当前位置:文档之家› 第三篇 理论力学动力学

第三篇 理论力学动力学

第三篇动力学

动力学研究物体的机械运动与作用力之间的关系

舰载飞机在发动机和弹射器推力作用下从甲板上起飞

若已知推力和跑道可能长度,则需要多大的初速度和一定的时间隔后才能达到飞离甲板时的速度。

若已知初速度、一定的时间间隔后飞离甲板时的速度,则需要弹射器施加多大推力,或者确定需要多长的跑道。

棒球在被球棒击打后,其速度的大小和方向发生了变化。如果已知这种变化即可确定球与棒的相互作用力。

F

v 1

v 2

载人飞船的交会与对接

A v1

B

v2

航空航天器的姿态控制

高速列车的振动问题

动力学涉及的内容与重要性

★系统的运动轨迹、速度、加速度、角速度、角加速度等描述运动的量。

★系统的动量、冲量、动量矩、动能等描述运动效应的量。

★系统的质量与描述运动的量和描述运动效应的量之间的关系。

动力学涉及的内容与重要性

动力学在工程分析与工程设计中的重要作用●航空航天、交通运输、高速机械、军事工程、体育运动等等诸多工程领域实现正常功能的重要分析基础与设计基础。

●高等动力学、机械动力学、结构动力学等等新兴学科领域的重要理论基础。

工程动力学的研究方法

工程动力学的演绎方法

★根据研究对象和所研究的问题,经过合理的抽象和简化,建立用于理论分析的模型。

★建立相关的基本概念。

★根据物质运动规律的有关定律和定理,应用数学分析与演绎,导出与所研究的问题有关的定理或方程。

质点:质点是具有一定质量而几何形状和尺寸大小可以忽略不计的物体。

广义的质点系统:系统内包含有限或无限个质点,这些质点都具有惯性,并占据一定的空间;质点之间,质点与边界之间,以不同的方式连接,或者附加以不同的约束与物理条件。

刚体:是质点系的一种特殊情形,其中任意两个质点间的距离保持不变。

广义的质点系统

m1m

2 m i

m n

m1m

2

m i

m n

m1m

2

m i

m n

自由质点系统非自由质点系统-

质点之间刚性连接非自由质点系统-质点之间弹性连接

广义的质点系统连续质点系-具有无穷多个

自由度的质点系统。

离散质点系-具有有限多个自由度的质点系统。m1

m2m

i

m n

广义的质点系统封闭质点系-既无外部质点进入,又无内部质点流出的质点系统。

开放质点系-有质点进入或流出,或者二者兼而有之的质点系统。

m1m

2 m i

m n

m1m

2 m i

m n

广义的质点系统开放质点系-有质点进入

或流出,或者二者兼而有之

的质点系统。

广义的质点系统

简单刚体系统-由1、2个刚体组成,每个刚体都作二维运动,或者单个刚体作三维运动。

多刚体系统-由作大范围相对运动的多个相互约束的刚体组成的系统。

第11章质点动力学的基本方程

§11-1 动力学的基本定律

★第一定律(惯性定律)

★第二定律(力与加速度之间的关系的定律)

★第三定律(作用与反作用定律)

F

a m

牛顿及其在力学发展中的贡献

牛顿出生于林肯郡伍尔索朴城的一个中等农户家中。在他出生之前父亲即去世,他不到三岁时母亲改嫁了,他不得不靠他的外祖母养大。

1661年牛顿进入了剑桥大学的三一学院,1665年获文学学士学位。在大学期间他全面掌握了当时的数学和光学。1665-1666的两年期间,剑桥流行黑热病,学校暂

时停办,他回到老家。这段时间中他发现了二项式定律,开始了光学中的颜色实验,即白光由7种色光构成的实验,而且由于一次躺在树下看到苹果落地开始思索地心引力问题。在30岁时,牛顿被选为皇家学会的会员,这

牛顿及其在力学发展中的贡献

★牛顿在光学上的主要贡献是发现了太阳光是由7种不同颜色的光合成的,他提出了光的微粒说。

★牛顿在数学上的主要贡献是与莱布尼兹各自独立地

发明了微积分,给出了二项式定理。

★牛顿在力学上最重要的贡献,也是牛顿对整个自然

科学的最重要贡献是他的巨著《自然哲学的数学原理》。这本书出版于1687年,书中提出了万有引力理论并且系统总结了前人对动力学的研究成果,后人将这本书所总

§11-2 质点的运动微分方程

∑==n

i m 1

i

F a ∑==n i dt

d m 1i

22

F r

直角坐标形式

∑==∑==∑==i iz i iy i ix F dt

z

d m z

m F dt y

d m y

m F dt x

d m x

m 222222

弧坐标形式

=∑=∑=i

n

i i τ

i F F v m F dt dv

m 02ρ

大学土木理论力学动力学复习

一、填空题(每题2分) 1、质点系动能的增量等于作用于质点系全部力所做的元功和。 2、在势力场中,物体受到的力称为有势力或保守力。 3、在势力场中,势能相等的点构成了等势能面。 4、质点系当中每个质点上作用的主动力、约束力和惯性力,在形式上组成平衡力系,这就是质点系的达朗贝尔原理。 5、平移刚体的惯性力系可以简化为通过质心得合力,其大小等于刚体质量和加速度的乘积。 6、铅垂悬挂的质量--弹簧系统,其质量为m,弹簧刚度系数为k,若坐标原点分别取在弹簧静伸长处和未伸长处,则质点的运动微分方程可分别写成_和_。、 8、质点系动量对时间的导数等于质点系的外力的矢量和。 9、如质点系的所有外力在某轴上投影的代数和恒为零,且开始时速度投影等于零,则质心沿该轴的坐标保持不变。 二、判断题 1.平动刚体各点的动量对一轴的动量矩之和可以用质心对该轴的动量矩表示。(对) 2.质点系对于任意动点的动量矩对时间的导数,等于作用于质点系的所有外力对于同一点的矩的矢量和。(错) 3.质点系的内力不能改变质点系的动量与动量矩。(对) 4.刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。(对) 5.机械能守恒定理是,当质点系不受外力作用时,则动能与势能之和等于零。(错) 6.系统内力所做功之代数和总为零。(错) 7.如果某质点系的动能很大,则该质点系的动量也很大。(错) 8.在使用动静法时,凡是运动着的质点都应加上惯性力。(错) 9.平移刚体惯性力系可简化为一个合力,该合力一定作用在刚体的质心上。(对) 10.具有垂直于转轴的质量对称面的转动刚体,其惯性力系可简化为一个通过转轴的力和一个力偶,其中力偶的矩等于对转轴的转动惯量与刚体角加速度的乘积,转向与角加速度相反。(对) 三、选择题 1、两个质量相同的质点,初速度相同,任意瞬时的切向加速度大小也相同,各沿不同的光滑曲线运动,则( A ) A. 任意瞬时两质点的动能相同 B. 任意瞬时两质点受力相同 C. 任意瞬时两质点的动量相同 D. 在同一时间内,两质点所受外力冲量相同

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录 (校本部)

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录(校本部) 理论物理是研究物质的基本结构和基本运动规律的一门学科,它既是物理学的理论基础,又与物理学乃至自然科学其它领域很多重大基础和前沿研究密切相关。展望二十一世纪,理论物理的发展将会有很好的前景。北京大学(原)理论物理研究室和(现)理论物理研究所是原高教部确定的全国高校理论物理学科的第一个研究室和研究所。北大理论物理是原国家教委确定的第一批重点学科之一。北大理论物理学科有优良的传统,王竹溪、彭桓武、胡宁、杨立铭等著名老一辈理论物理学家曾在这里长期执教。建国以来,北大理论物理专业为国家培养了两弹一星功臣于敏、周光召和15位中国科学院院士(于敏、周光召、冼鼎昌、甘子钊、苏肇冰、吴杭生、徐至展、霍裕平、张宗烨、陈难先、杨国桢、雷啸林、夏建白、周又元、赵光达)、3位第三世界科学院院士(苏肇冰、冼鼎昌、陈创天),以及许多在我国教育和科学研究领域有突出贡献的优秀专家学者。本学科点覆盖面广,优势突出。在理论物理的主流前沿方向上具有坚实的研究基础和较强的实力。本学科点队伍整齐、实力雄厚,凝聚了一批学术造诣精深和富有创造精神的专家学者,其中中科院院士二人,长江学者一人和国家杰出青年基金获得者三人。这一研究集体已作出在国际上有较大影响工作,目前继续招收研究生的研究方向主要有: 1.粒子物理理论 具体包括强子物理(如粲偶素物理、自旋物理、格点规范等)、标准模型和超出标准模型的新物理(如CP破坏、辐射修正、超对称的量子效应等)等。该方向研究集体是目前国家自然科学基金资助的全国唯一一个理论物理方面的“创新研究群体”。 2.原子核理论 具体包括如原子核内的夸克自由度、极端条件下的核结构、原子核的代数模型及微观基础、原子核的集体运动模式及其相变、超重核的结构及合成反应、核天体物理、相对论性重离子碰撞、强相互作用物质的成分、形态、相及相变等。 3.场论和宇宙学 包括如弦理论、共形场论、非对易几何、宇宙甚早期演化及宇宙结构等。 4.凝聚态理论和统计物理 包括介观体系输运性质和强关联系统统计模型、高温超导理论、强电磁场等极端条件下凝聚态物质的性质等。 5.计算物理及其应用 包括多粒子系统的研究方法、对称性理论和方法、模拟计算方法等。自1996年以来,本学科点在国际权威学术期刊发表高水平学术论文多篇,其中有一批在国际上有相当影响的工作。按照SCI和 SLAC-SPIRES的检索结果,本学科成员的论文被他人引用几千次,这充分说明了这些工作的原创性和影响力。本学科成员1996年以来出版专著和教材20余部。获得国家自然科学三等奖1项、国家优秀教材奖12项(其中一等奖3项)。承担了量子力学、电动力学、热力学与统计物理、理论力学、数学物理方法等本科生主干基础课和高等量子力学、量子场论、量子规范场论、量子场论专题、微分几何与拓扑学、粒子物理、广义相对论、宇宙学、中高能原子核理论、计算物理等十多门研究生核心课程的教学

《理论力学》考试知识点.

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

理论力学基础知识

《理论力学教程》基础知识 第一章 质点力学 1. 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径 向速度和横向速度,其表达式分别为:r v r =;θθ r v =;将加速度矢量分解为径向加速度和横向加速度,其表达式分别为2θ r r a r -=; θθθ r r a 2+=。 第2题图 2. 求解线约束问题,通常用内禀方程,它的优点是运动规律和约束反作用力可以分开解算,这套方程可表示为,切向:τF dt dv m =;法向:n n R F v m +=ρ2 ;副法向:b b R F +=0。 3. 试写出直角坐标系表示的质点运动微分方程式x F x m = 、y F y m = 、z F z m = 。 4. 质点在有心力作用下,只能在垂直于动量矩J 的平面内运动,它的两个动力学特征是:(1)对力心的动量矩守恒;(2)机械能守恒。 5. 牛顿运动定律能成立的参考系,叫做惯性系;牛顿运动定律不能成立的参考 系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加 上适当的惯性力。 6. 在平面自然坐标系中,切向加速度的表达式为dt dv a =τ,它是由于速度大小改变产生的;法向加速度的表达式为ρ2 v a n =,它是由于速度方向改变产生的。 7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在

质点组上的外力,而内力不能使质心产生加速度。 第8题图 8. 一质量为m 的小环穿在光滑抛物线状的钢丝上并由A 点向顶点O 运动,其 建立起的运动微分方程为:θsin mg dt dv m =;θρ cos 2 mg R v m -=。 注:此题答案不唯一。 第9题图 9.一物体作斜抛运动,受空气阻力为v mk R -=,若采用直角坐标系建立其在任意时刻的运动微分方程为:x x m kv dt dv m -=;y y mkv m g dt dv m --=;若采用自然坐标系建立其在任意时刻的运动微分方程为:θsin mg mkv dt dv m --=; θρc o s 2 mg v m =。 10.动量矩定义表达式为v m r J ?=,它在直角坐标系中的分量式为 ()y z z y m J x -=、()z x x z m J y -=、()x y y x m J z -=。

理论力学动力学测试

第三篇 动力学 一、选择题(每题2分,共20分) 1.在铅直面内的一块圆板上刻有三道直槽AO ,BO ,CO ,三个质量相等的小球M 1,M 2,M 3在重力作用下自静止开始同时从A ,B ,C 三点分别沿各槽运动,不计摩擦,则________到达O 点。 (A )M 1小球先; (B )M 2小球先; (C )M 3小球先; (D )三球同时。 题1 题2 题3 2.质量分别为m 1=m ,m 2=2m 的两个小球M 1,M 2用长为L 而重量不计的刚杆相连。现将M 1置于光滑水平面上,且M 1M 2与水平面成?60角。则当无初速释放,M 2球落地时,M 1球移动的水平距离为____________。 (A )3L ; (B )4L ; (C )6L ; (D )0。 3.质量为m ,长为b 的匀质杆OA ,以匀角速度ω绕O 轴转动。图示位置时,杆的动量及对O 轴的动量矩的大小为________。 (A )2 ωmb p =,122ωmb L O =; (B )0=p ,122ωmb L O =; (C )2ωmb p =,22ωmb L O =; (D )2 ωmb p =,32ωmb L O =。 4.在_____情况下,跨过滑轮的绳子两边张力相等,即F 1=F 2(不计轴承处摩擦)。 (A )滑轮保持静止或以匀速转动或滑轮质量不计; (B )滑轮保持静止或滑轮质量沿轮缘均匀分布; (C )滑轮保持静止或滑轮质量均匀分布; (D )滑轮质量均匀分布。 题4 题5 5.均质杆长L ,重P ,均质圆盘直径D =L ,亦重P ,均放置在铅垂平面内,并可绕O 轴转动。初始时杆轴线和圆盘直径均处于水平位置,而后无初速释放,则在达到图示位置瞬时,杆的角速度ω1________圆盘的角速度ω2。 (A )大于; (B )小于; (C )等于; (D )小于或等于。

理论力学考试知识点总结

理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力

系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动 1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。 2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。 第七章点的复合运动 1、掌握运动合成和分解的基本概念和方法。 2、理解哥氏加速度的原理。 3、熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。

土木工程师(岩土)资料(基础部分)一

土木工程师(岩土)资料(基础部分)一 土木工程师(岩土)资料(基础部分)一土木工程师(岩土)资料(基础部分)一基础部分 一、高等数学 1、同济大学编:高等数学(上册、下册)(第三版),高等教育出版社,1988 2、同济大学数学教研室编:线性代数(第二版),高等教育出版社,1991 3、谢树芝编:工程数学--矢量分析与场论(第二版),高等教育出版社。 4、陈家鼎、刘婉如、汪仁宦编:概率统计讲义(第二版),高等教育出版社。 二、普通物理 1、程守洙、江之永主编:普通物理学(第三版,高等教育出版社,1988 三、普通化学 1、浙江大学编:普通化学(第三版),高等教育出版社,1988 2、同济大学编:普通化学。同济大学出版社,1993 3、刘国璞编:大学化学。清华大学出版社,1994 4、余纯海、齐晶瑶编:工程化学。东北林大出版社,1996

四、理论力学 1、同济大学理论力学教研室编:理论力学(第一版),同济大学出版社,1990 2、谭广泉、罗龙开、谢广达、范第峰编:理论力学(第二版)。华南理工大学出版社,1995 3、华东水利学院编:理论力学。人民教育出版社,1994 五、材料力学 1、孙训方、胡增强编著,金心全修订:材料力学(第三版)。高等教育出版社,1994 2、刘鸿文主编:材料力学(第三版)。高等教育出版社,1994 六、流体力学 1、西南交通大学水利学教研室:水利学(第三版)。高等教育出版社,1991 2、郝中堂、周均长主编:应用流体力学。浙江大学出版社,1991 七、材料力学 1、湖南大学、天津大学、同济大学、南京工学院合编:建筑材料(第三版)。中国建筑工业出版社,1989。 2、符芳主编:建筑材料。东南大学出版社,1998 八、电工学 1、秦曾煌主编:电工学(上、下册)(第四版)。高等教育出版社,1990。 2、罗守信主编:电工学(i、ii册)(第三版)。高等教育出版社,

理论力学之核心概念-动力学篇

本篇接着阐述理论力学动力学中的核心观念。阐述的方式依旧是回答几个问题。 问题1:动力学的基本问题是什么? 答案:虽然书上有关于动力学问题的许多说法,但是就实际应用而言,对于我们机械专业而言,我们所遇到的最常见的动力学问题是,在一个机构上的原动件受到了力(偶),我们要得到机构上各构件的速度和加速度。或者已知了速度和加速度,要反推这个力(偶)是多少。 下图就是这样一个例子。在OA杆上施加一个驱动力偶,各个杆件都有重力,我们要计算此时各约束处的约束力的大小,还需要计算CD杆的速度和加速度。 该问题中,力与运动交织在一起,这就是机构的动力学问题,也是机械中经常遇到的问题。 问题2:如何求解动力学问题? 答案: 解决动力徐问题的方法很多。我们只要谈两种方法:第一种是通用解法,第二种是动静法(达朗伯原理)。 通用解法,是指面对一个动力学问题,我们总是有一套很程序化的思路来求解它,这套思路中,我们会使用刚体平面运动的微分方程。使用这种方法,我们几乎不用思考,就可以列出所有的方程,解决所有的未知数。例如,对上面这个问题,如果它已知M,要求CD杆的加速度。则使用通用解法,我们可以同时求出AB杆,BE,CD杆的加速度,也可以求出A,B,C,D,E 处所有的约束力。使用通用解法,我们几乎不用关注题目要求什么,而总是可以求出所有的未知数。 动静法,是说把这个动力学问题从形式上变成静力学问题,然后再借用静力学的求解方法来计算所需要的未知数。动静法之所以能够把动力学问题变成静力学问题,是因为它把加速度变成了惯性力,然后对于系统中的每一个构件,形成了一个力系平衡的问题。而我们之所以使用动静法,是因为对于静力学问题,我们有很多解题技巧,例如取整体为对象,或者取某几个构件一起为对象,或者对任何一个点取力矩,这些优越性,都是刚体平面运动微分方程所不具备的。 问题3:如何使用通用解法求解动力学问题?

完整word版,理论力学动力学知识点总结,推荐文档

质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点O 的动量矩是矢量。 质点系对点O 的动量矩是矢量。 若z 轴通过点O ,则质点系对于z 轴的动量矩为 。 若 C 为质点系的质心,对任一点O 有。 2.动量矩定理。 对于定点O 和定轴z 有 若 C 为质心,C z 轴通过质心,有

北京大学理论力学讲义 LagrangeEq

第一章Lagrange 方程

本章主要内容 §1、约束,自由度和广义坐标 §2、虚功原理 §3、Lagrange方程

在矢量力学中,最基本、最重要的方程是F =m a 。 1、处理运动受到约束(即限制)的力学问题 一个质量为m 的质点,受到作用力F 已知,在3维空间中, t d /r md F 22 =这里包含3个标量方程,3个未知数(矢径的3个分量)。如果这个质点被限制在一个光滑的曲面f (r )=0上运动,f (r )=f (x,y,z )= 0 , 22/, F R md r dt += 在曲面上,df =0,由于曲面光滑,所以曲面对质点 的作用力R ∝,?n ? O ?r d r f (r )=0m =0?n 矢量力学的不足? 运动,运动方程是:方程为:?n 表示法向单位矢量。

同理,质点约束在光滑的曲线上运动, 独立变量减少了2个,但方程和未知量却增加2个。 但在分析力学中,情况却相反,质点的运动受到约束,描述质点运动的独立变量数减少, 方程和未知量的个数也随着减少, 使求解问题变得更简单。 2、描述质点运动的坐标 在F=m a中,r是我们要求解的重要变量, 但这种变量的形式太受局限,难于用来描述复杂的 物理体系,如电磁场、引力场,更不用说量子体系。 在分析力学中,r被广义坐标取代, 这种描述方法可直接推广到 电磁场、引力场、量子力学、量子场论, 可以用于自然界中的所有4种基本相互作用。

3、作用力 F是一个宏观量,在微观世界中没有这个量。 宏观量F与微观世界中的动量变化相联系。 在分析力学中,通常用能量、广义动量这类更基本的物理量,这样便于把分析力学推广到其它领域。 1788年,J. L. Lagrange写了一本名为“分析力学”的书,这就是现在的Lagrange形式的分析力学。1834年,W. Hamilton 建立了另一种形式的分析力学,就是现在的Hamilton形式的分析力学。 除这两种形式之外,分析力学还被表述为变分形式。我们现在所说的分析力学主要包括这3种表述形式。 分析力学比较抽象,不像矢量力学那样直观。 在Lagrange的分析力学中,没有一张图。 矢量力学则直观、图像清晰。

(机械制造行业)机械设计一类问题

浙江大学。难度大点。浙大机械是中国最好的几个机械专业之一,而且浙大有个液压研究所,机械专业就有点偏向液压方向,蛮符合你的。英语现在差点没什么,努力下,英语考研还是好过的,主要是词汇量、阅读、写作而已。 就是不知道你要考什么档次的学校了。 建议要求高点,考机械名校。清华、上海交大难度相当大,慎重。我有几个同学就在准备考上海交大,很要用功的。不过人家毕业后500强争着要呢。 华中科大、哈工大性价比很高,而且机械专业很强。 大连理工、北航、东南大学机械都很强的。 其实你大学学什么专业跟考研又没关系。你想考机械研,液压就稍微放掉点,不是很重要。还是要多看看什么机械原理与设计、理论力学、材料力学、控制工程等等。 具体考研专业课科目,你可以去想考的大学网站上查,或者打研招办电话咨询。 在这里,有几点我想跟你说下,你考研时别考虑专业方向,那跟你以后导师的研究方向有关。各所著名大学有各自的研究偏向。像清华、上交大、哈工大、大连理工等等就是有点偏向电子、IT了,当然里面也有机器人研究、航空航天、车辆工程等。如果想研究生出来找个好工作,首先考虑学机械制造或机械电子。机械设计是要经验的,越老越吃香。 考研自然要定高点目标,努力吧,清华等着你! 有个同事就是机械设计制造及其自动化专业的,今年刚毕业的,正跟学习电脑制图、加工工艺,而是数控加工专业的,专业不如他,但比他早工作了三年。按理说专业不如他、学历不如他(他本科,技校生),可发现教的很多基本知识他都没听说过,更别说在学校学习了。个人看法:说的两种专业都是机械类,但有所区别,机械设计制造如果学的相当好,毕业后可找设计类工作(但很难找,因为设计类的工作公司很少找刚毕业的学生,机械设计需要大量的理论知识、工作经验,这也是刚毕业的学生缺乏的),还可以找机械加工的工作,这种比较好找。汽车服务工程知道的有汽车的维修、事故勘察、汽车服务、还可以去4s店等,这个专业不太熟悉,也不便多谈。何种专业并不能决定将来工作的性质,个人认为最好找个感兴趣的,这样也有学习的动力。是学数控加工的,照样成了一名机械设计、工艺员。最后提点小建议,如果将来选择前者,一定要好好学电脑自动编程,社会上比较普及的是ug,模具加工就需要电脑编程,也是未来的一种趋势吧。 趁还没开学,做一些调查吧!然后来确定的选择。 以上仅代表个人看法,愿学业有成! 首先,要弄清楚“机械设计制造及其自动化”专业是本科的专业称谓,研究生阶段对应的一级学科是机械工程系,一般包括三个二级学科(机械设计及理论、机械制造、机械电子) 其次,通常考研报名时需要选择填报你的想报考的专业(即三个二级学科中的一个,比如:机械设计及理论专业) 此外,考试科目一般是:英语、政治、数学(一)和专业课(机械设计或机械原理),要强调的是:专业课的考题为你所报学校自己出题,根据所报考的学校不同,相应的要求考的专业课的难度和科目也有所不同,例如:哈工大是按一级学科出题,二级学科录取,专业课考试科目为《机械原理》和《机械设计》两门课,出题较难,考分一般不高,约100分左右。 另外,考研时间每年都有安排,一般大致在过年前1-2月份 答案补充 数学、英语、政治是基础科目,国家统一出题 机械设计制造及其自动化专业的出路 热度 7已有 5599 次阅读2010-2-23 14:57|个人分类:前期|

理论力学哈工大公式定义总结

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点 O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩 M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。

力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a ) ( b ) ( 3 )力对点的矩与力对通过该点的轴的矩的关系 3. 空间力偶及其等效定理 ( 1 )力偶矩矢 空间力偶对刚体的作用效果决定于三个因素(力偶矩大小、力偶作用面方位及力偶的转向),它可用力偶矩矢表示, 力偶矩矢与矩心无关,是自由矢量。 ( 2 )力偶的等效定理:若两个力偶的力偶矩矢相等,则它们彼此等效。

北京大学物理学系研究生课程

物理学系研究生生课程 课程号 00410240 课程名群论学分 3.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410340 课程名高等量子力学学分 4.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410440 课程名量子统计物理学分 3.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410540 课程名固体理论学分 5.0 周学时 6.0 总学时 108.0 开课学期春 课程号 00410640 课程名量子场论学分 4.0 周学时 4.0 总学时 72.0 开课学期春 课程号 00410740 课程名光学理论学分 4.0 周学时 4.0 总学时 72.0 开课学期秋 课程号 00410840 课程名辐射和光场的量子理论学分 4.0 周学时 4.0 总学时 72.0 开课学期春 课程号 00410940 课程名专业文献阅读学分 4.0 周学时 3.0 总学时 54.0 开课学期秋 课程号 00411050 课程名磁性量子理论学分 3.0 周学时 3.0 总学时 54.0 开课学期不定 课程号 00411150 课程名稀土金属间化合的磁性学分 3.0 周学时 3.0 总学时 54.0 开课学期秋 课程号 00411250 课程名固体物理中的格林函数方法学分 3.0 周学时 3.0 总学时 54.0 开课学期春 课程号 00411350 课程名超导微观理论学分 3.0 周学时 3.0 总学时 54.0 开课学期春 课程号 00411450 课程名薄膜物理学分 3.0 周学时 3.0 总学时 54.0 开课学期秋 课程号 00411550 课程名半导体异质结物理学分 2.0

浙江大学831理论力学

浙江大学831理论力学(甲)2004年试题 一、计算题(25分) 图示构架AD、EH、AE、CG四杆铰链而成,各杆重量均不计。作用在A、B点的铅垂力F1=F2=600N,图中尺寸单位为cm.求AE、CG所受力。 二、计算题(25分) 靠在物块B角上的直杆OA长度为2a,可绕轴转动。物块以等速v沿水平线运动、求Φ=45o时,A点的速度和加速度。 1

三、计算题(25分) 曲柄OA以角速度w绕固定轴O转动,带动直角三角板ABC在图面内运动,板的B端被限制只能沿水平槽运动。在图示瞬间,O A、AC成同一条水平线。已知OA=2r,AC=4r,CB=3r。求瞬时B、C两点的速度和加速度。 2

四、计算题(25分) 均匀杆A C、BC各重W、长为L,有光滑铰链C铰链,在各杆中点连接一刚度系数为K的弹簧,置于光滑水平面上,沿铅垂平面内运动如图所示。设开始时,θ=60°,速度为0。弹簧未变形。求当θ=30°时C点速度。设K=W/(√3-1)L. 五、计算题(25分) 均质杆AB长为2L、质量为10M。杆的A、B端分别与重2M的小球A和重为6M的小球B相固结,AB杆的中点支承在固定铰支座O上。杆原来静止在图示虚线位置。B球在上,A球在下。受微小扰动后,杆顺钟向转下,不计摩擦。球转到图示水平位置时,支座O的约束反力。 3

六、计算题(本题共25分) 图示力学系统中,均质圆盘A的半径为R、质量为m,沿水平直线作纯滚动。水平杆AB(质量不计)用铰链A、B分别与圆盘和均质细杆BC连接。杆BC长为L、质量为m,在B端有一水平弹簧BD,其质量不计,弹簧常数为K,在图示平衡位置时,弹簧具有原长,试用拉格朗日方程求解系统微振动的运动微分方程及微振动的周期。 4

理论力学动力学知识点总结

理论力学动力学知识点总结 质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为 ,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: . 已知质点的运动,求作用于质点的力; (1) (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类 的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例;

作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为 ,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 1 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点 O 的动量矩是矢量 。 质点系对点 O 的动量矩是矢量 若 z 轴通过点 O ,则质点系对于 z 轴的动量矩为

北京大学各院系课程设置一览

北京大学各院系课程设置一览 前言 很多同学希望了解在北京大学各院系的某个年级要学习哪些课程,但又不容易查到课程表。本日志充当搬运工作用,将各院系开设课程列于下方,以备查询。 查询前必读 注释: ※在课程名称后标注含义如下: 标注(必)表示此课程为专业必修课,是获得学士学位必须通过的课程; 标注(限)表示此课程为专业任选课(原称专业限选课),各院系规定需在所有专业任选课中选修足够的学分(通常为30~40)以获取学士学位; 标注(通)表示此课程为通选课,非本院系本科生可选修此类课程,并计入通选课所需总学分;通选课无年级限制; 标注(公)表示此课程为全校任选课(原称公共任选课),此类课程不与学位挂钩,公选课无年级限制。 标注(体)表示此课程为体育课,每名学生必须且仅能选修4.0学分体育课;男生必须选修“太极拳”,女生必须选修“健美操”。 ※实际上,多数专业必修课及专业选修课也没有年级限制。对应的年级是“培养方案”推荐的修该门课程的适当年级。 ※不开设任何专业必修课的院系为研究生院或其他不招收本科生的部门,如马克思主义学院、武装部等。 ※由于在某些院系下有不同专业方向,标注为必修课的课程可能并不对于所有学生均为必修(如外国语学院的各个语种分支)。相关信息请咨询相应院系教务。 ※多数课程可以跨院系选修,但可能需缴纳额外学费。 ※院系编号为学号中表示院系字段的数字,因院系调整原因,编号并不连续。“系”可能为院级单位,具体以相应主页标示为准。 ※课程名称后标注数字表示学分。一般情况下,对于非实验课及非习题课,每学分表示平均每周有一节50分钟时长课程,16-18周。 ※院系设置的课程不一定由本院系开设。 ※医学部课程仅包含在本部的课程内容。 ※本一览表不包括政治课、军事理论课、英语课、文科计算机基础、辅修及双学位课程。※本一览表不提供上课地点及主讲教师信息,请与相应院系教务联系。 001 数学科学学院 https://www.doczj.com/doc/2210956705.html,/ 一年级秋季学期 数学分析(I)(必)5.0 数学分析(I)习题(必)0.0 高等代数(I)(必)5.0 高等代数(I)习题(必)0.0 几何学(必)5.0 几何学习题(必)0.0 一年级春季学期 数学分析(II)(必)5.0

中mei着名大学《理论力学》课程比较与分析

中美著名大学《热力学与统计物理学》课程比较与分析 张立彬(教育部南开大学外国教材中心,天津300071) 徐皓、刘学文(南开大学物理科学学院,天津300071) 内容摘要:根据中美高校物理学排名,笔者搜集了美国12所顶尖高校与中国10所著名大学的热力学与统计物理学课程及其教材等信息,在此基础上,比较了中美著名大学热力学与统计物理学课程的内容、教材与参考书使用情况、培养目标、教学方式、师资力量等。通过比较发现了美国热力学与统计物理教学的特点和国内教学的不足,本文可为国内热力学与统计物理学课程教学的改善提供一定的启示与借鉴。 关键词:热力学与统计物理;美国大学;中国高校;课程特点;课程比较;物理教材 热力学与统计物理是“四大力学”的物理基础课程之一。对于各高校的物理专业是必不可少的必修课程。我们在日常生活中所接触的宏观物体是由大量微观粒子构成的。这些微观粒子不停地进行着无规则运动。人们把这大量微观粒子的无规运动称为物质的热运动。热运动有其固有的规律性。热运动的存在必然影响到物质的各种宏观性质。例如,物质的力学性质、电磁性质、聚集状态,乃至化学反应进行的方向和限度等等。热力学和统计物理的任务是研究热运动的规律及热运动对物理宏观性质的影响。 为了深入了解热力学与统计物理的教学情况,我们调研收集了美国物理学排名前十二的高校的课程情况、教材使用等信息,通过分析美国高校的培养目标、课程内容、学时、教学方式等来了解他们的热力学与统计物理课程的特点,并与国内进行了比较分析。研究的结果可为国内热力学与统计物理的教学给予启示。 文章收集了美国十二所顶尖大学(位列全美物理学排名前十二名)的热力学与统计物理课程信息,包括了课程主讲内容、使用教材及参考书等。这些学校有:麻省理工学院(Massachusetts Institute of Technology)、斯坦福大学(Stanford University)、加州理工学院(California Institute of Technology)、哈佛大学(Harvard University)、普林斯顿大学(Princeton University)、加州大学伯克利分校(University of California Berkley)康奈尔大学(Cornell University)、芝加哥大学(The University of Chicago)、伊利诺伊大学香槟分校(University of Illinois Urbana-Champaign)、加州大学圣芭芭拉分校(University of California Santa Barbara)、哥伦比亚大学(Columbia University )、耶鲁大学(Yale University)。 一、中美著名大学《热力学与统计物理学》课程的比较 1.课程内容方面 从课程内容上面来看,国内的《热力学与统计物理学》课程主要包括热力学的基本规律,均匀物质的热力学特性,单元系的相变,多元系的复相平衡和化学平衡,近独立粒子的最概然分布、玻耳兹曼统计、玻色统计和费米统计、系综理论、涨落理论、非平衡态的统计理论等10个章节的内容。我国的热力学部分和统计物理部分是合为一门课讲授的,前半部分为热力学,后半部分为统计物理。其中热力学是热运动的宏观理论,主要研究手段是对热现象的观测、实验和分析,总结出热力学四大定律:热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律。这些定律是无数观测和实验的总结,适用于宏观的一切热力学系统。而热力学就是通过从这几个最基本的定律出发,运用数学方法,通过逻辑演绎的方式,得到宏观物质的各种性质和物理过程发生的方向和限度。这些结论具有较高的普遍性。热力学的一大优点就是普遍性,能够研究与物质热性质有关的所有规律,并且只要没有其他的限制,所得到的结果和数据的精确度和可靠性很高。然而热力学的研究所得到的结论与物质的具体结构并无关系,因此在使用热力学时不可能研究所有的问题。而且研究过程中在很大程度上依赖于实验数据的测量,才能得到可用的结果。另外,热力学将系统视作连续体,使用的是连续函数来表征物质的性质,因此不能解释宏观现象的涨落问题,这也是热力学的缺点

北京大学938流体力学综合 (含理论力学(下)、流体力学)考研参考书、历年真题、复试分数线

北京大学938流体力学综合(含理论力学(下)、流体力学)考研参 考书、历年真题、复试分数线 一、课程介绍 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。描述流体运动特征的基本方程是纳维-斯托克斯方程,简称N-S方程。 纳维-斯托克斯方程基于牛顿第二定律,表示流体运动与作用于流体上的力的相互关系。纳维-斯托克斯方程是非线性微分方程,其中包含流体的运动速度,压强,密度,粘度,温度等变量,而这些都是空间位置和时间的函数。一般来说,对于一般的流体运动学问题,需要同时将纳维-斯托克斯方程结合质量守恒、能量守恒,热力学方程以及介质的材料性质,一同求解。由于其复杂性,通常只有通过给定边界条件下,通过计算机数值计算的方式才可以求解。 流体力学中研究得最多的流体是水和空气。1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 二、北京大学938流体力学综合(含理论力学(下)、流体力学)考研复试分数线 根据教育部有关制订分数线的要求,我校按照统考生、联考生等不同类型分别确定复试基本分数线。考生能否进入复试以各院系所规定的各项单科成绩和总成绩确定的复试名单为准。我校将按照德、智、体全面衡量,择优录取,保证质量,宁缺毋滥的精神和公开、公正、公平的原则进行复试与录取工作。 一、复试基本分数线: (1)、统考: 考试科目 政治外语数学专业课总分备注 学科门类 哲学(01)50509090360

相关主题
文本预览
相关文档 最新文档