当前位置:文档之家› 三峡水库调度对库岸斜坡体内渗透压力与斜坡...

三峡水库调度对库岸斜坡体内渗透压力与斜坡...

三峡水库调度对库岸斜坡体内渗透压力与斜坡...
三峡水库调度对库岸斜坡体内渗透压力与斜坡...

第24卷 第16期

岩石力学与工程学报 V ol.24 No.16

2005年8月 Chinese Journal of Rock Mechanics and Engineering Aug .,2005

收稿日期:2004–04–16;修回日期:2004–06–07

作者简介:胡亚波(1970–),男,硕士,1998年于中国地质大学工程学院环境地质专业获硕士学位,现为高级工程师、武汉市建设管理委员会副主任,主要从事环境地质、地质灾害研究和城市建设管理方面的研究工作。E-mail :hu_wly@https://www.doczj.com/doc/292784084.html, 。

三峡水库调度对库岸斜坡体内渗透压力与斜坡

稳定性影响研究

胡亚波1,

2,王丽艳2

(1. 武汉市建设委员会,湖北 武汉 430015;2. 中国地质大学 工程学院,湖北 武汉 430074)

摘要:在分析三峡库区松散堆积斜坡岩土体结构和地下水赋存条件的基础上,着重探讨了三峡水库水位调节时斜坡中渗透压力的作用方式和强度,用地下水动力学中潜水渗流理论研究某类边界条件下的渗透压力,提出斜坡渗透压力评价和计算公式,从而为客观地评价斜坡的稳定性状况、设计合理的斜坡防治工程及节约工程造价提供依据。

关键词:工程地质;三峡水库;渗透压力;稳定性;防治工程

中图分类号:P 642.2 文献标识码:A 文章编号:1000–6915(2005)16–2994–04

RESEARCH ON EFFECTS OF PERMEABILITY PRESSURE ON SLOPE STABILITY DURING REGULATING WATER LEVEL IN THREE

GORGES RESERVOIR

HU Ya-bo 1,

2,WANG Li-yan 2

(1. Construction Committee of Wuhan City ,Wuhan 430015,China ;

2. Faculty of Engineering ,China University of Geosciences ,Wuhan 430074,China )

Abstract :Based on analyzing rock and earth structure in unconsolidated slopes ,the style and intensity of permeability pressure in slopes during regulating water level in the Three Gorges Reservoir are discussed. Due to many unsolved boundary problems in simulating variation of water flow in slope ,a new formula for calculating permeability pressure in slope is proposed ,by studying on permeability pressure in certain boundary conditions with one-dimensional seepage theory. With this formula variation of phreatic surface and permeability pressure in Beimengou landslide in the Three Gorges Reservoir area ,are calculated. The results show this formula is reasonable and effective for certain boundary ;and it can provide a basis for appraising the stability condition of slopes and designing control projects.

Key words :engineering geology ;Three Gorges Reservoir ;permeability pressure ;stability ;control project

1 引 言

水库水位降落诱发古滑坡的复活在国内外都有

实例:我国黄龙滩水库库岸斜坡出现大量古滑坡的

复活与水库水位下降有关;1941年前苏联伏尔加格勒的滑坡发生与哈查尔含水层的水力坡度在洪水降落时急剧增大有关。

根据勘察成果资料,三峡库区稳定性较差的库岸长441 km ,且城镇库岸段长度也达400余公里。

第24卷第16期胡亚波等. 三峡水库调度对库岸斜坡体内渗透压力与斜坡稳定性影响研究 ? 2995 ?

在人类工程活动较为密集的城镇库岸段,55.53%为不同成因的松散堆积(滑坡、崩塌、巫山黄土、崩坡积物、河流阶地沉积等松散堆积物)库岸,其中稳定性较差的滑坡、变形体库岸长77.8 km,占城镇库岸长度的19.5%。对松散堆积库岸滑坡而言,由于堆积物成因复杂,地下水主要是崩坡积、残积潜水,长江水位升降时滑体内的渗透压力变化是十分复杂的,三峡水库蓄水后,库区前缘高程在175 m以下的一千多处潜在崩滑体的稳定性状况受库水位变动的影响将不可避免的发生改变,有可能诱发大量崩滑体失稳,从而威胁库岸稳定和航运安全。

目前,用极限平衡方法计算、评价滑坡稳定性状况时,多数斜坡在不同荷载组合工况时是稳定的,但是在长江水位由175 m降至145 m时,稳定系数F s急剧下降,甚至小于1,将不得不动用工程治理。但到底是长江水位由175 m降至145 m引起的渗透压力是导致斜坡失稳的主要原因,还是在计算中过分估计了这种作用而引起的,这一问题关系到一个滑坡是否需要治理,或者是否可以节约防治工程量,从而节约投资的问题,因此,值得重点研究。

2 渗流数值分析

2.1 三峡水库水位调度

三峡水库运营后,水位的调度分为两种情况,一种是每年10月左右洪峰过后,库水位由常水位145 m缓慢的抬升到175 m,至次年4~5月份,库水位又调整到145 m,这个过程水位的变化一般不超过0.3 m/d,由此产生的滑坡体内渗透压力也是较小的;另外一种情况是洪水期间,由于在每次洪峰到来之前都要较快的释放库容,水位的升降幅度取决于两次洪峰之间的时间间隔和洪水量的大小,以及水库的泄洪能力,据长江水利委员会提供的数据,这种水位的骤降过程(175~145 m)一般可按最大

1.2 m/d考虑。

2.2 库岸斜坡体内渗流数值分析

水库水位降落使滑坡体内水力坡度不断变化,水在土体中流动时,力图拖曳土粒而消耗能量,此时水流给予土粒的拖曳力即为渗透压力[1]。渗透压力的存在必须同时具备2个条件,即土体中存在水头差,且地下水有向外流动的趋势[2]。渗透压力与岩土体的渗透性、给水度以及含水层厚度密切相关。

渗透压力的大小为

F=r w h l i(1) 式中:r

w

为水的容重,h为渗流带厚度,l为渗流带长度,i为水力坡度。

渗透压力是一个动态变化量[3],用条分法计算稳定性系数时,各条块中出现最大渗透压力的时间是不同的,如在水位降落初期,斜坡前缘的水力坡度最大,对局部浅层土体有较大破坏作用,但对斜坡整体稳定性的作用并不是最大的,只有当整个斜坡水力坡度最大时,渗透压力对斜坡稳定性影响才最大。因此,这个渗透压力对斜坡整体稳定性计算有实际意义。极限平衡法没有考虑到这种动态变化过程,计算结果与实际情况有一定出入,故应该考虑利用渗流分析法。

假设一坡度为?的顺向坡,滑体为松散的残坡积、堆积物,渗透系数为k,给水度为μ,部分滑体位于长江水位变动带内(175~145 m)。由于江水位的降落是一个相对缓慢的过程,将赋存于滑体中的潜水视为一维潜水非稳定流[4~6],滑坡体的后缘为隔水边界,前缘为给定水头边界,可概化为半无限含水层中地下水非稳定运动数学模型,即

?

?

?

?

?

?

?

?

?

?

=

=

=

?

?

=

?

?

)0

(

)

0(

)0

(

)

(

)

0(

)0

(

)0

0(

2

2

t

h

t

u

t

t

u

x

x

u

t

x

x

u

a

t

u

t

(2)

式中:

)

(

,h

h

t

x

u

t

x

?

=;

μ

m

kh

a=为压力传导系数,且以滑坡后缘做一映射来解决隔水边界问题。

通过求解微分方程,得到如下水力坡度计算公式:

+

?

?

?

?

?

?

?

?

?

?

?

+

?

?

?

=∑

=?

n

i i

t

x t

t

a

c

i

h

x

F

x

h

n

x

h

i

11)

(

2

tan

)1

(?

=???

?

?

?

?

?

?

?

?

?

+

?n

i i t

t

a

x

c

i

h

l

F

x

h

11)

(

2

tan

)1

(

2?

(3) 式中:n为水位降落天数,h

?为水位降落幅度,F(x)为江水位对地下水位的影响函数,x为滑坡内某一点到长江的距离。

将式(3)代入式(1),可以求出任意时刻的渗透压力,从而确定最大渗透压力。

? 2996 ? 岩石力学与工程学报 2005年

3 例证与讨论

3.1 例 证

由于对滑体中地下水的作用认识不足,勘查工作中多忽略了对地下水的调查和试验研究,以至多数滑坡勘查中没有给出渗透系数、给水度等水文地质参数,给计算带来困难。这里只能以有限的例子做对比。

北门沟滑坡位于秭归县境内长江北岸,滑坡体由第四系崩滑堆积层与冲洪积堆积层构成。滑坡后缘位于基岩陡坎下,高程260 m ;前缘为长江漫滩,高程72 m ;滑坡面积0.12 km 2

,最大厚度28.7 m ,平均厚度18.5 m ,坡度为30°,渗透系数为1.0 m/d ,给水度为0.20,h ?为1.2 m ,n 为25 d 。

根据现有的水文地质剖面图计算水位变动带内的含水层平均厚度为31 m ;依据公式计算压力传导系数;因水库的最高蓄水水位为175 m ,故视该水位为地下水的初始水位。

编程[7

~9]

及查表计算各时段地下水水位,并绘

制不同时刻潜水水面(见图1)。计算结果表明,降落初期主要是前缘水体的排出,水面呈前陡后缓状,随着江水位的不断降落,水面趋于一倾斜的直线。依据式(3)计算不同时段的水力坡度,对比结果表明,江水水位降落25 d 时地下水水力坡度最大,为0.22,最大渗透压力为170 kN/m ,之后水力坡度逐渐趋缓微倾直线。

图1 滑坡体内不同时刻潜水水面图

Fig.1 Phreatic surface at different periods in landslide

将渗透压力考虑为水位由175 m 骤降至145 m

的瞬间作用力时,该滑坡的渗透压力为2 140 kN/m ,剩余下滑力为6 308 kN/m ,其渗透压力占到1/3,显然放大了渗透压力作用。该项目设计阻滑工程的直接费为995.6万元,而由此增大的投资将非常可观。

重庆万州安乐寺滑坡,地面高程在140~220 m 之间,由二级台阶构成,滑坡体主要由粉质粘土和冲洪积粉砂土组成,厚度不均匀,平均厚度约23 m ,渗透系数取3 m/d ,给水度取0.25。计算结果为:最大水力坡度约0.12(坡度7°),渗透压力约90 kN/m ,而考虑水位骤降30 m 时,瞬间渗透压力约为1 100 kN/m 。

需要指出的是:若滑带也在渗透影响带,水位升降的周期性过程对滑带土体具有周期性破坏作用。对斜坡稳定性计算和评价时,滑带土力学参数应选取长期强度或疲劳强度,以更加符合实际情况。 3.2 问题讨论

(1) 斜坡中地下水渗流作用对斜坡稳定性影响很大,应加强对其流态的研究和水文参数的测试工作,同时开展在库水位变动时潜水二维流边界条件处理方法的研究,以便应用有限元等方法以提高计算精度。目前,滑坡勘查中缺乏对水文地质条件的深入分析和研究,不能准确给出计算要求的参数,因此,使用一维潜水非稳定流模型,不失为一种解决问题的思路和办法。

(2) 地下水的运动以水平运动为主是利用一维潜水非稳定流模型模拟随库水位变化斜坡中潜水水位的变化过程的前提,因此,斜坡的水文地质条件

必需满足3个要求,即斜坡上由松散堆积物构成的含水层厚度不小于30 m ;滑动面的倾角不大于15°;斜坡土体不具有明显的各向异性。

(3) 计算表明,当渗透系数k 小于10

-3

m/d 或

大于10 m/d 时,渗透压力作用可以忽略不计。

(4) 条分法计算渗透压力时,滑面形态不同,使不同条块的滑面倾角不同,可以上述公式求最大整个斜坡的水力坡度,再求相应条块下滑力。

(5) 模拟方法和推导的计算公式本身并不存在误差[10],但当地质条件不满足上述3个条件时,特别是滑动面的倾角较大时,模拟的结果具有明显的失真性,因此,如何解决边界问题,以便使用二维模型对各种水文地质条件下斜坡中的地下水流进行模拟、计算是下一步研究工作的重点。

坡 210 距离/m

180

斜 135

150

120

90

面 坡 动

60

30

75

105

5 d

?145 m

15 d 25 d

高程/m

195

?175 m

165

240

第24卷第16期胡亚波等. 三峡水库调度对库岸斜坡体内渗透压力与斜坡稳定性影响研究 ? 2997 ?

4 结论和建议

(1) 渗透压力实质上是一个动态变化过程,各条块中出现最大渗透压力的时间是不同的,用条分法计算稳定系数时,应以整个斜坡水力坡度最大时的渗透压力为准。

(2) 在目前还没有较好地解决用二维水流模拟斜坡断块中地下水水流的边界问题的情况下,对一定水文地质条件下的土质滑坡中地下水可以近似按一维潜水非稳定流模拟[11],通过求解可以确定各时刻的水力坡度,从而计算出最大水力坡度,结合各条块滑面倾角计算得出最大渗透压力。

(3) 该方法得出的渗透压力与计算水位瞬间骤降30 m算得的渗透压力差别约一个数量级,相应的防治方案和投资差别悬殊。

(4) 建议滑坡前期勘察工作中重视对地下水的调查和试验研究,给出必要的水文地质参数。

参考文献(References):

[1] 柴军瑞,仵彦卿. 作用在裂隙中的渗透力分析[J]. 工程地质学报,

2001,1:29–31.(Chai Junrui,Wu Yanqing. Analyses of permeability pressure in fractures[J]. Journal of Engineering Geology,2001,1:29–31.(in Chinese))

[2] 钱家欢. 土力学[M]. 南京:河海大学出版社,1988.(Qian Jiahuan.

Soil Mechanics[M]. Nanjing:Hohai University Press,1988.(in Chinese))

[3] 胡亚波,黄学斌. 长江三峡工程蓄水对链子崖危岩体T8~T12缝段

稳定性影响研究[J]. 地球科学——中国地质大学学报,2002,27(2):193–198.(Hu Yabo,Huang Xuebin. Effect of the Three Gorges Project storing on stability of T8-T12 fracture segment of hazardous

rocks in Lianziya[J]. Earth Science—Journal of China University of Geosciences,2002,27(2):193–198.(in Chinese))

[4] 吕文肪,郭雪宝,柯葵. 水力学[M]. 上海:同济大学出版社,

1990.(Lu Wenfang,Guo Xuebao,Ke Kui. Hydraulics[M]. Shanghai:Tongji University Press,1990.(in Chinese))

[5] 陈崇希. 地下水动力学[M]. 武汉:中国地质大学出版社,

1998.(Chen Chongxi. Groundwater Hydraulics[M]. Wuhan:China University of Geosciences Press,1998.(in Chinese))

[6] 薛禹群. 地下水动力学原理[M]. 北京:地质出版社,1986.(Xue

Yuqun. Principles of Groundwater Hydraulics[M]. Beijing:Geological Publishing House,1986.(in Chinese))

[7] 德赛C S,克里斯琴 J T. 岩土工程数值方法[M]. 卢世深译. 北京:

中国建筑工业出版社,1981.(Desai C S,Christian J T. Numerical Methods of Geotechnical Engineering[M]. Translated by Lu Shishen.

Beijing:China Architecture and Building Press,1981.(in Chinese)) [8] 李俊亭. 地下水流数值模拟[M]. 北京:地质出版社,1989.(Li

Junting. Numerical Simulation of Groundwater[M]. Beijing:

Geological Publishing House,1989.(in Chinese))

[9] 陈崇希,万军伟. 地下水水平井流的模型及数值模拟方法——考虑

井管内不同流态[J]. 地球科学——中国地质大学学报,2002,27(2):135–140.(Chen Chongxi,Wan Junwei. A new model of groundwater flowing to horizontal well and numerical simulation approach[J]. Earth Science—Journal of China University of Geosciences,2002,27(2):135–140.(in Chinese))

[10] Frank T C. T,Zheng S N,William W G. A combinatorial optimization

scheme for parameter structure identification in ground water modeling[J]. Ground Water,2003,41(2):156–169.

[11] Eric M,Ayman A. Ahmed G E. Review of the integrated groundwater

and surface-water model (IGSM) [J]. Ground Water,2003,41(2):238–246.

车辆调度与优化读后感

阅读文章: 牟峰.车辆调度问题的研究现状及发展趋势[J].西华大学学报·自然科学版,2012. 杨家其,罗萍.物流企业车辆调度优化方法研究[J].系统工程理论与实践[J].2014. 王晓波.连锁企业物流车辆调度模型及优化设计[J].微电子学与计算机,2010. 秦家娇,张勇.物流系统中车辆调度问题及算法研究[J].通信学报,2012 邵泽军,高淑萍.几类车辆调度问题的研究[J].自动化学报,2010. 主要内容及理解: 1、《车辆调度问题的研究现状及发展趋势》 我从网上搜索了一下关于这方面的数据:全国社会物流总费用8.4万亿元,其中运输费用4.4万亿元,占社会物流总费用的比重为 52.8%,社会物流总费用与 GDP 的比率为 17.8%。所以合理的运输管理可以提高运输效率、控制运输成本,同时也就提高了物流整体服务水平、降低了物流运行成本。所以车辆调度问题是其研究的重点。 这篇期刊文章的作者以铁路车站取送车作业问题对车辆调度问题进行了详细介绍,还分析了它与其他车辆调度问题的区别与联系。通过作者的举例研究可以知道无论静态问题还是随机动态问题,都呈现出一种精细化的趋势,也就是所研究的问题具有越来越强的个性特征,例如针对车场数、取送时窗、车辆类型等特征进行研究。这种策略的优势在于研究工作的针对性强,但是不利因素更大,因为特征改变时,其结果也就不再是符合。所以作者的研究工作让人们对车辆调度中各种特征形成了更清晰的认识,为研究具有多特征的打下了一定基础。 2、《物流企业车辆调度优化方法研究》 这篇文章主要是蚁群算法的改进。我第一次看到这个算法的名字时,首先想到的就是蚂蚁。当时我就想这还能和蚂蚁联系起来?读完文章才知道,这是受到蚂蚁行走觅食的启发。拿上一篇文章举例这就好比蚁窝是车站,各地的食物是装

三峡水库运行调度对鄱阳湖湖口水文情势影响分析

Journal of Water Resources Research 水资源研究, 2014, 3, 344-350 Published Online August 2014 in Hans. https://www.doczj.com/doc/292784084.html,/journal/jwrr https://www.doczj.com/doc/292784084.html,/10.12677/jwrr.2014.34042 Hydrological Effect of Three Gorge Reservoir Operation on Hukou Station at Poyang Lake Sunyun Lv1, Haijin Guo1, Zhongwen Yu2 1Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 2Hydrology Bureau of Jiangxi Province, Nanchang Email: lvsy@https://www.doczj.com/doc/292784084.html, Received: Jul. 23rd, 2014; revised: Jul. 28th, 2014; accepted: Aug. 5th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/292784084.html,/licenses/by/4.0/ Abstract The Three Gorges Reservoir had shifted into comprehensive operation stage since 2009. This pa-per analyzed daily water level and discharge data of Hukou station from 1950 to 2009. The results show that the average annual discharge and water level of Hukou station decrease slightly in the past 60 years and the changes show obvious pattern of periodicity. From 2003, especially after 2006, the average annual discharge and water level have declined significantly. According to the operation rules of Three Gorges Reservoir, this paper analyzed the hydrological impacts of Three Gorges Reservoir on Hukou hydrological regime in different operation periods. It is found that the decline of discharge and water level of Yangtze River caused by the water storing of Three Gorges reservoir leads to the dry season of Poyang Lake appearing earlier and lasting longer. However, the influence on Hukou hydrological regime is not obvious at flooding and releasing periods. Keywords Three Gorges Reservoir, Poyang Lake, Hukou Station, Hydrological Regime 三峡水库运行调度对鄱阳湖湖口 水文情势影响分析 吕孙云1,郭海晋1,喻中文2 作者简介:吕孙云(1978-),男,高级工程师,主要从事流域规划、工程水文分析计算工作。

水库塌岸

水库蓄水后,水库水位变化将使库岸地质条件大大改变,库岸在库水浸泡、风浪冲击、水流侵蚀以及干湿交替作用下发生坍塌,使水库岸线后退,在水库周边波浪作用范围内形成浅滩,进而诱发库岸稳定性的变化,这种现象称为水库塌岸现象。 对于山区水库而言,起主导作用的是现代地质作用,包括地形地貌特点、地层岩性、水文地质条件等。岸坡的破坏主要体现在岩土体在库水作用下物理力学性质的变化,静止库水位时的浮托力,水位升降时的渗流力等因素对岸坡稳定性的影响。实践证明,水库的塌岸绝大部分是在蓄水的一到两年内完成的,这种破坏可以认为是岸坡沿最危险滑动面滑移破坏为主体的。 在水库蓄水运行期间,不同类型不同结构的岸坡将以某种特定的变形破坏方式完成岸坡的再造演化过程,这种特定的变形破坏型式被称之为水库塌岸模式。通过研究,水库塌岸的典型塌岸模式有如下几种: 冲磨蚀型冲磨蚀型塌岸是指在库水、风浪冲刷、地表水及其它外部营力的长时间作用下,岸坡物质逐渐被冲刷、磨蚀,塌岸物质部分被岸流运走,部分在水下堆积下来,从而使岸坡坡面缓慢后退的一种库岸再造型式。如图1所示: 图1 冲磨蚀型塌岸 坍塌型坍塌型指土质岸坡坡脚在库水长期作用下,基座被软化或淘蚀,岸坡上部物质失去平衡,从而造成局部下错或坍塌,而后坍塌土体被水流逐渐搬运带走的一种岸坡变形破坏模式。该库岸再造模式具有突发性,特别容易发生在暴雨期和库水位急剧变化期。如图2所示:

图2 坍塌型塌岸 崩塌型崩塌(落)型是指在陡坡型岩质岸坡中,岸坡岩体发育有不利于岩体稳定的节理裂隙时,坡体在库水、风浪冲刷、地表水和其他外部营力的作用下,发生的崩塌或崩落现象。如图3所示: 图3 崩塌型塌岸 滑移型滑移型是指在库水作用、降雨及其他因素的影响下,岸坡物质沿着软弱结构面或己有的滑动面向江河发生整体滑移的库岸再造型式,即发生滑坡。 流土型流土型塌岸是指在库水涨落的情况下,岸坡土体吸水饱和后,由于土体的微膨胀性,岸坡土体在重力作用下沿坡向下发生的塑性流动变形现象。这种库岸再造类型的塌岸规模一般较小,在第四系松散堆积层岸坡中可见。 不同类型的岸坡结构在库水动力作用下所表现的塌岸机理往往不同,且表征各种类型塌岸的参数也不尽相同,塌岸预测中所采用的参数可被分为如下几种: (1)冲磨蚀型:水下堆积坡角、冲磨蚀坡角和水上稳定坡角; (2)坍塌型:水下堆积坡角、冲磨蚀坡角和水上稳定坡角; (3)崩塌(落)型:岩体结构面产状、迹长、发育分布特征及其性状; (4)滑移型:软土和膨胀土体(层)的空间分布特征,包括堆积层厚度、垂直河流方向的宽度和顺河方向的延伸长度。 影响塌岸的主要因素有: 库岸物质组成库岸物质组成及土层性质是影响水库塌岸的内在因素。如冲洪积粉砂质粘土层和黄土,这类土结构松散,遇水易发生崩解,强度低,抗冲刷能力差,在岸坡较陡的情况下塌岸速度较快。 风浪作用风浪作用是水库塌岸及浅滩形成的主要外力。波浪对塌岸的影响主要表现为击岸波浪对岸壁土体淘刷与磨蚀以及对塌落物质进行搬运,从而加速塌岸。击岸波浪的浪高与风速、风向、风在自由水面的吹程及水深等因素有关。对于同一类型的库岸来说,水面越宽、水深越大,击岸波浪的波能越大,塌岸就越严重。 植被条件一般情况下,植物根系的固结作用可使河岸土体的抗冲刷能力增大,而植物根系的固结作用与植被的密度、种类、根深等有关。 冻融变化岸坡士体孔隙和裂隙中的水结冰后体积膨胀产生冰劈作用,破坏了土体结构,解冻后土体强度降低,致使岸坡破坏。 库水位上升的速率研究表明,库水位上升速率越大,均质水库岸坡的塌岸现象越易发生。 鉴于水库塌岸给水库周边经济及环境产生巨大的影响,塌岸预测方法的研究得到了普遍的重

水库库岸滑坡与其防治措施

水库库岸滑坡与其防治措施 水库工程大多处在高山峡谷地区,会经常遇到岸坡稳定问题。滑坡一旦发生,将造成很大的危害:大量岩土滑入库内,减少有效库容;直接威胁建筑物安全,堵塞泄水建筑物;大体积滑提高速滑入库内,会产生巨大涌浪,对大坝形成很大的冲击荷载,甚至造成漫顶,导致大坝失事,给下游人民生命财产带来巨大损失。水库工程师综合利用水资源、发展国民经济的重要手段,是保障经济建设和人民生命财产安全的主要设施,是国家和人民的宝贵财富。水库库岸滑坡关系到工程及其下游人民生命财产的安全,应该予高度重视。 Key words:the reservoir bank;landslide;prevention and control measures 1.水库库岸滑坡的成因 滑坡按照表现形式和土石的特殊,基本上可分为两类:一类为滑坡,是由于岸坡逐渐失稳而滑动。这类滑坡一般速度较小,可以预报,但不宜稳定,也易于重新滑动;另一类为崩坍。这是近地表的岩体和岩块当其与基岩的联系遭到破坏后而突然急速下滑。这类滑坡速度快,难以预测,常产生巨大涌浪,对水工建筑物和水库下游造成严重危害。 天然岸坡残积、坡积层失去稳定的原因一般有两个:一是剪切力增大,如斜坡变陡、堆填弃土超载以及地震活动对岸坡产生巨大瞬间时作用力等;一是斜坡土体或其中软弱夹层抗剪强度降低,如在水库蓄水抬高水位后,库区岸坡下部在浮托力作用下,有效重量减少,或当水库水位迅速降落、岸坡饱和水带内形成内水压力,或在水库蓄水后,有的由于绕坝渗透和岩坡地下水位抬高以及岸坡内的软弱泥质崩解软化等,都会是岸坡抗剪强度降低。此外,还有受暴雨、地震、河流冲淘、风浪作用以及工程削坡、钻孔暴坡等原因,也会促使其失去稳定,造成滑坡,或使已经稳定的古滑坡体重新复活。 天然岸坡内岩体的应力状况及河沟深切后应力重新分布,对岸坡稳定也有重要影响。由于卸荷作用,岩体内可能形成一些应力集中带,使岩石所受的应力接近或超过岩石的强度,成为导致岸坡失稳的重要原因。 2.水库库岸滑坡的防治 对水库库岸滑坡应从以下几方面加强防治工作: 2.1了解水库库岸情况,进行库区地质调查 建库前和建水库都应对库区进行地质调查,摸清库岸稳定情况,以确定是否适于建库和采取适当措施。在这方面,国外一般作法是:常以彩色或普通黑白航测照片作底图,结合地面勘探和地貌分析,了解库区已有滑坡和崩坍的地点、不同岩层特别是软弱泥质岩层分布情况,查明附近有无深层大断裂和区域性断裂通

三峡水库水位变动下的库岸滑坡稳定性评价

Vol.37No.6Nov.2010水文地质工程地质 HYDROGEOLOGY &ENGINEERING GEOLOGY 第37卷第6期2010年11月 三峡水库水位变动下的库岸滑坡稳定性评价 蒋秀玲1,张常亮 2 (1.中国地质图书馆,北京100083;2.长安大学地质工程系,西安710054) 摘要:水库岸坡滑坡稳定性主要受库水位涨落的影响。由于库区水位变化可概化为二维非稳定流,地下水位变化可采用有限元模拟。三峡水库正常运行时的水位涨落速度在0.6 4.0m /d 、高程145 175m 之间变化,通过有限元法对库区的马家沟滑坡模拟表明:库水位和滑坡体内的地下水位同步升降, 水力梯度很小,因此水位涨落对滑坡的影响主要是浮托力作用。在此条件下,采用Morgenstern-Price 法对滑坡稳定性进行计算表明,随着水位上升,滑坡稳定性降低,水位上升到165m 时,稳定性达到最小,水位再上升则稳定性增大,当滑坡完全淹没在水下时的稳定性高于未被淹没的情况,滑坡最终的稳定性按最小稳定系数评价。关键词:水库;滑坡;水位涨落;地下水中图分类号:P642.22;TU457 文献标识码:A 文章编号:1000- 3665(2010)06-0038-05收稿日期:2010-03-31;修订日期:2010-04-19基金项目:国家自然科学基金项目(40772181) 作者简介:蒋秀玲(1965-),女,学士,从事中国地质文摘编辑 工作。 E-mail :jiangxiuling123110@https://www.doczj.com/doc/292784084.html, 水位的升降对库岸滑坡稳定性有着重要影响。国内外由于库水位涨落引起库岸滑坡的实例很多,Jones 等调查了Roosevelt 湖附近地区1941 1953年发生的滑坡,30%发生在水库水位骤降时期,有49%发生在蓄水初期;日本大约有60%水库滑坡发生在水位骤降时期 [1] ;1963年瓦依昂水库滑坡发生在库水位下降时 期;在三峡库区,2003年湖北千将坪滑坡发生在三峡二期蓄水过程中 [2] 。 本文以三峡库区马家沟滑坡为例。将库水位引起的地下水位变化作二维非稳定流, 利用数值方法模拟滑坡体内的地下水位随库水位的变化规律,应用Morgenstern-Price 法计算滑坡在各水位状态下的稳定性,得出水位与滑坡稳定性的关系,按最不利稳定状态作为滑坡稳定性判别的依据,并做出抗滑设计方案。 1马家沟滑坡概况 马家沟滑坡位于吒溪河左岸的马家沟沟口处,距 长江支流吒溪河河口(秭归归州镇)2.1km 。2003年长江三峡水库蓄水至135m 后的3个月内,滑体后缘出现了1条长20m ,宽3 5cm ,局部达10cm 的拉张裂缝。其后拉裂变形趋于稳定,没有进一步发展。这说明该滑坡的稳定性对水库蓄水有敏感的反映,在水位继续升高或下落时,有复活的可能性。该滑坡体上有 居民47户,132人,耕地和林地320亩。据估算,该滑坡一旦滑动,将造成直接经济损失3422万元,间接损失1439万元,人员伤亡或也难免。由于该滑坡前缘淹没在水下,三峡水库水位在145 175m 之间变化,涨落幅度达30m ,水位涨落对该滑坡稳定性的影响是研究的核心问题。 马家沟滑坡区外围出露侏罗系遂宁组(J 3s )地层,岩性为中厚层灰白色长石石英质细砂岩和褐红色薄层粉砂质泥岩互层,岩层倾向为270 290?,倾角25 30?,与滑坡主滑方向接近,岩体破碎,裂隙发育。马家沟滑坡发育在一个巨型老滑坡堆积体前缘,该巨型滑坡为一顺层基岩滑坡,堆积体覆盖了吒溪河左岸的马家沟下游左侧的半个山体,高程自沟底到330m 处,面 积约5km 2,体积超过2?108m 3 。滑坡顶部是一个巨大的反坡台地,台地面积约1.5km 2 ,台地上人工堆坝 成湖。老滑坡的堆积体由紫红色泥岩碎屑夹巨大的块石组成,接近地表有一层3 5m 厚的褐红色残积粘土夹块石。老滑坡的滑动时间不详,但从滑坡体上有稳定的残积土判定,至少发生在中更新世以前。 在该老滑坡体前缘坡面上,即坡顶台地边缘以下,形成了3个局部复活的滑坡。其中位于马家沟上游的2处滑坡在三峡水库蓄水位以上,堆积体滑落至沟底,没有进一步滑移的空间,现场调查分析可以确定是稳定的。马家沟沟口处的一处滑坡前缘直接伸入咤溪河中,马家沟滑坡指的就是该次级滑坡。 马家沟滑坡平面形态总体呈舌形展布,滑体主滑方向290?。南北侧以冲沟为边界;后缘以形成的裂缝为边界,高程280m ,30 35?。前缘为高度30

公交车调度的方案优化设计

公交公交车调度方案优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。 1.问题的提出

三峡水库调度和库区水资源与河道管理办法

三峡水库调度和库区水资源与河道管理办法 第一章总则 第一条为加强三峡水库调度和库区水资源与河道管理,合理开发利用和保护水资源,发挥三峡水库的综合效益,根据《中华人民共和国水法》、《中华人民共和国防洪法》和有关法律、法规的规定,制定本办法。 第二条本办法适用于三峡水库调度,三峡水利枢纽工程管理和安全运行的监督,三峡库区水资源和河道的管理以及水行政监督检查等。 前款所称三峡水库调度,是指三峡水库汛期的防洪调度以及汛前消落期、汛后蓄水期和枯水运用期的水量调度。 第三条三峡水库调度和库区水资源与河道管理,应当坚持全面规划,统筹兼顾,科学调度,合理配置水资源,保护水环境,充分发挥三峡水库的防洪、发电、航运、供水、灌溉、旅游等综合功能。 第四条水利部负责三峡水库水量的统一调度和库区水资源与河道管理的监督工作。 长江水利委员会按照法律、行政法规规定和水利部的授权,负责三峡水库水量的统一调度和库区水资源与河道管理工作。 重庆市、湖北省县级以上地方人民政府水行政主管部门按照规定的权限,负责本行政区域内三峡库区水资源和河道管理工作。 县级以上人民政府有关部门按照职责分工,依法负责三峡库区相关管理工作。 第五条长江水利委员会应当按照有关规定,商重庆市和湖北省人民政府划定三峡水库管理和保护范围。 第六条长江水利委员会和有关县级以上地方人民政府水行政主管部门负责三峡水库管理和保护范围内的水行政执法,并按照管理权限,对管辖范围内各项水事活动进行监督检查,依法查处水事违法活动。 第七条长江水利委员会和有关县级以上地方人民政府水行政主管部门应当建立联合执法制度、信息通报制度和巡查制度。 返回 第二章水库调度

三峡水库调度对库岸斜坡体内渗透压力与斜坡...

第24卷 第16期 岩石力学与工程学报 V ol.24 No.16 2005年8月 Chinese Journal of Rock Mechanics and Engineering Aug .,2005 收稿日期:2004–04–16;修回日期:2004–06–07 作者简介:胡亚波(1970–),男,硕士,1998年于中国地质大学工程学院环境地质专业获硕士学位,现为高级工程师、武汉市建设管理委员会副主任,主要从事环境地质、地质灾害研究和城市建设管理方面的研究工作。E-mail :hu_wly@https://www.doczj.com/doc/292784084.html, 。 三峡水库调度对库岸斜坡体内渗透压力与斜坡 稳定性影响研究 胡亚波1, 2,王丽艳2 (1. 武汉市建设委员会,湖北 武汉 430015;2. 中国地质大学 工程学院,湖北 武汉 430074) 摘要:在分析三峡库区松散堆积斜坡岩土体结构和地下水赋存条件的基础上,着重探讨了三峡水库水位调节时斜坡中渗透压力的作用方式和强度,用地下水动力学中潜水渗流理论研究某类边界条件下的渗透压力,提出斜坡渗透压力评价和计算公式,从而为客观地评价斜坡的稳定性状况、设计合理的斜坡防治工程及节约工程造价提供依据。 关键词:工程地质;三峡水库;渗透压力;稳定性;防治工程 中图分类号:P 642.2 文献标识码:A 文章编号:1000–6915(2005)16–2994–04 RESEARCH ON EFFECTS OF PERMEABILITY PRESSURE ON SLOPE STABILITY DURING REGULATING WATER LEVEL IN THREE GORGES RESERVOIR HU Ya-bo 1, 2,WANG Li-yan 2 (1. Construction Committee of Wuhan City ,Wuhan 430015,China ; 2. Faculty of Engineering ,China University of Geosciences ,Wuhan 430074,China ) Abstract :Based on analyzing rock and earth structure in unconsolidated slopes ,the style and intensity of permeability pressure in slopes during regulating water level in the Three Gorges Reservoir are discussed. Due to many unsolved boundary problems in simulating variation of water flow in slope ,a new formula for calculating permeability pressure in slope is proposed ,by studying on permeability pressure in certain boundary conditions with one-dimensional seepage theory. With this formula variation of phreatic surface and permeability pressure in Beimengou landslide in the Three Gorges Reservoir area ,are calculated. The results show this formula is reasonable and effective for certain boundary ;and it can provide a basis for appraising the stability condition of slopes and designing control projects. Key words :engineering geology ;Three Gorges Reservoir ;permeability pressure ;stability ;control project 1 引 言 水库水位降落诱发古滑坡的复活在国内外都有 实例:我国黄龙滩水库库岸斜坡出现大量古滑坡的 复活与水库水位下降有关;1941年前苏联伏尔加格勒的滑坡发生与哈查尔含水层的水力坡度在洪水降落时急剧增大有关。 根据勘察成果资料,三峡库区稳定性较差的库岸长441 km ,且城镇库岸段长度也达400余公里。

三合水库滑坡方案1DOC

城口县三合水库坝枢工程 应急抢险滑坡治理工程施工方案 城口县三合水库坝枢工程项目部2015 年12 月1 日

目录 第一章.工程概述 第二章. 施工规划 第三章. 施工平面布置 第四章. 施工方法 第五章. 施工组织、设备配置第六章.质量保证措施 第七章. 文明施工及环境保护

应急抢险滑坡治理工程施工方案 一、工程概述 城口县三合水库坝枢工程位于高观钟宝巨型冲断以南,属川东鄂西地层分区(南相区)。三 合水库坝纽工程、枢纽布置由埋石混凝土重力坝、坝身泄水表孔、下游护岸组成。坝顶高程 1115.0m,最低建基面高程1061.5m,最大坝高47.5m。 2014年7月10日-2014年7月12日,城口县复兴街道辖区连降暴雨(根据城口县气象局资料该时段降雨量达118.4mm),形成山洪灾害,导致红坪村万年仓附近的沱溪河右岸边坡于 2014.7.12凌晨发生山体滑坡。该滑坡位于三合水库坝址区下游,滑坡体堆积至坡脚坝址下游河道内,严重侵占了坝下消力池部位以及下游原河道断面。若不及时采取除险加固措施,险情会进一步加剧,将危及下游人民生命财产安全阻碍三合水库工程的正常施工。 根据《重庆市城口县三河水库山洪灾害应急抢险工程实施方案》,滑坡治理工程措施为“锚 喷+清方+挡土墙”。 1、治理工程内容 根据《水利水电工程边坡设计规范》(SL386-2007 )第3.2.3条,本工程边坡安全级别定为 5级。 具体治理工程方案为: 对上部裂隙切割临空岩体及松散岩土体进行清除,然后采用锚钉挂网喷护处理。(采用C20 砼喷护厚度100,锚杆采用①25纵横间距2.5m,单根长4.5m,锚杆应锚入完整岩体内3m,挂网 ①8@ 200。坡面排水孔设置间距@ 2.5x2.5m,见平面图中H区)。 对1115m至河床面滑坡堆石体覆盖区,从坝后消力池及溢流明渠至下游110m左右范围结合 明渠右岸边墙,采用压脚或坡体后沿减载方式加固处理,即坡面按1:2放坡+砼格构护坡;格构 设置3x3m间距,梁断面0.25x0.4m,内配4①14主筋,①8@200箍筋,C20砼现浇。 2.4主要工程数量 根据设计方案,滑坡治理工程主要工程数量见表 2.4-1。 表2.4-1主要工程数量表

公交车调度方案的优化模型

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 3.1 问题的重述 3.1.1 问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 3.1.2 运营及调度要求 ⑴公交线路上行方向共14站,下行方向共13站; ⑵公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; ⑶乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 3.1.3 要求的具体问题 ⑴试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等; ⑵如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法; ⑶据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。 3.2 问题的分析 本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。

三峡水库水文泥沙信息分析管理系统设计

三峡水库水文泥沙信息分析管理系统设计 何文社1,戴会超2,曹叔尤3,袁 杰2 (11兰州交通大学,兰州 730070;21中国长江三峡工程开发总公司,宜昌 443002; 31四川大学高速水力学国家重点实验室,成都 610065) 摘 要:应用Visual C ++应用程序、Oracle9i 数据库开发了三峡水库水文泥沙信息分析管理系统。系统能使用户快捷地 查询到所需的水文泥沙数据及分析资料,对库区泥沙淤积状况快速做出分析处理,实时分析显示水库调度运行对泥沙冲 淤演变的影响,为及时调整水库运行方式提供依据,实现水库信息数字化管理,加强数据空间分析处理能力,对原始测量 数据成果进行分析处理,对所有的整编成果建立相关的索引表,提供水文泥沙查询、检索及表格输出等功能。 关键词:三峡水库;水文分析;泥沙分析;信息分析系统;设计与开发 中图分类号:P338+15文献标识码:A Preliminary design and development of hydrologic and sediment inform ation analysis for the Three G orges reservoir HE Wenshe 1,2,DAI Huichao 2,C AO Shuy ou 3,Y UAN Jie 2 (11Lanzhou Jiaotong Univer sity ,Lanzhou 730070;21China Three Gorges Project Corporation ,Yichang 443002; 31State K ey Hydraulics Laboratory o f High Speed Flows ,Sichuan Univer sity ,Chengdu 610065) Abstract :A in formation processing system of hydrologic and sediment data of Three G orges reserv oir is developed by use of Visual C ++application program and Oracle9i database.The system can make users convenient to inquire and analyze the sediment data ,deal in speediness with the sediment deposit condition of reserv oir area and in time analyze the scouring and silt ev olved in fluence of sediment caused by reserv oir dispatching operation.The system can provide foundation for reserv oir dispatching operation and realize the reserv oir in formation digital management. Using the system ,it can establish the interrelated data index table ,provide the hydrologic and sediment data inquiry and data table output function. K ey w ords :Three G orges reserv oir ;hydrological analysis ;sediment analysis ;in formation analysis system ;design and development 收稿日期:2005205219 基金项目:国家自然科学基金项目(50279024)及兰州交通大学青蓝工程基金资助 作者简介:何文社,1966年生,男,教授,博士 1 系统研制目的 三峡工程是治理和开发长江的关键性骨干工程,工程以其巨大的防洪、发电、航运等综合效益闻名于世。三峡水库蓄水运用后,水沙因子的变化将导致水沙特性变化,必然产生水库泥沙淤积。泥沙淤积涉及到水库使用寿命、库区淹没、库尾航道和港区的演变、坝区船闸、电站的防沙排沙、枢纽下游河床冲刷以及河道演变对防洪和航运产生的影响等一系列复杂的技术问题。在这种环境下,如何确保三峡工程防洪、发电、航运等效益目标的实现,对三峡工程的调度管理提出了很高的要求。三峡工程在设计建设过程中进行了大量的科学研究、模型试验和原型观测,积累了大量的水文泥沙历史资料。但由于参与三峡工程水文泥沙观测、研究及管理的部门多,加上各部门的出发点不同,对水文泥沙的观测资料缺乏系统性和有效的管理手段,很难为水库实时调度发挥作用。另外,三峡工程泥沙专家组牵头制定的由长江水利委员会具体实施的《2002~2009年泥沙原型观测和新增项目的观测计划》也正在实施之中。如何管理好这些资料,使之充分应用与指导三峡水利枢纽的调度工作,建立一套先进的 第24卷第6期 2005年12月水 力 发 电 学 报JOURNA L OF HY DROE LECTRIC E NGI NEERI NG V ol.24 N o.6Dec.,2005

塌岸预测方法

4.3.3 动力法 动力法是根据卡丘金在 1955-1959 年有关塌岸物质堆积预测研究基础上得出的一种新方法。 卡丘金根据大量实测资料发现,单位时间内塌岸物质的数量随时间t 的延续具有递减的规律。每 m 厚度剖面b 上,塌岸物质的累积数Q 与时间t 之间的关系呈抛物线型(图 4.7)。 b Q at = 式中:Q ——在 t 时间内,边岸每米宽度内被冲刷走的岩土数量(m 3/m ); t ——冲刷时间(由塌岸开始算起的无冰期的年数 a ) ; a ——参数,其值为第一年内平均每季被冲刷的岩土体的体积(m 3) ; b ——与冲刷速度递减率有关的指数(0< b <1) 。 此外,根据这些观测资料,卡丘金制订了一个考虑波浪能量与岩石冲刷性能的,亦即决定磨蚀作用发育两个主要特征的水库边岸再造预测方法。此法的基础是一经验公式: b p Q EK K t σ= 式中:E --该点的平均波浪能量(kN ·m ); p K --岩土的冲刷系数(m 3/kN ·m ); K σ--考虑岸坡高度的系数(0

p K 值应考虑层带或分层的厚度情况取其加权平均值。 11 p Q K E = 边岸破坏时,沿边岸线常形成浅滩,它可消去一大部分波能。观测表明,当波能为一常数时,浅滩的宽度与岸高成反比。因此,考虑岸高的系数时,可间接地反映浅滩消除波能的数值。此系数通过经验确定,其数值等于研究地段的平均岸高与系数 c 的乘积: K h c σσ= 式中: c 值变化于 0.03(对极易冲刷类岩石)到 0.05(对难冲刷类岩石)之间。当岸高为 30m 或再高时,K σ值取 1。h σ为岸坡高度(m),即正常高水位至岸坡眉峰之间的高差,一般采用沿剖面方向岸高的平均值,即121()2h h h σσσ= +,1h σ为原始岸坡高度(m),2h σ为 最终塌岸带的岸高(m)。 由于沟谷发育,使沿岸线方向的岸高发生变化,相邻的高低岸坡互相影响其塌岸速度(影响宽度可达 300-500m )。因此,卡丘金认为必须考虑顺岸方向的平均岸高,图 4.8 表示顺岸方向地形断面图,设在正常高水位之上的高度处的水平线所截之上下部分的坡脊面积与坡谷面积相等,则h σ为平均岸高。 在求出塌岸量之后,利用图解的方法就可得到塌岸的宽度,其步骤是: 首先,绘出预测地段的地质剖面,在剖面中标出各水位以及波浪爬行高度b h 和波浪影响深

斜坡稳定性影响因素、

斜坡稳定性的影响因素 斜坡的稳定性受多种因素的影响,主要可分为内在因素和外部因素。内在因素包括:地形地貌、岩土体类型和性质、地质构造等。外部因素包括水、地震、人类活动等。内因是最根本的因素,决定着斜坡变形破坏的形式和规模,对斜坡稳定性起控制作用;外因是变化的条件,是通过内因而起作用,促使斜坡变形破坏的发生和发展,外因常常成为斜坡变形破坏的触发因素。 1、地形地貌 地貌条件决定了边坡的形态,对边坡稳定性有直接的影响。例如:对于均质斜坡,其坡度越陡,坡高越大则稳定性越差。对边坡的临空条件来讲,工程地质条件相类似的情况下,凹形坡较凸形坡稳定。从区域地形地貌条件看,斜坡变形破坏主要集中发育于山地环境中,尤其在河谷强烈切割的峡谷地带。我国由于挽近地质时期大洋板块和大陆板块相互作用的制约,西部挤压隆起,东部拉张陷落,形成了西高东低的台阶状地形,可明显地划分出三个台阶。处于两个台阶转折地带的边缘山地,山谷狭窄、高耸陡峻,地面高差悬殊。因此斜坡变形破坏现象十分发育。 2、岩土体类型和性质 斜坡岩土体的类型与性质是影响斜坡稳定性的根本因素。包括岩土体的成因类型、组成矿岩土体的矿物成分、岩土体的结构和强度。在坡形(坡高和坡角)相同的情况下,显然岩土体愈坚硬,抗变形能力愈强,则斜坡的稳定条件愈好;反之则斜坡稳定条件愈差。所以,坚硬完整的岩石(如花岗岩、石英砂岩、灰岩等)能形成稳定的高陡斜坡,而软弱岩石和土体则只能维持低缓的斜坡。 由岩浆岩组成的斜坡较好,但原生节理发育也常发生崩塌,特别在风化强度强烈地区,由于风化营力的作用,使风化带内的岩石强度降低,常导致斜坡崩塌。 沉积岩组成的斜坡由于具有层理结构,而层理面常常控制斜坡的稳定性。沉积岩层常夹有软弱夹层,如厚层灰岩中夹泥灰岩,砂岩中夹泥岩等,这些软弱面常易构成滑动面。 变质岩组成的斜坡,尤其深变质岩,如片麻岩、石英岩等其性质与岩浆岩相

水库库岸滑坡与其防治措施

水库库岸滑坡与其防治措施 摘要:水库工程大多处在高山峡谷地区,会经常遇到岸坡稳定问题。滑坡一旦发生,将造成很大的危害:大量岩土滑入库内,减少有效库容;直接威胁建筑物安全,堵塞泄水建筑物;大体积滑提高速滑入库内,会产生巨大涌浪,对大坝形成很大的冲 1 或其中软弱夹层抗剪强度降低,如在水库蓄水抬高水位后,库区岸坡下部在浮托力作用下,有效重量减少,或当水库水位迅速降落、岸坡饱和水带内形成内水压力,或在水库蓄水后,有的由于绕坝渗透和岩坡地下水位抬高以及岸坡内的软弱泥质崩解软化等,都会是岸坡抗剪强度降低。此外,还有受暴雨、地震、河流冲淘、风浪作用以及工程削坡、钻孔暴坡等原因,也会促使其失去稳定,造成滑坡,或使已经

稳定的古滑坡体重新复活。 天然岸坡内岩体的应力状况及河沟深切后应力重新分布,对岸坡稳定也有重要影响。由于卸荷作用,岩体内可能形成一些应力集中带,使岩石所受的应力接近或超过岩石的强度,成为导致岸坡失稳的重要原因。 2.水库库岸滑坡的防治 2 2 并进行岸坡的稳定计算或模型试验,以论证岸坡是否稳定,并对可能滑动地段估算其滑落体积。 2.3防止涌浪危害的措施 要判断水库涌浪对水工建筑物的危害,首先需要估算涌浪到达各建筑物处的浪高。但这是一个很复杂的问题,国外多采用模型试验研究确定。其次,一般多采用

限制水库位,使滑体涌浪不致漫越坝顶,也不致产生影响大坝安全的附加荷载。此外,对一些受滑坡威胁的水库,要设置较大的泄水建筑物,一旦岸坡出现失稳迹象,可及时放空水库或降低库水位。 2.4对可能滑体进行观测,加强预报 预报滑坡的确切时间是比较困难的。目前主要靠观测失稳岸坡的位移速度进行 2 2 2 材料和劳动优点,国内外均有采用。常用的抗滑桩有钢桩和钢筋混凝土桩。 2.8开挖、削坡减载和压脚 如果滑体规模不大,可考虑开挖处理。但必须注意,在开挖以后,岸边稳定性及其表面覆盖条件发生了变化。要研究是否产生新的滑坡。如滑体规模较大,全部开挖有困难,也可在滑体的上部削坡减载,堆在下部固脚,以增加其稳定性。切忌

相关主题
文本预览
相关文档 最新文档