化硅材料高,但仍能满足转子绝缘水平要求。下面以ZnO型为例进行分析。 图1.2 非线性电阻灭磁原理图 灭磁的原理如图1.2所示,其中i为转子中的电流、FR1 为氧化锌非线性电阻、FMK为灭磁开关、Uo为励磁电压、LP为整流电源、Uk为灭磁开关弧压、UR 为氧化锌非线性电阻残压。若要使转子电流衰减至零,必须在转子两端加一个与其励磁电源电势相反的电势U,灭磁方程式为Ldi/dt+U=O。可见电感中电流衰减率正比于反向电势U,反向电势越大,灭磁时间越短。但反向电势受转子绝缘水平限制,不能超过转子绝缘允许值。因此最理想的灭磁方式是灭磁电压保持恒定。电流保持一个固定的变化率(di/dt=-U/L)按直线规律衰减至零。由于氧化锌非线性电阻残压UR变化很小,灭磁时近似于恒压,即UR=U。发电机正常运行时转子电压低,氧化锌非线性电阻呈高阻态,漏电流仅为微安级。灭磁时,灭磁开关FMK跳开,切开励磁电源,在满足Uk≥Uo+UR时,电流被迫入灭磁过电压保护器

集成电路氧化锌压敏电阻器的原理简介与使用性能参数

【集成电路(IC)】氧化锌压敏电阻器的原理简介与使用 【集成电路氧化锌压敏电阻器的原理简介与使用性能参数】 “压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”。 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 在中国台湾,压敏电阻器是按其用途来命名的,称为"突波吸收器"。压敏电阻器按其用途有时也称为“电冲击(浪涌)抑制器(吸收器)”。 一、氧化锌压敏电阻器微观结构及特性 氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷工艺制成的多晶半导体陶瓷元件。它的微观结构如图1所示。氧化锌陶瓷是由氧化锌晶粒及晶界物质组成的,其中氧化锌晶粒中掺有施主杂质而呈N型半导体,晶界物质中含有大量金属氧化物形成大量界面态,这样每一微观单元是一个背靠背肖特基势垒,整个陶瓷就是由许多背靠背肖特基垫垒串并联的组合体。图2是压敏电阻器的等效电路。

氧化锌压敏电阻器的典型V-I特性曲线如图3所示: 预击穿区:在此区域内,施加于压敏电阻器两端的电压小于其压敏电压,其导电属于热激发电子电导机理。因此,压敏电阻器相当于一个10MΩ以上的绝缘电阻(Rb远大于Rg),这时通过压敏电阻器的阻性电流仅为微安级,可看作为开路。该区域是电路正常运行时压敏电阻器所处的状态。 击穿区:压敏电阻器两端施加一大于压敏电压的过电压时,其导电属于隧道击穿电子电导机理(Rb与Rg相当),其伏安特性呈优异的非线性电导特性,即: I=CVα 其中I通过压敏电阻器的电流C与配方和工艺有关的常数 V压敏电阻器两端的电压α为非线性系数,一般大于30 由上式可见,在击穿区,压敏电阻器端电压的微小变化就可引起电流的急剧变化,压敏电阻器正是用这一特性来抑制过电压幅值和吸收或对地释放过电压引起的浪涌能量。 上升区:当过电压很大,使得通过压敏电阻器的电流大于约100A/cm2时,压敏电阻器的伏安特性主要由晶粒电阻的伏安特性来决定。此时压敏电阻器的伏安特性呈线性电导特性,即: I=V/Rg 上升区电流与电压几乎呈线性关系,压敏电阻器在该区域已经劣化,失去了其抑制过电压、吸收或释放浪涌的能量等特性。 根据压敏电阻器的导电机理,其对过电压的响应速度很快,如带引线式和专用电极产品,一般响应时间小于25纳秒。因此只要选择和使用得当,压敏电阻器对线路中出现的瞬态过电压有优良的抑制作用,从而达到保护电路中其它元件免遭过电压破坏的目的。 二、特点 (1) 通流容量大 (2) 限制电压低 (3) 响应速度快 (4) 无续流 (5) 对称的伏安特性(即产品无极性) (6) 电压温度系数低 三、氧化锌压敏电阻器应用及注意事项 1、氧化锌压敏电阻器应用原理 压敏电阻器与被保护的电器设备或元器件并联使用。当电路中出现雷电过电压或瞬态操作过电压Vs时,压敏电阻器和被保护的设备及元器件同时承受Vs,由于压敏电阻器响应速度很快,它以纳秒级时间迅速呈

射频开关自动测试系统(精)

以弹簧连接,压缩行程约 l , m m 。下部。 ZVB 的控制、分选机控制。、系统各个组成部分之间的时序控制,、产品分拣、测试与测试板接触见图8 。上部与测试件接触数据存储等功能动单元控制 L a ,由于 Z V B 自带了 4 位用户自定义,可以分别做 3 个 B i n f tl 开关驱。而不需 另外的 P C 接口或电路非常方便 b V IE W 是N I 公司开发的一款图形化编程工具。编程灵活,使用方便。 5 直流稳压电源 S UT 需要两路独立电源控制 ( 不开关驱动单元也需要单独 5 V 。共地,囱圈图 1 3 参数设置图 14 测量界面电源提供偏置因此需要一台能够提。供 3 路输出的直流电源供电 3 1 软件编程环境和实现功能本测试系统软件,主要实现对 R & S 的全系列产品都给用户提供了丰富的驱动库选择。,用的户可以很方便的从网站上免费下载 L a 值得注意的是随 Z V , B b V IE W 子V I 库中,,提供了详细的 H e l p 文件一无需再查找 I 。厚重的编程手册只 需轻松搜,便能找到相对应的S u b V 、软件最大的难点就在于如何同步分选机驱动单元。 ZV B B 和开关根据分选机的时序图“ ,多次反复调试 Z V s $ N分选机,确定了。c h a n n e l bit ” 设置延时 ( 10 0 m 和分选机 B in 延时

在软件中增加了“ m a n u a l ” 模式,支持手动测量模式。系统框图及设置见图9 — 14 。 2 软件漉程图软件启动后,自动恢复上一次保存的设置值,。在参数设,置中,不仅可以设置 S U T 的常规参数,比如频率范围 S UT 两路的传输 M a r 反射和隔离指标 ( 作为合格/不合格判据,。 k e r 输入框用来定义测试报告中需要记录的频率点 ce ZVB 的每条t r a 最多支持 1 0 个 M a r k e r 。软件中设置的所有参数都能通过设置文件进 行保存或调用参数设置完毕图 1 2 软件流程图,。运行S e t u 。 p ,软 件会自动对 Z V B 进行设置,包括 L i m it lin e 的设置 (下转第 16 页一 6 一中国科技核心期刊 准溯源技术,可提供最高的置信度。80A自动校准技术不 仅提供58检测和出错报告能力,可以极大地方便应用程序的调试工作。用户可以方便地利用已有的自动测试系统、程序及调试经验。只要符合IE482标准或者SP语言,EE8.CI 连续运行80A能够在各种恶劣条件的58GI总线控制的校准方式,还提供PB前面板操作的校准方式。环境下工作。80A中没有任何散热风扇和58冷却通道。各端钮均为密封型,各输入端都具有完善的保护功能,所有电压量程都可以承受l0V有效值的00总线控制80A的GPB接口遵循最新58I其他仪器的程序也可以应用。这样,大大减少了组建自动测试系统的时的 lE482标准。它与IE48EE8.E8(9817)兼容,但是引入了特定信息处理的约定,公用命令和标准状态报告格式。新标准要求仪器仅对严格符合格式的信息做出响应,这样就消除了产生非法的状态而发生“ 死” 现锁间。只有在远地程控方式下,80A58 的测量速度才能全部发挥出来。测量结果通过总线接口将数据传输出去。80A的各功能各量程都能保58高压冲击。数字多用表往往是关系整个系统性能的最基本部分,因而为保证系统的可靠运行要经常进行快速有效的自检。80A利用内部的标准源随时可58 进行自我检测,对80A各功能、58证得到稳定可靠的读数,仪

高性能非线性氧化锌电阻片的生产工艺

高性能非线性氧化锌电阻片的生产工艺 氧化锌非线性电阻片是以氧化锌为主要成分,添加微亮的三氧化二铋、三氧化二钴、二氧化锰、三氧化二锑等金属氧化物,经过成型、烧结、表面处理等工艺过程而制成。由于氧化锌电阻片具有非常优异的非线性伏安特性,它在过电压下,电阻很小,残压很低;而在正常工作电压下,其电阻很高,相当于一个绝缘体,故可以取消火花间隙,实现避雷器无间隙、无续流(实际上续流很小,为微安级),而且体积小,造价低,在越来越广的过电压防护中取代有间隙的碳化硅避雷器。氧化锌元件的伏安特性可用右式表达为: a UCI 式中,非线性系数a与电流密度有关,一般为~,在大的雷电流下(10千安),a也不大于,它比金刚砂阀片的a值小的多,C为常数。图3-3示出了氧化锌阀片与金刚砂阀片的伏安特性。从两者对比可知,当410I 下的残压两者相同。而在系统相电压作用下金刚砂阀片流过幅值为200~400A的电流,氧化锌阀片流过的电流却是在10~50uA。所以氧化锌避雷器可以不用串连火花间隙,直接并联在电网上,在冲击电压过后工频电压作用下无续流。 将碳化硅(SiC)电阻片加串联火花间隙组成的传统避雷器与新型的氧化锌避雷器比较,后者具有以下优点。 (1)不用串连火花间隙,可使结构简单,体积减小;也不存在因外磁套污秽,火花间隙放电电压不稳的问题,故抗污性强。 (2) 没有火花间隙放电时延问题,其陡波响应特性优与碳化硅避雷器,

提高了对设备保护的可靠性。 (3) 在雷电过电压下动作后无续流(只有微安级电流),所以引入的能量大大减少,具有耐受多重雷击和重复操作冲击过电压的能力,工作寿命长,氧化锌非线性电阻在雷电或操作冲击作用下需吸收对绝缘有害的过电压能量,与碳化硅避雷器相比,无须吸收工频续流的能量,因而流过金属氧化物避雷器的电流小于同一过电压等级下流过碳化硅避雷器的电流;另一方面,在工作中,由于无间隙避雷器的氧化锌非线性电阻长期承受工作电压的作用,因此提出了研究氧化锌电阻片的小电流特性,特别是在长期工作电压下的稳定性能等重要课题。为此,对于线路上用的避雷器提出采用带间隙的结构。 (4)通流容量大,吸收过电压能力强用作限制过电压的非线性电阻片要求有很大的通流容量,110kV以上的限压装置要求可以承受l00kA的大电流冲击,并且可以承受400A的2ms方波的多次作用。氧化锌电阻片具有很大的通流能力,与碳化硅相比,其单位面积的通流能力达倍,而其单位体积吸收过电压能力则可达4倍左右。 (5)陡波响应特性好金属氧化物避雷器不存在碳化硅避雷器中的放电时延问题,因而金属氧化物避雷器的陡波响应特性(伏秒特性)要比碳化硅避雷器平坦得多。例如:金属氧化物避雷器的冲击放电电压升高不大于倍,而碳化硅避雷器则在倍以上。金属氧化物避雷器的这一特性大大提高了对陡波头过电压的保护效果,而且有利于和被保护设备实现合理的绝缘配合。非线性氧化锌电阻片的制造工艺如下: 非线性氧化锌电阻片的关键生产工艺在于添加料研磨、喷雾造粒、成

不同脉冲电流作用下氧化锌压敏电阻伏安特性分析

文章编号:1003-8337(2013)04-0078-07 收稿日期:2013-03-15 作者简介:徐乐(1988—),男,硕士,研究方向为雷电防护技术、电涌保护器研发与测试。 基金项目:国家自然科学基金项目(编号:41175003)和江苏高校优势学科建设工程资助项目(PAPD )。 不同脉冲电流作用下氧化锌压敏电阻伏安特性分析 徐 乐1,杨仲江1,柴 建1,张 枨1,赵 军2 (1.南京信息工程大学雷电科学与技术系,南京210044;2.北京雷电防护装置测试中心,北京100176) 摘要:传统MOV (氧化锌压敏电阻)主要用于后级保护,不进行10/350μs 波形冲击测 试。随着MOV 通流量等性能的提升,已有部分MOV 产品应用于首级高暴露区线路,此时有必要开展MOV 在10/350μs 波形冲击下的性能研究。根据双肖特基势垒模型,结合离子迁移理论,首次对MOV 在10/350μs 与8/20μs 冲击波形下的动态伏安特性曲线进行对比分析得出:在两种脉冲电流冲击下,动态伏安曲线都可以用一个峰值△U 来校准测量值;两者的动态伏安曲线中后期都有一个先上升后缓慢回环下降的趋势,前期10/350μs 的动态伏安曲线上升速度比8/20μs 快;大电流冲击下两者的峰值电压超前峰值电流的时间同冲击电流幅值成正比。这为厂家生产用于一级低压配电侧的MOV 产品提供借鉴意义。 关键词:动态伏安曲线;氧化锌压敏电阻;8/20μs ;10/350μs ;导电机制 中图分类号:TM862 文献标识码: A Analysis of Dynamic Volt-Ampere Characteristic Curve of MOV under Different Pulse Current XU Le 1,YANG Zhong-jiang 1,CHAI Jian 1,ZHANG Cheng 1,ZHAO Jun 2 (1.The Department of Lightning Science and Technology ,Nanjing University of Information Science and Technology, Nanjing 210044,China;2.Beijing Testing Center for Surge Protective Devices.Beijing 100176,China ) Abstract :The traditional MOV (ZnO varistor )was mainly used for the protection of after-class ,not the impact testing of 10/350μs waveform.With MOV through-flow uniform performance improvement,the part of MOV products had been applied to the head high-exposure area lines.So it was necessary to carry out the research of MOV performance under the 10/350μs waveform impact.We have compared the dynamic volt -ampere characteristic curve of wave -shape under the 10/350μs and 8/20μs waveform impact firstly based on the double schottky barrier model as well as the ion migration theory.Results are as follows:under the both waveform impact,dynamic volt-ampere curves can use a peak ΔU to calibrate measurements and have the same evolution trends,those are rise slowly loopback decline,in mid and late.The rise rate of dynamic volt-ampere curve under the 10/350μs waveform impact at early stage is bigger than that of 8/20μs.Under the impact of high current,the time of peak voltage ahead of peak current is proportional to the amplitude of inrush current.The study provides a new method to produce the pressure limiting MOV products for the manufacturers. Key words:dynamic Volt-ampere curve;ZnO varistor;8/20μs;10/350μs;conduction mechanisms 2013年第4期(总第254期) 2013年8月 电瓷避雷器 Insulators and Surge Arresters No4.2013(Ser.№.254) Aug.2013 輫輶··

氧化锌避雷器的性能与分析

1 概述 在过去的几十年中,我国在防雷及防过电压技术中,广泛使用有间隙的碳化硅阀片避雷器。这种避雷器是在碳化硅阀片基础上加放电间隙制成。碳化硅阀片非线性系数大(a=0.2~0.3),正常运行的系统对地电压下,工频续流有上百安培流过,为保护阀片及电气系统的安全,必须用串联间隙的方法来阻断工频续流。但串联间隙因其密封问题不易解决等因素,又带来了放电电压的不稳定,从而影响了对电气设备的保护作用,特别是近年来真空断路器的广泛使用,因其优良的灭弧性能,又带来了种种操作电压。这种过电压的防护若用过去的阀式避雷器,无论在性能上还是在保护作用上,都远远满足不了要求,人们又转而去寻找新的保护器件,这种新型的防雷防过电压的保护器件,就是氧化锌避雷器。 氧化锌避雷器(以下简称ZnO)目前有两种结构方式:一种是无间隙的ZnO避雷器,一种是有间隙的ZnO避雷器。 它是用新型的氧化锌阀片代替了原有的碳化硅阀片,氧化锌阀片具有优良的非线性特性 (a=0.04~0.05),它的伏安特性曲线很平坦,在正常的系统运行电压下,ZnO阀片只流过几微安至几十微安的电流,因此早期的ZnO 避雷器动作响应很快,吸收过电压的能量大,残压小,故对电气设备免受过电压的损坏,有着优良的保护性能。特别适应真空断路器这种灭弧性能优良的电气设备在操作中产生过电压的吸收,加之体积小、重量轻,因此很受真空断路器生产单位的欢迎。 但这种ZnO避雷器在电力系统的使用过程中,确实经历过一个非常艰难的历程。由于制造质量问题,结构不合理问题、材料选型及配方问题,使得ZnO避雷器在中性点不接地的系统中使用时,经常在运行中烧坏和在系统中使用时,经常在运行中烧坏和在系统中发生单相接地时造成爆炸事故,从而引起了人们对使用ZnO避雷器的种种顾虑。 2 氧化锌避雷器的使用性能 标志氧化锌避雷器性能的一个关键参数,就是在直流一毫安时的标称电压U1mA。它是在其ZnO阀片组上加一个直流电压,当测其流过的电流为1mA时,此时施加到避雷器上的电压就是U1mA。当小接地电流系统发生单相接地故障或产生弧光接地过电压时,施加在ZnO避雷器上的电压或为健全的工频线电压或为工频过电压。这个电压设为Um,它与标称电压U1mA的比值被称为荷电率,用K表示: (1) 早期产品的荷电率只有65%~75%左右(有的厂家资料称可达到80%),因此ZnO在小电流接地系统中的使用条件 就非常苛刻。在这种系统中,ZnO在正常运行时就要持续地耐受工频相电压(Um=Us),当发生弧光接地时,ZnO 将承受系统完整的最大线电压(Um=Us),当发生弧光接地过电压时,将承受高达2.5~3.5倍的系统相电压的冲 击。我国国家标准GB11032—89中对ZnO避雷器有关参数的规定见表1所示。

氧化锌陶瓷线性电阻--复合陶瓷电阻

氧化锌陶瓷线性电阻--复合陶瓷电阻 性能: 氧化锌陶瓷线性电阻称为复合陶瓷电阻全无机材料制成,采用先进的新型陶瓷工艺,有着传统电阻无法比拟的特性,在中、高频电路,大电流脉冲电路,高电能吸收电路,间歇供电电路中应用有着独特的优越性,特别在冲击能量,峰功率,高压,或低感等多种工况同时存在时,复合陶瓷电阻能为你提供简单经济的解决方案。该产品是采用氧化锌等无机材料制成的陶瓷体导电线性电阻体。这种电阻产品具有瞬间吸收极大功率,无感,耐高压,体积小,性能稳定等优点。用其作中性点接地电阻,阻容吸收器,中、高频电阻,大功率无感电阻等,具有不可替代的优越性。 1.能量耐受能力大:每立方厘米能在很短的时间内吸收能量约为粘土碳黑陶瓷电阻的四倍。 2.无电感:电阻体导电,电感量接近于零。 3.耐高压:可在超高压,特高压输电系统中应用。 4.体积小:它的体积是金属电阻和粘土碳黑陶瓷电阻的1/4~1/10 5.性能稳定:在长期使用中,粘土碳黑陶瓷电阻阻值变化率竟达1000倍以上,而本产品变化率在设计范围以内,变化很小。 产品的优点是:能量耐受能力大,无电感,耐高压,体积小,性能稳定,耐腐蚀,耐潮湿,抗振动。 无电感,电阻体导电,通流断面大,距离短,小于引线电感很小. 耐高压,可在超高压,特高压输电系统中应用,可在空气、油、水、SF6中工作. 大功率,热容大,能承受短时间的过载和高峰值的电流,用很小的体积消耗很大的能量,峰值电流可达KA,峰值功率可达MW。每立方厘米可以在瞬间吸收大于等于800焦耳的能量。 高可靠性,不存在膜类,线绕类电阻的失效现象,合理的结构使得能量吸收分布更均匀。从而达到陶瓷电阻的功效。 产品造型多样,适用性强,设计灵活,根据使用和安装的不同需求,通过集成装配达到各种功率和阻值,还可按用户的要求设计制造,为用户提供适用性更强的配套产品。 主要技术参数: 短时能量耐受能力≥800J/cm3 电感:<0.1μH(真正无感) 电压系数:-0.2% ~ -2.5% / kV / cm 电阻阻值范围:可根据用户需求制作0.01~3k的电阻 导电率:10-2~102.m 温度系数:-0.02 ~ -0.07 %/℃ 材料热容:2.6J/ cm3 . ℃ 工作温度:环境温度;-40~+80℃电阻体温度:≤500℃(其性能不变) 环境温度(-40~+80℃):≤500℃(单次电能冲击) 线性度≤1.12 耐潮湿:可在潮湿环境中(或水中、油中)正常使用。 抗振动:由于产品强度高,可在振动环境中使用。 大气中热处理电阻值变化率:-2% 产品荣誉及应用情况: 1.本产品通过武汉高压电气研究所检测,性能稳定可靠,被中国中轻产品质量保障中心授予“质量、信誉双保障示范单位”。 2.该产品已荣获国家发明专利(专利号:ZL02140486.0)并荣获第五届国家专利技术发明奖二等奖,国家科技成果进步奖一等奖。

基于LabVIEW的矿用电源自动测试系统

基于LabVIEW的矿用电源自动测试系统 【摘要】针对矿用电源产品测试中的传统手工测试方法效率低下,无法满足多品种规格大规模生产的快速、高精度、多功能测试要求,基于LabVIEW开发了电源自动测试系统。该系统采用开放式结构、模块化设计,具有较高的通用性,测试过程自动实现。开发了测试系统的软件程序实现了测试程序编写简单化,对多个程控仪表的实时控制和数据采集,测试数据存储、打印以及不良品的数据分析。 1.前言 矿用电源的设计、制造以及品质管理需要精密的电子仪器设备来模拟实际工作时的各项特征,并验证是否合格。同时根据不同型号电源需要不同的组成结构和输入、输出组合,需要多样化的测试仪器以满足测试需要。传统的测试方法:工人利用某特定功能仪器依次完成对电源单个或多个测试项目的检测,凭经验、直觉判断产品是否合格,容易产生人为误差,同时工作效率低。针对上述问题我们基于LabVIEW设计了一款矿用电源自动测试系统,系统采用开放式结构、模块化设计,具有较高的通用性,测试过程自动实现,测试结果实时显示,并对各项数据进行存储。 2.硬件系统组成 系统采用了典型的虚拟仪器系统的硬件平台结构,基于USB、RS232及PCI 等标准总线方式,通过计算机将仪器、PCI设备组成监控系统,其结构如图1所示。 图1 系统主结构图 系统工作原理:人工将被测试电源放置到测试操作台上,并采用气动设备压紧(部分不方便使用气动治具的调试点可由人工插拔)。系统执行“测试”命令后,上位机通过USB/232通信接口向程控交流源或直流源发送输出电压的命令,通过USB/RS232通信接口控制输出模块中电子负载和示波器,模拟待测电源不同输出负载,测试空载电压、戴载电压、过流值、纹波值等参数。同时通过USB/232通信接口读取程控交流源或直流源的工作电流等参数;信号处理模块将各指示灯的亮/灭情况反馈给上位机;上位机通过I/O卡将执行命令发送到继电器切换板,执行本安电源的第一级和第二级保护功能的性能测试(过压、过流值)。各测试步骤在完成测试的同时将测试数据送至上位机进行分析,显示、记录测试结果。 系统主要设备选型与设计如下: 2.1 数字I/O卡 数字I/O卡置入计算机PCI插槽中,用于输出控制信号和指示灯的工作状态。

电性能测试报告分解

电性能测试报告Electronic Performance Test Report 拟制 (Tested by) 黄秋霞 (Qiuxia Huang) 日期 (Date) 2015-10-16 审核 (Approv ed by) Marey 日期 (Date)

目录 1 概述 (3) (Summary) 2 测试地点、时间、人员 (3) (Test place, Time, Personnel) 3 测试引用标准 (3) (Guide) 3.1 技术指标要求 (3) (Technical Norm Requirement) 3.2 测试方法 (3) (Test Criterion) 4 测试设备 (3) (Test Equipment) 5 结论 (3) (Test Result) 6 问题报告 (3) (Problem Report) 7 测试内容和结果 (4) (Test Items and Result) 7.1 常温环境电气性能测试 (4) (Electronic performance Test at Normal Temperature) 7.2 高温环境电气性能测试 (5) (Electronic performance Test at High Temperature) 7.3 低温环境电气性能测试 (6) (Electronic performance Test at Low Temperature) 8 附录 (7) (Appendix) 8.1 输出电流测试值 (7) (Output Current Test Values) 8.2 效率测试数据记录 (7) (Record of Efficiency Test Date) 8.3 电压调整率计算 (8) (Line Voltage Calculation)

氧化锌压敏电阻的原理及应用

氧化锌压敏电阻器的原理简介与使用 “压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”。 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 在中国台湾,压敏电阻器是按其用途来命名的,称为"突波吸收器"。压敏电阻器按其用途有时也称为“电冲击(浪涌)抑制器(吸收器)”。 一、氧化锌压敏电阻器微观结构及特性 氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷工艺制成的多晶半导体陶瓷元件。它的微观结构如图1所示。氧化锌陶瓷是由氧化锌晶粒及晶界物质组成的,其中氧化锌晶粒中掺有施主杂质而呈N型半导体,晶界物质中含有大量金属氧化物形成大量界面态,这样每一微观单元是一个背靠背肖特基势垒,整个陶瓷就是由许多背靠背肖特基垫垒串并联的组合体。图2是压敏电阻器的等效电路。

氧化锌压敏电阻器的典型V-I特性曲线如图3所示: 预击穿区:在此区域内,施加于压敏电阻器两端的电压小于其压敏电压,其导电属于热激发电子电导机理。因此,压敏电阻器相当于一个10MΩ以上的绝缘电阻(Rb远大于Rg),这时通过压敏电阻器的阻性电流仅为微安级,可看作为开路。该区域是电路正常运行时压敏电阻器所处的状态。 击穿区:压敏电阻器两端施加一大于压敏电压的过电压时,其导电属于隧道击穿电子电导机理(Rb与Rg相当),其伏安特性呈优异的非线性电导特性,即: I=CVα 其中 I通过压敏电阻器的电流 C与配方和工艺有关的常数 V压敏电阻器两端的电压α为非线性系数,一般大于30 由上式可见,在击穿区,压敏电阻器端电压的微小变化就可引起电流的急剧变化,压敏电阻器正是用这一特性来抑制过电压幅值和吸收或对地释放过电压引起的浪涌能量。 上升区:当过电压很大,使得通过压敏电阻器的电流大于约100A/cm2时,压敏电阻器的伏安特性主要由晶粒电阻的伏安特性来决定。此时压敏电阻器的伏安特性呈线性电导特性,即: I=V/Rg 上升区电流与电压几乎呈线性关系,压敏电阻器在该区域已经劣化,失去了其抑制过电压、吸收或释放浪涌的能量等特性。 根据压敏电阻器的导电机理,其对过电压的响应速度很快,如带引线式和专用电极产品,一般响应时间小于25纳秒。因此只要选择和使用得当,压敏电阻器对线路中出现的瞬态过电压有优良的抑制作用,从而达到保护电路中其它元件免遭过电压破坏的目的。 二、特点 (1) 通流容量大 (2) 限制电压低 (3) 响应速度快

相关主题
文本预览
相关文档 最新文档