当前位置:文档之家› 发电厂热力设备及系统

发电厂热力设备及系统

发电厂热力设备及系统
发电厂热力设备及系统

发电厂热力设备及系统

07623班参考资料

:锅炉设备及系统

1有关锅炉的组成(本体、辅助设备)

锅炉包括燃烧设备和传热设备;

由炉膛、烟道、汽水系统以及炉墙和构架等部分组成的整体,称为锅炉本体;

供给空气的送风机、排除烟气的引风机、煤粉制备系统、给水设备和除灰除尘设备等一系列设备为辅助设备。

2 A燃料的组成成份

化学分析:碳(C)、氢(H )、氧(0)、氮(N )、硫(S)五种元素和水分(M )、灰分(A)两种成分。

B水分、硫分对工作的影响;

硫分对锅炉工作的影响:硫燃烧后形成的SO3和部分SO2,与烟气中的蒸汽相遇,

能形成硫酸和亚硫酸蒸汽,并在锅炉低温受热面等处凝结,从而腐蚀金属;含黄铁矿硫的

煤较硬,破碎时要消耗更多的电能,并加剧磨煤机的磨损。

水分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)影响煤的磨制及煤粉的输送(4)烟气流过低温受热面产生堵灰及低温腐蚀。

C水分、灰分、挥发分的概念:

水分:由外部水和内部水组成;外部水分,即煤由于自然干燥所失去的水分,又叫表面水分。失去表面水分后的煤中水分称为内部水分,也叫固有水分。

挥发分:将固体燃料在与空气隔绝的情况下加热至850摄氏度,则水分首先被蒸发

出来,继续加热就会从燃料中逸出一部分气态物质,包括碳氢化合物、氢、氧、氮、挥发性硫和一氧化碳等气体。

灰分:煤中含有不能燃烧的矿物杂质,它们在煤完全燃烧后形成灰分。

D挥发分对锅炉的影响:

燃料挥发分的高低对对燃烧过程有很大影响。挥发分高的煤非但容易着火,燃烧比较稳定,而且也易于燃烧安全;挥发分低的煤,燃烧不够稳定,如不采取必要的措施来改

善燃烧条件,通常很难使燃烧安全。

E燃料发热量:发热量是单位质量的煤完全燃烧时放出的全部热量。煤的发热量分为高位发热量和低位发热量。1kg燃料完全燃烧时放出的全部热量称为高位发热量;从高

位发热量中扣除烟气中水蒸气汽化潜热后,称为燃料的低位发热量。

F标准煤:假设其收到基低位发热量等于29270kj/kg的煤。(书88页)

G灰的性质:固态排渣煤粉炉中,火焰中心气温高达1400~1600摄氏度。在这样的

高温下,燃料燃烧后灰分多呈现融化或软化状态,随烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起冷却下来。如果液态的渣粒在接近水冷壁或炉墙以前已经

因温度降低而凝结下来,那么它们附着到受热面管壁上时,将形成一层疏松的灰层,运行

中通过吹灰很容易将它们除掉,从而保持受热面的清洁。若渣粒以液体或半液体粘附在受热面管壁或炉墙上,将形成一层紧密的灰渣层,即为结渣。

H灰分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)烟气携带飞灰流过受热面产生结渣、积灰、磨损、腐蚀等有害现象。

3热平衡:

输入锅炉的热量=有效利用热量(输出锅炉的热量)+未完全燃烧的热损失+其它热损失

G 胡+2+@+3+2+比 叫 (3-55) 式中2—嘟5料的输

入热量.kJ/kg ;

式屮 G —错炉的有效利用热屋,kJ4g ;

0—样烟损失的热量,kJ^tg :

幺一化学不完全燃烧损失的 热量,kJ/k g;

Q-机械不完全燃烧损失的热量,

& —散热损失的热量,tJ/kg ; 仑一灰渣物理热损

先的热量.kJ/kg.

4 A 燃烧系统:煤粉锅炉的燃烧设备由燃烧室 燃

烧的器包括作为主燃烧器的煤粉燃烧器、辅助燃

烧的油燃烧器和点火装置。 B 风机类型及作用功能:按照使用方式来分有送风机和引风机,送风机用来将空 气送入空气预热器,锅炉的热烟气将其热量传送给进入的空气;而引风机是用来 将无用的烟气抽出,经处理排向大气。

C 二次风与一次风的区别:二次风系统的作用是供给燃料燃烧所需的大量热空气, 一次风系统的作用是用来干燥和输送煤粉,并供给燃料挥发份燃烧所需要的空气。

D 燃烧器的分类:直流燃烧器和旋流燃烧器。直流燃烧器是由若干直流射流的喷 口组成的,其中包括携带煤粉的一次风喷口、纯粹热空气的二次风喷口,还可能有 制粉系统乏气的三次风喷口;旋流燃烧器出口气流为旋转射流。

E 燃烧器的作用:(1)保证送入炉内的煤粉气流能迅速、稳定地着火燃烧(

2)供 应合理的二次风,使它与一次风能及时良好地混合,确保较高的燃烧效率(

3)火焰 在炉膛的充满程度较好,且不会冲墙贴壁,避免结渣(

4)有较好的燃料适应性和负 荷调节范围(5)流动阻力较小,污染物生成量小(

6)能减少NOX 的生成,减少对

环境的污染。

5锅炉几种受热面的类型及其作用功能:

水冷壁、过热器(再热器)、省煤器和空气预热器;

水冷壁:在锅炉炉膛中,水在水冷壁内流动,燃料在炉膛中燃烧并对炉膛四周的 水冷壁管进行辐射换热;

过热器:在水平烟道中,蒸汽在过热器管道内流动,高温烟气在管外流过对管壁 进行对流放热,这样,燃料燃烧所释放出来的热量大部分便通过各种换热方式最终 传给工质;

省煤器:禾U 用锅炉烟气的余热来加热给水的低温受热面,它可降低排烟温度、提 高锅炉效率,因而起到省煤的作用;

空气预热器:因锅炉给水温度较高,导致省煤器出口烟气温度仍然很高,采用空 气预热器进一步降低烟气温度,提高锅炉效率。

6 A 过热器的形式:对流式、辐射式和半辐射式 ; B 气温调节方法:可归纳为蒸汽侧调节和烟气侧调节。蒸汽侧调节是指通过改变 蒸汽的焓值来调节气温;烟气调节方式是指通过改变锅炉内辐射受热面和对流受热 面的吸热量比例或通过改变流经受热面的烟气量来调节汽温。

C 热偏差:过热器(再热器)由许多平行的管子组成,由于管子的结构尺寸、管子 热负荷和内部阻力系数等可能不同,不同管中蒸汽的焓增可能不同,这一现象称为 过热器的热偏差。

D 再热器、省煤器及空气预热器的方位: 通常把再热器布置在过热器后面烟气温度

稍低的区域;省煤器和空气预热器布置在锅炉对流烟道的最后或对流烟道的下方。

E 省煤器 (a )分类:按水在其中的加热程度分为非沸腾式和沸腾式水煤气

lOO^^ + q. + qt + q, -q. +q fi % (3-56) 血一蹒加有数利用熱昼占输入熱屋的百分数* q -21x100%! Q T 町—某项损失的热量占输入热量的百分瓶 n. = 51x100% < Q r 炉膛)和燃烧器两部分组成。煤粉

(b)布置:省煤器蛇形管内,水流由下向上流动,便于排除水中的气体,避免造成管内局部氧腐蚀。

一般省煤器蛇形管在烟道中的布置可以垂直于锅炉前墙,也可以与前墙平行。

F空气预热器(a)分类:最常用的传热式预热器是管式空气预热器和回转式空气预热器(b)管式空气预热器由许多直管组成,管子两端焊接在上下管板上,其体积庞大,只适用于容量小的电厂锅炉(c)回转式空气预热器有二仓的和三仓的,其优

点:外形小,重量轻;传热元件允许有较大的磨损特别适用于大容量锅炉;缺点:漏风量大,结构复杂。

:汽轮机设备及系统

1水蒸气部分

A汽化热:由饱和水定压加热为干饱和蒸汽的过程,虽然压力、温度不变,比体体积却随着蒸汽增多而增大,熵值也因吸热而增大,该过程的吸热量称为汽化热;

B饱和状态:在汽化过程进行时如果撤去热源而用保温材料将容器绝热,汽、液既不吸热也不放热而保持一定的温度,则汽、液两相的分子数保持一定的数量而处于

动态平衡。这种汽、液两相动态平衡的状态称为饱和状态。

C 一点两线三区五态:当压力提高到22.064MPa时,t=373.99摄氏度,此时饱和

水和饱和蒸汽不再有区别,成为一个状态点,称为临界状态或临界点;连接p-v图和T-s图上不同压力下的饱和水状态和临界点所得曲线为饱和水线(或下界线),连接图上不同压力下的干饱和蒸汽状态和临界点所得的曲线称为饱和蒸汽线,两线和在一起称为饱和线(或上届线);饱和线将p-v图和T-s图分为三个区域,未饱和水区、湿蒸汽区和过热蒸汽区;位于三区和二线上的水和水蒸气呈现五种状态:未饱和水、饱和水、湿(饱和)蒸汽、(干)饱和蒸汽和过热蒸汽。

D水的定压汽化过程(书45页图)

2蒸汽动力循环

A朗肯循环示意图、设备及过程:蒸汽动力循环中的锅炉、汽轮机、冷凝器和水泵是循环中的基本设备;

过程4-1:水在锅炉B和过热器S中吸气,由未饱和水变为过热蒸汽。过程中工质与外界无技术功交换。忽略了工质流动过程的阻力,该过程为定压过程。

过程1-2:过程蒸汽在汽轮机T中膨胀并对外输出轴功,在汽轮机T出口,工质达到低压下的湿蒸汽状态,称为乏汽。忽略工质的摩擦与散热,该过程为绝热可逆的定熵过程。

过程2-3:在凝汽器C中乏汽放热给冷却水,凝结成为冷凝器C乏汽压力下的饱和水。该过程视为定压过程。

过程3-4:凝结后的饱和水经水泵P升压后压力提高,再次进入锅炉B,完成一个循环。饱和水经水泵的升压过程可视为定熵过程。(图见55页)

B朗肯循环热效率:(书55页)

C蒸汽参数对热效率的影响:

(1)初温的影响:在相同初压和背压下,提高新气温度,使得朗肯循环的平均吸热温度升高,循环的热效率得以提高;

(2)初压的影响:在相同初温和背压下,提高新气的压力,使得朗肯循环的平均吸热温度升高,使循环热效率得到提高;

(3)背压的影响:在相同初温和初压下,降低排气压力(背压),则使得朗肯循环的平均放热温度有明显下降,而平均吸热温度相对下降的极少,这样使循环的热效

率得以提咼。

2汽轮机设备

A基本概念:是火力发电厂和核电站的原动机,是一种外燃回转式动力机械,通过它将蒸汽的热能转换

成机械能,借以拖动发电机旋转发电。

B按工作原理分类:冲动式汽轮机和反动式汽轮机;按热力过程分类:凝汽式汽轮机、背压式汽轮机、调整抽气式汽轮机、混压式汽轮机和中间再热式汽轮机。

C汽轮机的型号分类(书177页)

D级:汽轮机的基本能量转换单元。通常我们将一列喷嘴叶栅和相应的一系列叶栅称作汽轮机的一个级。

E气轮机的组成:气轮机主要由静止和转动两大部分组成;静止部分主要包括喷嘴、隔板、汽缸和轴承等主要部件;转动部分由动叶、叶轮及主轴组成;由若干个喷嘴片组成的固定不动的蒸汽流道称之为喷嘴叶栅(静叶),由若干个动叶片组成的可

作轮周运动的蒸汽流道称之为动叶栅(动叶片);

F气轮机各部件作用:(a)喷嘴:气轮机的喷嘴又称静叶,蒸汽流过喷嘴时,产生膨胀,压力降低,速度增大,蒸汽的部分热能被转换为动能,使蒸汽以一定的速度进

入动叶(b)隔板:隔板又叫喷嘴板,它将气轮机的各个压力级分隔开来(c)盘车:

为了避免转子产生热弯曲,就需要一种设备带动转子在气轮机冲转前和停机后仍以一定的转速连续地转动,以保证转子的均匀受热和冷却,这种设备被称为盘车设备;(d)轴承:承受转子的重力、由于转子质量不平衡引起的离心力以及由于振动等原因引起的附加力等;确定转子的径向位置,保证转子中心线与汽缸中心线一致,从而保证转

子和汽缸、汽封、隔板等静止部件之间的正确的径向间隙(e)动叶片:完成蒸汽能

量转换(f)叶轮是用来装置动叶并传递汽流力在动叶栅上产生的扭矩。

G多级气轮机重热现象及相对内效率:在水蒸气h-s图上,等压线沿着熵增加的方

向逐渐扩张,即等压线之间的理想比焓降随着比熵的增大而增大,这相当于上一级的

损失将引起熵增,进而使后面的理想比焓降增大,这相当于上一级损失以热能的形式被后面各级部分利用,这种现象称为多级气轮机的重热现象;由于重热现象的存在,使整机的相对内效率高于各级的相对内效率。(蒸汽在气轮机内的有效焓降与理想焓

降的比值称为相对内效率)(树208页)

H凝汽设备的组成及其作用(1)通常由凝汽器、抽气设备,凝结水泵、循环水泵及其连接管组成(2)在气轮机的排汽口建立并保持高度真空,使进入气轮机的蒸汽能膨胀到尽可能低的压力,从而增大机组内蒸汽的理想比焓降,提高其热经济性;将

排汽的凝结水作为锅炉的给水循环使用。

3重要辅机及发电厂概况

A回热加热器的类型及其经济性:(a)按传热方式可分为表面式加热器和混合式

加热器;按水侧(即被加热水一侧)承受的压力不同,表面式加热器分为高压加热器和低压加热器;(b)混合式加热器与表面式加热器比较,加热效果相对较好,因此热

经济性要高一些,另外混合式加热器的金属消耗量小,也不需要配置输水设备,但是

每一个加热器都需要配置一台水泵,将已被加热的水送入压力较高的加热器继续加热,使得系统复杂,运行可靠性低故在电厂实际采用的回热系统中除了除氧器因为要具备除氧功能非得使用混合式加热器外,一般均采用表面式加热器。

B 除氧设备:(a )主要作用是除去锅炉给水中的氧气和其他不凝结气体,以保证 给水品质合格,若水中溶解氧气,与水接触的金属就会被腐蚀(

b )给水除氧的方法 主要由化学除氧和热力除氧两种, 对于亚临界组,热力除氧已基本满足除氧要求,

而 对超临界组,则需要在热力除氧的基础上,用化学除氧作为补充手段( c )除氧设备

主要部件是除氧器(或称除氧头)和除氧水箱,其中除氧头为除氧装置,除氧水箱为 储存除氧水的容器。 C 润滑油系统中泵:(a )主油泵:是蜗壳型双吸离心泵结构,由气轮机主轴直接 驱动,且与气轮机主轴采用刚性连接; 功能是通过注油机向各轴承和保护跳闸部套提

供工作油。(b )辅助油泵:润滑油系统的辅助油泵设计成能满足自动启动、遥控及手 动启动的要求,并有独立的压力开关,停止一自动一运行按钮控制开关以及具有能用 电磁阀操作油泵自起动的试验阀门的功能; 辅助油泵包括交流润滑油泵、 直流润滑油

泵(事故危急油泵)和氢密封备用油泵(或高压启动油泵)

。 耗量不变的条件下,气轮机的功率增加,使热耗率相应减小( c )排汽压力对经济性 的影响:当主蒸汽、再热蒸汽的温度和压力保持不变, 气轮机的进汽量也保持不变时,

排汽压力的变化将引起循环效率和气轮机效率的相应变化,进而影响气轮机的经济 性,排汽压力降低,排汽焓减小,冷源损失相应减少,循环效率相应提高。

E 经济性的评价相关的一系列经济指标:汽轮机装置的经济指标、汽轮发电机组 的经济指标、锅炉的经济指标、主蒸汽管道的经济指标和单元机组的经济指标。

G ( a )发电煤耗率:汽轮发电机组与锅炉及其连接管道一起构成单元机组,它的 经济性指标定义为输出能量与输入能量之比, 被称为发电煤耗率,即单位发电量所消

耗的煤量(b )标准煤:将热值为 29307.6kj/kg 的燃煤定义为标准煤(c )标准发电煤 耗率:单位发电量所消耗的煤量( d )供电煤耗量:若将厂用电的因素考虑进去,将

发电量扣除厂用电量后的煤耗率称为供电煤耗率(

e )厂用电率:厂用电量与发电量 之比称为厂用电率。 D 蒸汽参数对电厂的热经济性的影响: 定

的热力系统,假定气轮机蒸汽的初温、 内变

化时,只影响气轮机运行的经济性, 之外,

绝大多数级内蒸汽理想焓降不变, 汽温度和

再热温度对热经济性的影响: 均吸热温度升

高,因此循环效率相应提高

(a )主整齐压力对经济性的影响:对于给 排汽压力保持不变,当蒸汽初压在允许范围 因为,若调节汽门开度不变, 除少数低压级 故可认为气轮机的效率保持不变。 (b )主蒸 当主蒸汽温度升高时, 说明蒸汽在锅炉中的平 又因为能量转换效率得以提高, 所以在热

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

热力发电厂考试知识点总结

1.名词解释 (1)热耗率:汽轮发电机组每生产1kw·h的电能所消耗的能量。 (2)汽耗率:汽轮发电机组每生产1kw·h的电能所消耗的蒸汽量。 (3)发电标准煤耗率:发电厂生产单位电能所消耗的煤折合成标准煤的数量。 (4)供电标准煤耗率:发电厂向外提供单位电能所消耗的标准煤的数量。 (5)厂用电率:单位时间内厂用电功率与发电功率的百分比。(6)热电联产:在发电厂中利用在汽轮机中做过功的蒸汽的热量供给热用户。在同一动力设备中同时生产电能和热能的生产过程。 (7)高压加热器:水侧部分承受除氧器下给水泵压力的表面式加热器。 (8)低压加热器:水侧部分承受凝汽器下凝结水泵压力的表面式加热器。 (9)混合式加热器:加热蒸汽与水在加热器内直接接触,在此过程中蒸汽释放出热量,水吸收了大部分热量使温度得以升高,在加热器内实现了热量传递,完成了提高水温的过程。 (10)给水泵汽蚀:汽泡的产生、发展、凝结破裂及材料的破坏过程。 (11)热效率:有效利用的能量与输入的总能量之比。 (12)热力系统:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。 (13)单元制系统:每台锅炉与相对应的汽轮机组成一个独立单元,各单元间无母管横向联系。 (14)公称压力:管道参数等级。是指管道、管道附件在某基准温度下允许的最大工作压力。 (15)公称通径:划分管道及附件内径的等级,只是名义上的计算内径,不是实际内径。 (16)最佳真空:发电厂净燃料量消耗最小的情况下,提高真空是机组出力与循环水泵耗功之差最大时的真空。 (17)最佳给水温度:汽轮机绝对内效率最大时对应的给水温度。 (18)加热器端差:上端差:加热器汽侧压力下的饱和温度与水侧出口温度之差。 下端差:加热器汽侧压力下的饱和温度与水侧进口温度之差。

西交《发电厂热力设备(高起专)》期末复习题

(单选题)1.汽轮机绝对效率包括绝对内效率、绝对有效效率和()。 A: 绝对电效率 B: 循环效率 C: 绝对外效率 正确答案: A (单选题)2.热射线的波长一般为:( ) A: ﹤0.4微米 B: 介于0.4微米和1000微米之间 C: ﹥1000微米 D: 越长越好 正确答案: B (单选题)3.下列设备属于热交换器的是( ) A: 锅炉 B: 冷油器 C: 冷凝器 D: 其他均是 正确答案: D (单选题)4.过量空气系数减少,则排烟量热损失()。 A: 增加 B: 减少 C: 不变 D: 不确定 正确答案: B (单选题)5.为了保证直流锅炉受热面内表面清洁,对停止时间超过多少小时以上的机组应进行锅炉清洗?( ) A: 50 B: 100 C: 150 D: 200 正确答案: C (单选题)6.过热器的作用是将()蒸汽加热成具有一定温度的过热蒸汽。 A: 饱和 B: 未饱和 C: 过饱和

D: 加热 正确答案: A (单选题)7.蒸汽轮机对外作的轴功来源于工质从汽轮机进口到出口的( ) A: 焓降 B: 温度降 C: 压力降 D: 熵降 正确答案: A (单选题)8.()是气流在动叶通道中理想焓降与整个级的滞止理想焓降之比。 A: 相对热效率 B: 能量利用率 C: 汽轮机效率 D: 反动度 正确答案: D (单选题)9.提高蒸汽初压,其它条件不变,汽机相对内效率()。 A: 提高 B: 降低 C: 不一定 D: 先提高后降低 正确答案: B (单选题)10.过量空气系数的大小反映了燃烧过程的经济性和操作的技术水平,一般煤粉炉的过量空气系数掌握在:( ) A: 0。5~1。1 B: 1。15~1。25 C: 1。5 ~2。5 D: 2。5以上 正确答案: C (单选题)11.再热气温随锅炉负荷增加而()。 A: 增加 B: 降低 C: 不变 D: 先降低后增加 正确答案: A

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

发电厂热力设备及系统

发电厂热力设备及系统 07623班参考资料 :锅炉设备及系统 1有关锅炉的组成(本体、辅助设备) 锅炉包括燃烧设备和传热设备; 由炉膛、烟道、汽水系统以及炉墙和构架等部分组成的整体,称为锅炉本体; 供给空气的送风机、排除烟气的引风机、煤粉制备系统、给水设备和除灰除尘设备等一系列设备为辅助设备。 2 A燃料的组成成份 化学分析:碳(C)、氢(H )、氧(0)、氮(N )、硫(S)五种元素和水分(M )、灰分(A)两种成分。 B水分、硫分对工作的影响; 硫分对锅炉工作的影响:硫燃烧后形成的SO3和部分SO2,与烟气中的蒸汽相遇, 能形成硫酸和亚硫酸蒸汽,并在锅炉低温受热面等处凝结,从而腐蚀金属;含黄铁矿硫的 煤较硬,破碎时要消耗更多的电能,并加剧磨煤机的磨损。 水分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)影响煤的磨制及煤粉的输送(4)烟气流过低温受热面产生堵灰及低温腐蚀。 C水分、灰分、挥发分的概念: 水分:由外部水和内部水组成;外部水分,即煤由于自然干燥所失去的水分,又叫表面水分。失去表面水分后的煤中水分称为内部水分,也叫固有水分。 挥发分:将固体燃料在与空气隔绝的情况下加热至850摄氏度,则水分首先被蒸发 出来,继续加热就会从燃料中逸出一部分气态物质,包括碳氢化合物、氢、氧、氮、挥发性硫和一氧化碳等气体。 灰分:煤中含有不能燃烧的矿物杂质,它们在煤完全燃烧后形成灰分。 D挥发分对锅炉的影响: 燃料挥发分的高低对对燃烧过程有很大影响。挥发分高的煤非但容易着火,燃烧比较稳定,而且也易于燃烧安全;挥发分低的煤,燃烧不够稳定,如不采取必要的措施来改 善燃烧条件,通常很难使燃烧安全。 E燃料发热量:发热量是单位质量的煤完全燃烧时放出的全部热量。煤的发热量分为高位发热量和低位发热量。1kg燃料完全燃烧时放出的全部热量称为高位发热量;从高 位发热量中扣除烟气中水蒸气汽化潜热后,称为燃料的低位发热量。 F标准煤:假设其收到基低位发热量等于29270kj/kg的煤。(书88页) G灰的性质:固态排渣煤粉炉中,火焰中心气温高达1400~1600摄氏度。在这样的 高温下,燃料燃烧后灰分多呈现融化或软化状态,随烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起冷却下来。如果液态的渣粒在接近水冷壁或炉墙以前已经 因温度降低而凝结下来,那么它们附着到受热面管壁上时,将形成一层疏松的灰层,运行 中通过吹灰很容易将它们除掉,从而保持受热面的清洁。若渣粒以液体或半液体粘附在受热面管壁或炉墙上,将形成一层紧密的灰渣层,即为结渣。 H灰分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)烟气携带飞灰流过受热面产生结渣、积灰、磨损、腐蚀等有害现象。 3热平衡: 输入锅炉的热量=有效利用热量(输出锅炉的热量)+未完全燃烧的热损失+其它热损失

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,

火力发电厂热力设备和管道保温油漆设计技术规定

火力发电厂热力设备和 管道保温油漆设计技术规定 SDGJ 59—84 水利电力部电力规划设计院 关于颁发《火力发电厂热力设备和管道保温油漆 设计技术规定SDGJ 59—84》的通知 (84)水电电规设字第3号 为适应电力工业的发展和满足设计工作的需要,我院委托西南、华北电力设计院编制了《火力发电厂热力设备和管道保温油漆设计技术规定SDGJ 59—84》,现颁发试行。 本规定正文及附件二由西南电力设计院负责编制;附件一由华北电力设计院负责编制,该院已有为TQ-16机和MZ-80B微型机编制的专用计算程序。 各单位在使用本规定过程中应注意总结经验,如发现不妥之处,请随时函告我院和西南、华北电力设计院,以便修订时考虑。 一九八四年二月十五日 第一章总则 第1.0.1条适用范围: 本规定适用于火力发电厂的热力设备、管道及其附件的保温、油漆设计。 本规定不适用于汽轮机、锅炉本体的保温、油漆设计,也不适用于电气、土建部分的有关设计。 第1.0.2条对下列情况,应按不同要求予以保温: 一、为保证良好的工作环境,外表面温度高于50℃,需要经常操作、维修的设备和管道一般均应保温。环境温度为27℃时,保护层外表面温度不应超过50 ℃。对于个别不宜保温的设备和管道,其外表面温度低于60℃(防止烫伤运行维护人员的温度界限)时可以不保温。 二、当散热损失导致年运行费用增加时,必须从节能和经济的角度进行保温设计,保温厚度按年最小费用法确定。 三、当需要限制介质在输送过程中的温度降,以满足防堵、防冻、防结露及其他工艺要求时,必须从控制介质温度的角度进行保温设计。 第1.0.3条对于不保温的设备、管道及其附件(包括支吊架),为了防腐和便于识别,应进行外部油漆。管道保温结构的外表面,为便于识别起见,应涂刷介质名称、表示介质性质的色环和表示介质流向的箭头。设备保温结构的外表面,只涂刷设备的名称,不必大面积涂刷油漆。 第1.0.4条保温设计应按照《火力发电厂热力设备和管道保温材料技术条件与检验方法》和《电力建设施工及验收技术规范(锅炉机组篇)》第九章的规定,对保温材料的制造和施工提出要求。 第二章保温厚度 第2.0.1条保温经济厚度按年最小费用法计算确定,计算程序见附录一。介质在给定条件下输送时,设备和管道的保温厚度按热平衡方法计算;为保证良好的工作环境和防止烫伤运行人员,设备和管道的保温厚度按给定的表面温度计算。 第2.0.2条对于下述管道不进行保温计算,保温厚度按下列数据确定:

发电厂热力设备(高起专) 模拟试题

模拟试题(一) 一、填空题 1、人类已开发利用了各种能源,如_风_能,_水_能,燃料化学能,_太阳_能,及_原子核_能等。 2、电厂锅炉的连续运行的时数越长,事故率越低,可用率越高,则锅炉的安全可靠性就越高。 3、电能可以用自然界中各种能源_转换__而得到,其中以应用_燃料_资源及_水力_资源来发电占主要地位。 4、锅炉中耗电最大的设备主要是:送风机、磨煤机、给水泵等。 5、就我国电力工业发展情况而言,在今后相当长时间内电能还是依靠_水电站_和_火力(热力)_发电厂来生产与供应。 6、实践证明,金属的蠕变发展过程分三个阶段:蠕变不稳定阶段,蠕变稳定阶段,蠕变速度恒定阶段,如蠕变速度增加很快,直至断裂。 7、暖管是指锅炉点火后,利用所产生的低温蒸汽对管道等进行预热的过程,其目的是减小启动时因温差产生的热应力,以避免启动中蒸汽凝结成水对管道的冲击和对汽轮机的水冲击。 8、在电厂中向各处供应冷却水的系统称为循环供水系统。冷却水的供应方式有:直流供水和循环供水两种方式。 9、转子的高温蠕变损伤是指金属在高温下工作时产生的蠕变对转子寿命的损伤。汽轮机的服役年限一般为30 年,根据统计数据表明机组终生冷态启动次数通常不超过120~ 150 次。 10、单元机组的停机运行是指炉,机,电整套系统的停运。是启动的逆过程,对炉,机也是个冷却过程。 二、简答题 1、何为电厂热力设备? 答:是指热力电厂中有关热能(蒸汽)的产生,热能的传递以及将热能转换成机械能的过程中用到的设备,如锅炉、过热器、空气预热器、省煤器、凝汽器、汽轮机等。 2、简要指出电厂锅炉的主要工作内容? 答:燃料的燃烧,热量的传递,水的加热与汽化和蒸汽的过热等。 3、何为能源? 答:是指可提供能量的物质资源。 4、指出锅炉耗电率的定义及其单位? 答:是指锅炉每生产1t蒸汽所耗用的电量,其单位是kwh/t。 5、人们利用热能一般有哪两种形式,并举例说明? 答:一种是直接利用形式,如把热能直接用于加热、采暖、或烘干等,另一种是间接利用的形式,如把热能转换成发动机转轴的机械能,用作生产上的动力或进一步将机械能转变成为电能。 6、何为“锅”,何为“炉”,并指出其任务与组成? 答:“锅”既是汽水系统,其主要任务是吸收燃料燃烧放出热量,使水加热,蒸发并最后变为具有一定参数的过热蒸汽,它是由省煤器、水冷壁、过热器等组成。“炉”即是燃烧系统,其主要任务是燃料在炉内良好燃烧放出热量,它是由炉膛、燃烧器、点火装置、空气预热器等组成。 7、指出汽轮机每一个运行周期包括哪三个阶段? 答:汽轮机每一个运行周期都包括:启动、带负荷运行及停机这三个阶段。 8、指出汽轮机供油系统的主要任务? 答:是向机组各轴承提供足够的润滑油和向调节、保护系统提供动力油和机组盘车时还要向盘车装置和顶轴装置提供压力油。 9、指出在启动或变工况时,汽轮机零部件产生热应力的原因? 答:汽轮机在启停或变工况时,其进汽参数和进气量均相应变化,各级参数也相应变化,但蒸汽不可

发电厂热力设备(高起专)

1、“炉”即是燃烧系统,其主要任务是使燃料在炉内良好燃烧放出热量,它是由炉膛、燃烧器、点火装置、空气预热等组成。() 正确答案:正确 2、有机燃料按其物态可分为固态燃料(如煤、木材等),液体燃料(如石油)和气体燃料(如天然气、高炉煤气)三种。() 正确答案:正确 3、煤的发热量是指1Kg煤完全燃烧所放出的热量。() 正确答案:正确 4、低位发热量是指1Kg煤完全燃烧时在锅炉实际进行交换的热量,不包括燃烧产物中的水蒸汽凝结成水所放出的汽化热。() 正确答案:正确 5、制煤粉系统的主要设备是:磨煤机、给煤机、粗粉分离器、细粉分离器、给粉机。() 正确答案:正确 6、锅炉的各项热损失有:(1)机械不完全燃烧热损失。(2)化学不完全燃烧热损失。(3)排烟热损失。(4)散热热损失。(5)灰渣物理热损失。() 正确答案:正确 7、化学不完全燃烧热损失是指排出烟气中含有可燃气体(如CO、H2及CH4等)所引起的热损失。() 正确答案:正确 8、散热热损失是指锅炉在运行中,汽包、联箱、汽水管道、炉墙等的温度都高于周围空气的温度,通过对流和热辐射方式向外散失的热量损失。() 正确答案:正确 9、燃烧系统中用到的辅助设备有:风机、除尘器、除灰渣装置、脱硫装置。() 正确答案:正确 10、锅炉水循环是指水在锅炉蒸发受热面组成的循环回路中流动的过程,() 正确答案:正确 11、流过程是利用水泵而建立起来的锅炉水循环流动则称为锅炉强制水循环。() 正确答案:正确 12、汽包是工质加热、蒸发、过热三个过程的连接枢纽。() 正确答案:正确 13、汽包内装有汽水分离装置、蒸汽清洗装置、连续排污装置等以改善蒸

发电厂原则性热力系统计算

发电厂原则性热力系统计算: 已知条件 1. 汽轮机形式和参数 制造厂家: 哈尔滨汽轮机厂 型 号: N300—16.7/538/538型 型 式: 亚临界、一次中间再热、单轴、双缸、双排汽、反动凝汽式汽轮 机 额定功率: 300MW 最大功率: 330MW 初蒸汽参数: =0p 16.67MP a ,=0 t 538C 再热蒸汽参数: 冷段压力 ==in rh p p 2 3.653MPa ,冷段温度=in rh t 320.6C 热段压力=out rh p 3.288MP a ,热段温度=out rh t 538C 低压缸排汽参数: =c p 0.0299M Pa ,=c t 32.1C , =c h 2329.8kJ/kg 给水泵小汽轮机耗汽份额:=st α0.0432 机组发电机实际发出功率:=' e P 300MW 给水泵出口压力: =pu p 20.81M Pa 凝结水泵出口压力: 1.78MPa 机组机电效率: ==g m mg ηηη0.98 加热器效率: =h η0.99 额定排汽量: 543.8t/h 给水温度: 273.6℃ 冷却水温度: 20℃ 最高冷却水温度: 34℃ 额定工况时热耗率: (计算)7936.2Kj /KW .h (保证)7955Kj/K W.h 额定工况时汽耗率 3.043K g/KW .h 主蒸汽最大进汽量: 1025t/h 工作转速: 3000r/min 旋转方向: 顺时针(从汽轮机向发电机看) 最大允许系统周波摆动: 48.5—50.5Hz 空负荷时额定转速波动: ±1r/m in 噪音水平: 90db 通流级数: 36级

发电厂热力设备及系统

发电厂热力设备及系统练习题 一、填空题 1.目前世界上已形成规模,并已大批量投入商业运营的发电厂,主要是火电厂、水电厂和核电厂。 2.尽管火电厂的类型很多,但从能量转换观点分析,其基本过程是:燃料的化学能 - 热能 - 机械能 - 电能。 3.根据热力系与外界相互作用的情况,热力系可分为闭口系、开口系、简单可压缩系、绝热系、孤立系和热源。 4.用来实现能量相互转换的媒介物质称为:工质。 5.平衡状态是指在没有外界影响的条件下,热力系的宏观性质不随时间变化的状态。 6.常用的工质的状态参数有六个,它们是压力、温度、比体积、热力学能、焓和熵。 7流体的压力常用压力表或真空表测量,通常他们测定的都是压差。 8.温度是物体冷、热程度的标志,是决定系统间是否处于热平衡的物理量,温度的数值表示称为温标。 9.热力系从一个状态向另一个状态变化时所经历的全部状态的总和称为热力过程。 10.热量和功一样,都是系统和外界通过边界传递的能量,他们都是过程量。11热力学能是工质微观粒子所具有的能量,在分子尺度上它包含内动能和内位能两种形式,其中与工质的温度有关的是内动能,与一定量工质占据的体积有关的是内位能。 12. 从微观上讲,熵是系统混乱度或无序性的量度;从宏观上讲,一个热力系统熵的变化,无论可逆与否,均可以表示为熵流与熵产之和。 13.物质从液态化为气态的过程称为汽化,从气态转变成液态的过程称为凝结。 15. 定压下水蒸气的发生过程可分为以下三个过程:液体加热阶段、汽化阶段、过热阶段。

16.锅炉的燃烧系统是由炉膛、燃烧器、点火装置、空气预热器、烟风道及炉墙、构架等组成。 17.汽轮机按其用途可分为:电站汽轮机、船用汽轮机、工业汽轮机。 18.蒸汽动力循环中的锅炉、汽轮机、冷凝器、和水泵是循环中的基本设备,利用这四种基本设备实现的朗肯循环是最简单的蒸汽动力循环。,19.物体内温度数值相等的点钩成的面,称为等温面,在等温面法线方向的温度变化率称为温度梯度。 20.物体内的各点温度随时间而变化,称为非稳态传热,不随时间而变化的称为稳态传热。 21.对流换热过程中同时存在热对流和导热两个过程,在流体中热对流明显,在固体壁面以导热为主。。 22. 因流体冷、热各部分的密度不同而引起的流动,称为自然对流,受外力作用所引起的流动,称为强制流动或受迫流动。 23.流体的流动基本上有两种流动状况,即层流和紊流,在层流状况下传热量较小,在紊流状况下传热量较大。 24. 吸收比为 1 时,表示物体全部吸收了投射到它上面的辐射能,这种物体称为黑体。 25. 增强传热的主要措施理论上可以增大温差、提高传热系数或增大传热面积,实际上常采用提高传热系数,有时也采用扩大传热面积。 26. 换热器按原理可分间壁式换热器、混合式换热器和蓄热式换热器,使用较多的是间壁式换热器,其中最常见的是管式换热器,在换热器里,冷、热流体平行且流动方向一致,则称为顺流,冷、热流体平行流动且流动方向相反称为逆流,两种流体流动方向互相垂直的交叉流动的混合流。 27. 电站锅炉按燃烧方式分类,可分为层燃炉、室燃炉和沸腾燃烧炉。 28. 通常煤的燃烧过程可分为两个大节段进行,即着火阶段和燃烧过程,着火是燃烧的准备阶段,而燃烧又给着火提供必要的热量来源。 29. 煤粉锅炉的燃烧设备由燃烧室和燃烧器两部分组成,燃烧器包括煤粉燃烧器、油燃烧器、点火装置。 30. 燃烧器按出口气流的流动特性可以分为直流燃烧器和旋流燃烧器。

汽轮机热力性能数据

资料编号:57.Q151-01 N135-13.24/535/535 135MW中间再热凝汽式空冷 汽轮机热力性能数据 产品编号:Q151 中华人民共和国 上海汽轮机有限公司发布

资料编号:57.Q151-01 COMPILING DEPT.: 编制部门: COMPILED BY: 编制: CHECKED BY: 校对: REVIEWED BY: 审核: APPROVED BY: 审定: STANDARDIZED BY: 标准化审查: COUNTERSIGN: 会签: RATIFIED BY: 批准:

资料编号:57.Q151-01 目次 1 说明 2 主要热力数据汇总 2.1 基本特性 2.2 配汽机构 2.3 主要工况热力特性汇总 2.4 通流部分数据 2.5 各级温度、压力及功率 2.6 各抽汽口口径及流速 3 汽封漏气量及蒸汽室漏气量 3.1 汽封计算 3.2 蒸汽室及中压进口漏汽量 4 汽轮机特性曲线 4.1 调节级后及各抽汽点压力曲线 4.2 调节级后及各抽汽点温度曲线 4.3 各加热器出口给水温度曲线 4.4 进汽量与汽耗、热耗及功率的关系曲线 4.5 高中压缸汽封漏汽量及低压缸汽封供汽量曲线 4.6 调节级后压力和汽轮机功率曲线 4.7 汽轮机内效率曲线 5 热平衡图 5.1 额定工况(THA) 5.2 铭牌工况(TRL) 5.3 最大连续功率工况(TMCR) 5.4 阀门全开工况(VWO) 5.5 75%THA工况 5.6 50%THA工况 5.7 40%THA工况 5.8 30%THA工况 5.9 高加全部停用工况

资料编号:57.Q151-01 1 说明 本机组是上海汽轮机有限公司采用美国西屋公司的先进技术和积木块的设计方法,设计制造的额定功率为135MW,是超高压、一次再热、双缸双排汽、直接空冷凝汽式汽轮机。机组型号为N135-13.24/535/535 1.1 主要技术参数 额定功率135MW 主汽门前蒸汽额定压力13.24MPa(a) 主汽门前蒸汽额定温度535℃ 再热汽门蒸汽额定温度535℃ 工作转速3000r/min 旋转方向从汽轮机端向发电机端看为顺时针 额定平均背压15kPa 夏季平均背压35kPa 额定工况给水温度241.1 ℃ 回热级数二高、三低、一除氧 给水泵驱动方式电动机 额定工况蒸汽流量422.285 t/h 额定工况下净热耗8706.5 kJ/kW.h (2079.5 kcal/kW.h) 低压末级叶片高度435mm

课程名称:电厂热力设备及运行

课程名称:电厂热力设备及运行 一、考试的总体要求 掌握锅炉原理及设备、汽轮机原理及设备的基本理论和分析计算方法,灵活运用所学的理论及方法解决有关锅炉设备、汽轮机设备安全与经济运行的复杂综合性问题。 二、考试的内容 1.锅炉设备的作用、组成、类型及主要技术经济指标; 2.锅炉燃料的特性;煤的成分分析和分类; 3.燃料燃烧计算; 4.锅炉机组的热平衡计算和热平衡试验方法; 5.煤的可磨性、磨损性及煤粉的性质;磨煤机;制粉系统及其他部件; 6.燃烧过程理论基础;燃烧设备; 7.过热器和再热器的作用、结构、工作特点及汽温调节;运行中的若干问题; 8.省煤器空气预热器的作用、结构、布置及运行中的若干问题; 9.锅炉热力计算方法、主要设计参数的选择、锅炉的典型布置; 10.自然循环锅炉、强制流动锅炉及水动力特性; 11.汽轮机设备的作用、类型及主要技术经济指标; 12.汽轮机级的工作原理;汽轮机级的各项损失、功率与相对内效率影响因素; 13.多级汽轮机的特点,汽轮机的轴封系统工作原理及其特点,汽轮机进、排汽损失及其影响分析,多级汽轮机的轴向推力及其平衡;

14.单排汽口凝气式汽轮机极限功率、单机最大功率及其影响因素分析; 15.汽轮机级与机组变工况特性分析;弗留格尔公式及其应用; 16.汽轮机滑压运行的经济性与安全性分析;小容积流量工况及其对汽轮机安全性影响分析;汽轮机初终参数变化对汽轮机工作的安全性与经济性影响分析; 17.汽轮机凝汽设备的工作原理、任务、类型;凝汽器的真空及其影响因素分析;凝汽器的变工况特性;多压凝汽器及其特点; 18.汽轮机叶片的激振力产生的原因,激振力频率特点;叶片与叶片组的振型、自振频率影响因素,叶片频率的测定方法,叶片频率的调整方法; 19.汽轮机转子的临界转速、汽轮发电机组的横向振动与扭转振动影响因素分析;汽轮机主要部件的热应力及其影响因素;汽轮机的寿命评估方法及寿命分配原则; 20.汽轮机调节系统的静态特性指标、动态特性指标;中间再热式汽轮机的调节突出问题及其解决方式;数字功频电液调节系统(DEH)的工作特点。 三、考试的题型 概念题、分析题。

热电厂热力系统计算

热电厂热力系统计算

————————————————————————————————作者: ————————————————————————————————日期:

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 项目单位 采暖期非采暖期 最大平均最小最大平均最小 用户热负荷工业t/h 175 142 108 126 92 75采暖t/h 177 72 430 0 0 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.700.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985(3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

相关主题
文本预览
相关文档 最新文档