当前位置:文档之家› 多级制冷循环能量的分析

多级制冷循环能量的分析

多级制冷循环能量的分析
多级制冷循环能量的分析

《化工热力学》过程论文

题目:多级制冷循环能量分析系别:化学材料与工程系班级:13级化工卓越班姓名:

学号:1303022014

教师:

日期:2016-1-12

多级制冷循环能量分析

摘要本文综合分析了多级蒸汽压缩制冷循环的特点,主要介绍了两级蒸汽压缩制冷的系统流程及能量分析。

关键词多级蒸汽压缩制冷;循环;能量分析

目录

1 引言................................................................. - 3 -

2 两级压缩制冷的循环形式 ........................................ - 4 -

2.1 两级压缩制冷的工作原理 ............................................. - 4 -

2.2 两级蒸气压缩类型...................................................... - 4 -

3 两级压缩制冷的系统流程与循环分析........................... - 7 -

3.1 一次节流中间完全冷却的两级压缩制冷循环........................ - 7 -

3.2 热力计算 ................................................................ - 8 -

4 多级离心压缩制冷循环........................................... - 9 -

5 结论................................................................. - 9 -

6 参考文献 ........................................................... - 9 -

1引言

单级压缩在常温冷却条件下,能获得的低温程度有限。在此条件下,获得低温的制约因素是压缩比和排气温度。压缩比和排气温度升高后的危害:①压缩比增大时压缩机的余隙系数λv大为降低,压缩机的输气量及效率显著下降。当压缩比提高到一定数值后,压缩机的余隙系数变为零,压缩机不再吸气,制冷机虽然在不断运行,制冷量却变为零;②压缩机排气温度过高,使润滑油的粘度急剧下降,影响压缩机的润滑。当排气温度与润滑油的闪点接近时,会使润滑油碳化和出现拉缸等现象;③制冷剂过热损失增加,单位容积制冷量下降过大,经济性显著下降。

2两级压缩制冷的循环形式

2.1两级压缩制冷的工作原理

压缩过程分两阶段进行:低压级压缩高压级压缩

①.来自蒸发器的低温制冷剂蒸气(压力为P0)先进入低压级压缩机,在其中压缩到中间压力Pm;

②.经过中间冷却器冷却(分为两种情况:中间完全冷却为饱和蒸气和中间不完全冷却为过热蒸气);

③再进入高压级压缩机,将其压缩为冷凝压力Pk,排入冷凝器中。

2.2两级蒸气压缩类型

1)按压缩机台数分

单机双级:一台压缩机,气缸一部分为高压级,另一部分为低压级。

双机双级:两台压缩机,分别作为高压级和低压级。

2)按中间冷却方式分

中间完全冷却:将低压级的排气冷却到中间压力下的饱和蒸气。

3)中间不完全冷却:低压级排气虽经冷却,但并未冷却到饱和蒸气状态,仍然是过热蒸汽。

4)按节流方式分

两次节流循环:将高压液体先从冷凝压力P k节流到中间压力P m,然后再由P m节流降压至蒸发压力P0 。

一次节流循环:制冷剂液体由冷凝压力P k直接节流至蒸发压力P0

常用的组成型式:

①一次节流、中间完全冷却

②一次节流、中间不完全冷却

③两次节流、中间完全冷却

④两次节流、中间不完全冷却

3两级压缩制冷的系统流程与循环分析3.1一次节流中间完全冷却的两级压缩制冷循环

3.2热力计算

一次节流中间完全冷却的两级压缩制冷循环

假定已知制冷量Q0

①单位质量制冷量:q0=h1-h8 kJ/kg

②低压级比功:wD=h2-h1 kJ/kg

③低压级制冷剂质量流量:qm,D=?0/q0 kg/s

④低压级压缩机轴功率:Pk,D=qm,DwD/ηK,D kw

⑤低压级输气量:实际:qvs,D=qm,Dv1 m3/s;理论:qvh,D=qvs,D /λD m3/s(低压级压缩机的容积效率λD等于相同压力下单级压缩的90%)

⑥高压级比功:wG=h4﹣h3 kJ/kg

⑦高压级制冷剂质量流量(由中间冷却器热平衡确定)

质量平衡:qm,G=qm,D+qm6=qm6+qm7 qm7=qm,D

能量平衡:qm,Dh2+ qm,Dh5+(qmG-m,D)h6=qm,Gh3+qm,Dh7 ;qm,G=qm,D (h2﹣h7) /(h3﹣h6) kg/s

⑧高压级压缩机轴功率:Pk,G=qm,GWG/ηk,G kw

⑨高压级输气量:实际: qvs,G=qm,Gv3 m3/s;理论: qvh,G=qvs,G/λG m3/s(λG等于相同压力下单级压缩的容积效率)

⑩性能系数:理论循环:COP=?0/(qm,GWG+ qm,DWD );实际循环:COPs=?0/

(qm,GWG /ηk,G + qm,DWD /ηk,D )

4多级离心压缩制冷循环

5结论

通过本文的介绍可知,多级蒸汽压缩制冷循环较之前所学的单级蒸汽压缩制冷要复杂些,·但多级压缩制冷可以提供多种不同温度下的制冷量,更适合化工生产中需要各种温度下的冷量[3]。

6参考文献

[1]施云海等.化工热力学.:华东理工大学,2007..

[2]朱自强,吴有庭.化工热力学.第三版:化学工业,2010.

[3]钟秀,顾飞燕,胡望明等.化工热力学. 第三版:化学工业,2011.

双级压缩制冷装置中间压力和压力的确定

双级压缩制冷装置中间压力的确定 论文作者:吴春江 摘要:随着制冷技术的发展,对于用冷量大的系统采用单机双级压缩制冷装置已不是最佳方案,而采用单机配打双级压缩制冷装置得到越来越广泛的应用。本文主要介绍双级压缩制冷过程中间压力对制冷系数的影响,从而为设计单机配打双级压缩制冷装置时,合理的选择中间压力提供依据。 关键词:制冷工况蒸发压力冷凝压力 0、引言 随着我国国民经济和社会的发展,双级压缩制冷技术已在国防、科研、化工、医院、食品等建筑中广泛应用,从而使国民经济和社会发展用于制冷技术方面的能耗逐年增长。一些单位或工厂企业使用双级压缩制冷技术面越来越广,而对于单机配打双级压缩制冷装置设计使用过程中的通常是简单选择中间温度,也因为目前国内、外对于双级压缩制冷中间温度没有系统的标准,实际运行过程中具有一定的随意性,从而导致双级压缩冷冻机经常不处于最大制冷系数的工况下工作,影响整套设备的制冷效果,不利于节能要求。 我国的节约能源法中指出,节能是指加强用能的管理,采取技术可行、经济合理以及环境和社会可以承担的措施,减少从能源生产到消费各个环节中的损失和浪费,更加有效、合理地利用能源。节能还包括再生能源和新能源的开发利用。节能对于我国现代化建设来说,具有更重大的意义。目前,全国各地电力十分紧张,但所需能量也在迅速增长。由此要求我们制冷专业人员在设计、施工到运行管理的各个环节中都应通力合作,才能实现节能的目的。 1、双级压缩制冷系统的基本类型及制冷经济技术指标 两级压缩制冷机是将压缩过程分为两次来实现,系将来自蒸发器压为为Pe的低压制冷剂蒸气先用低压压缩机(或压缩机的低压级)压缩到中间压力Pm,然后再用高压压缩机(或压缩机的高压级)压缩到冷凝压力Pc。因此,它需要用两台压缩机(或使用双级压缩机)。现在,对于活塞式和螺杆式压缩机,大多是选用单级压缩机组合成两级压缩制冷机,而不专门针对两级压缩制冷的要求设计和生产高压及低压压缩机。 双级压缩制冷系统的基本类型 两级节流中间完全冷却: # T-S图: P-S图

空调压缩机工作原理

空调压缩机的工作原理 1、空调压缩机就是在空调制冷剂回路中起压缩驱动制冷剂 的作用。工作回路中分蒸发区与冷凝区,室内机与室外机分别属于高压或低压区。压缩机一般装在室外中,压缩机把制冷剂从低压区抽取来经压缩机后送到高压区冷却凝结,通过散热片散发出热能到空气中,制冷剂也从气态变成液态,压力升高。制冷剂再从高压区流向低压区,经过毛细管喷射到蒸发器中,压力骤降,液态制冷剂立即变成气态,通过散热片吸收空气中大量的热量。这样,机器不断工作,就不断把低压区一端的热能吸收到制冷剂中再送到高压区散发到空气中,起到调节气温的作用。 2、空调在作制冷运行时,低温低压的制冷剂气体被压缩机吸 入后加压变成高温高压的制冷剂气体,高温高压的制冷剂气体在室外换热气中放热变成中温高压的液体,中温高压的液体再经过节流部件节流降压后变成低温低压的液体,低温低压的液体制冷剂在室内换热气中吸热蒸发后变成低温低压的气体,然后进入压缩机压缩,往复循环。 3、压缩机就是制冷系统的心脏,无论就是空调、冷库、化工制 冷工艺等等工况都要空压缩机这个重要的环节来做保障! 制冷压缩机种类与形式很多,根据原理可分为容积型与速度型两类,其中容积式就是最为普遍的。 那压缩机又就是如何压缩空气的呢?

简单而说就就是通过改变气体的容积来完成气体的压缩与输送过程!任何动力设备都需要一个动力来做功完成,压缩机也就是一样,它需要一个电动机来带动。 容积型压缩机又分为往复活塞式与回转式两种。 往复活塞式就是通过活塞在气缸内做往复运动改变气体工作容积;活塞式压缩机历史悠久,生产技术成熟。 回转式压缩机包括刮片旋转式压缩机 螺杆式压缩机,目前国内生产的空调器多采用旋转式压缩机; 蜗杆式压缩机主要用于大型制冷设备,现在一些大型商场办公楼内也有很多采用蜗杆式压缩机。 空调的基本原理就是这样的,压缩机将冷冻剂压缩成高压饱与气体,这种气态冷冻剂再经过冷凝器冷凝。 通过节流装置节流之后,通入到蒸发器中,将所需要冷却的媒介冷却换热。例如将蒸发器连接到楼里的各个房间,蒸发器的蛇形管将同空气进行换热,再通过鼓风将冷气吹向空气洞中。 而蒸发器蛇形管内的冷冻剂换热后变成低压蒸气回到压缩机,在被压缩机压缩,这样循环利用就完成了制冷系统。 4、分析空调图

双级压缩制冷循环原理

双级压缩制冷循环原理 一、两级压缩采用得原因 制冷系统得冷凝温度(或冷凝压力)决定于冷却剂(或环境)得温度,而蒸发温度(或蒸发压力)取决于制冷要求、由于生产得发展,对制冷温度得要求越来越低,因此,在很多制冷实际应用中,压缩机要在高压端压力(冷凝压力)对低压端压力(蒸发压力)得比值(即压缩比)很高得条件下进行工作、由理想气体得状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气得温度必然会很高(V一定,P↑→T↑),于就是就会产生以下许多问题。 1、压缩机得输气系数λ大大降低,且当压缩比≥20时,λ=0 。 2。压缩机得单位制冷量与单位容积制冷量都大为降低。 3。压缩机得功耗增加,制冷系数下降。 4、必须采用高着火点得润滑油,因为润滑油得粘度随温度升高而降低。 5.被高温过热蒸气带出得润滑油增多,增加了分油器得负荷,且降低了冷凝器得传热性能。 总上所述,当压缩比过高时,采用单级压缩循环,不仅就是不经济得,而且甚至就是不可能得。为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器得双级压缩制冷循环。但就是,双级压缩制冷循环所需得设备投资较单级压缩大得多,且操作也较复杂。因此,采用双级压缩制冷循环并非在任何情况下都就是有利得,一般当压缩比≥8时,采用双级压缩较为经济合理。 二、双级压缩制冷循环得组成及常见形式 两级压缩制冷循环,就是指来自蒸发器得制冷剂蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。并在两次压缩中间设置中间冷却器、两级压缩制冷循环系统可以就是由两台压缩机组成得双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以就是由一台压缩机组成得单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。 两级压缩制冷循环由于节流方式与中间冷却程度不同而有不同得循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却与一次节流中间不完全冷却四种两级压缩制冷循环方式。其中,两次节流就是指制冷剂从冷凝器出来要先后经过两个膨胀阀再进入蒸发器,即先由冷凝压力节流到中间压力,再由中间压力节流到蒸发压力,而一次节流只经过一个膨胀阀,大部分制冷剂从冷凝压力直接节流到蒸发压力,相比之下,一次节流系统比较简单,且可以利用其较大得压力差实现远距离或高层冷库得供液。因此实践中

制冷压缩机结构和工作原理介绍

制冷压缩机在系统中的作用 为了能连续不断地制冷,需用压缩机将已汽化的低压蒸气从蒸发器中吸出并对其做功,压缩成为高压的过热蒸气,再排入冷凝器中(提高压力是为了使制冷剂蒸气容易在常温下放出热量而冷凝成液体)。在冷凝器中利用冷却水或空气将高压的过热蒸气冷凝成为液体并带走热量,制冷剂液体又从冷凝器底部排出。如此周而复始,实现连续制冷。 概括地说,这种制冷方法是使制冷剂在低温低压的条件下汽化而吸取周围介质的热量,并在常温高压的条件下冷凝液化而放出热量并由冷却水(或空气)带走。欲使制冷剂实现这样的热量转移,必须提供与蒸发温度和液化温度相对应的低压和高压条件,而这一条件正是由压缩机创造的。因此,在蒸气压缩式制冷循环中,只有有了压缩机,制冷机才能将低温物体的热量不断地转移给常温介质,从而达到制冷的目的。 目前各类压缩机的大致应用范围及制冷量大小: 制冷压缩机的种类与分类 制冷压缩机按其工作原理可以分为: 容积型和速度型 1.压缩机的种类 (1)容积型压缩机:用机械的方法使密闭容器的容积变小,使气体压缩而增加其压力的机器。 它有两种结构型式:往复活塞式(简称活塞式)和回转式

(2)速度型压缩机:用机械的方法使流动的气体获得很高的流速,然后在扩张的通道内使气体流速减小,使气体的动能转化为压力能,从而达到提高气体压力的目的,这种机器称为速度型压缩机。属于这一类的有离心式制冷压缩机。 这种压缩机工作时,气体在高速旋转的叶轮推动下,不但获得了很高的速度,并且在离心力的作用下,沿着叶轮半径方向被甩出,然后进入截面积逐渐扩大的扩压,在那里气体的速度逐渐下降而压力则随之提高。 压缩机种类图: 2 .压缩机的分类 (1) 按工作蒸发温度范围分类单级制冷压缩机一般可按其工作蒸发温度的范围分为高温、中温和低温压缩机三种,但在具体蒸发温度区域的划分上并不统一。下面列举一种著名压缩机的大致工作蒸发温度的分类范围。 高温制冷压缩机(-10 ~ 0 )℃ 中温制冷压缩机(-15 ~ 0 )℃ 低温制冷压缩机(- 40 ~ -15 )℃ (2) 按制冷量的大小分类: 大型≥550kW 中型(25~550)kW

双级压缩制冷循环原理

双级压缩制冷循环原理 一、萨震两级压缩采用的原因 制冷系统的冷凝温度(或冷凝压力)决定于冷却剂(或环境)的温度,而蒸发温度(或蒸发压力)取决于制冷要求。由于生产的发展,对制冷温度的要求越来越低,因此,在很多制冷实际应用中,压缩机要在高压端压力(冷凝压力)对低压端压力(蒸发压力)的比值(即压缩比)很高的条件下进行工作。由理想气体的状态方程Pv/T≡C可知,此时若采用单级压缩制冷循环,则压缩终了过热蒸气的温度必然会很高(V一定,P↑→T↑),于是就会产生以下许多问题。 1.压缩机的输气系数λ大大降低,且当压缩比≥20时,λ=0 。 2.压缩机的单位制冷量和单位容积制冷量都大为降低。 3.压缩机的功耗增加,制冷系数下降。 4.必须采用高着火点的润滑油,因为润滑油的粘度随温度升高而降低。 5.被高温过热蒸气带出的润滑油增多,增加了分油器的负荷,且降低了冷凝器的传热性能。 总上所述,当压缩比过高时,采用单级压缩循环,不仅是不经济的,而且甚至是不可能的。为了解决上述问题,满足生产要求,实际中常采用带有中间冷却器的双级压缩制冷循环。但是,双级压缩制冷循环所需的设备投资较单级压缩大的多,且操作也较复杂。因此,采用双级压缩制冷循环并非在任何情况下都是有利的,一般当压缩比≥8时,采用双级压缩较为经济合理。 二、双级压缩制冷循环的组成及常见形式 两级压缩制冷循环,是指来自蒸发器的制冷剂蒸气要经过低压与高压压缩机两次压缩后,才进入冷凝器。并在两次压缩中间设置中间冷却器。两级压缩制冷循环系统可以是由两台压缩机组成的双机(其中一台为低压级压缩机,另一台为高压级压缩机)两级系统,也可以是由一台压缩机组成的单机两级系统,其中一个或两个汽缸作为高压缸,其余几个汽缸作为低压缸,其高、低压汽缸数量比一般为1:3或1:2 。 两级压缩制冷循环由于节流方式和中间冷却程度不同而有不同的循环方式,通常分为:两次节流中间完全冷却、两次节流中间不完全冷却、一次节流中间完全冷却和一次节流中间不完全冷却四种两级压缩制冷循环方式。其中,两次节流是指制冷剂从冷凝器出来要先后经过两个膨胀阀再进入蒸发器,即先由冷凝压力节流到中间压力,再由中间压力节流到蒸发压力,而一次节流只经过一个膨胀阀,大部分制冷剂从冷凝压力直接节流到蒸发压力,相比之下,一次节流系统比较简单,且可以利用其较大的压力差实现远距离或高层冷库的供液。因此实践中采用的基本上都是一次节流两级压缩制冷循环系统。至于采用哪一种中间冷

压缩机是怎么制冷的工作原理是什么

压缩机是怎么制冷的工作原理是什么 我们日常使用的电冰箱,正好由这四要件加上箱体组成,箱体就好像冷库。不过电冰箱上的③节流阀在技术上由相同作用的毛细管替代。首先讲讲什么叫制冷。制冷两字只能说是技术上的术语,严格讲是错误的,世界上没有那国的科学家能制造出“冷”来。那到底什么是冷,例:在寒冬腊月,气温降到-5℃,我们说今天天气真冷,可东北人说不冷;在大伏天,气温在+32℃时,我们会说不算热,但气温突然降到+25℃,我们会说太冷了;这冷是随着人的常识来定的,在物理学中没有冷的定义。在工程中冷是跟着生产需要而定的。如老总问,冷库打冷了吗?你说打冷了,这个冷是指-18℃;老总问,水果库温度稳定吗?你说很稳定,这回答的含义是水果库温度稳定在±0℃了,这是我们这个行业对冷的定义。但是我们还是把这种利用机械设备把降温对象降到所需温度的方法叫制冷,这就是术语。什么叫制冷,比如我们将装有一公斤20℃冷水的水壶放到一块烧到500℃的铁板上,没有多久水就开了,如果不拿开水壶,不多久水就干了。大家和说钢板在对水加热,反过来也可以说水在对钢板降温。而且,降了多少度,都可计算出来,因为一公斤水从20℃升到100℃,它需要外界提供它80大卡热量,水从100℃到烧干,它需要外界提供539大卡热量,也就是说一公斤20℃冷水烧到干,要外界提供619大卡热量。如果按制冷的角度它从外界或钢板中提取了619大卡热量而变成了水蒸汽,使钢板降温了,这就是制冷,是利用水对钢板制冷。如果将水倒在钢板上,那就更直观了。 在上述的制冷过程中,如果钢板的大小一定,并排除外界空气的降温因素,那么钢板降了多少度,是可以精确计算出来的。在这里所述及到的‘热量’、‘温度’、‘大卡’、‘℃’等物理量,我想学过物理的人都能理解。初中物理就讲到,热量总是通过传导、对流、辐射,从温度高的物体转移到温度低的物体,绝不可能反过来进行。一个物体失去一些热量后,它的温度也会降低一些。我们的目的就是通过制冷系统,将商品中和空气中的热量向比商品温度更低的制冷剂传递,达到降低商品温度的目的。 我们的制冷系统与锅炉的制热系统在热力学上来讲是完全一样的,它们的热传导公式也完全一样,我们先以锅炉作比拟,进一步讲讲制冷剂在制冷时的作用。上面讲的烧水壶也可算是一只锅炉,不过水烧开了,我们就灌热水瓶了,如果我们在壶嘴上套根管子,通到浴室,那就可以洗桑拿了,水壶就成小锅炉了。要注意的是这时水壶中的水永远是100℃,水壶出口处的蒸汽温度也是100℃,为什么不是110℃,不是90℃?这是因为在一个大气压下水的沸腾温度是100℃,这是水的物理性能所决定了的。在青藏高原,大气压力较低,水70℃左右就开了,没有高压锅就只能吃夹生饭,而在高压锅里,温度可达到110℃,因为高压锅排气阀的重量,刚好使锅内压力保持在1Kg/CM2表压力(实际是2个大气压)。一般小型锅炉可烧4Kg/CM2表压力蒸汽,蒸汽温度也接近140℃,锅炉中的水温也与蒸汽温度一样也是140℃。煤气炉的火头温度可达1000℃左右,火头将热量传递给水,使水的温度上升直达沸点,一公斤水从沸点到烧干(全部变成蒸汽),将从煤气火头中带走的热量与上面所讲水壶给钢板降温是一样的,接近壶底的火焰是一个降温过程。锅炉中的煤燃烧温度在1200℃左右,没有锅炉中水的降温,锅炉中的排管将被烧塌。

螺杆式制冷压缩机的工作原理

螺杆式制冷压缩机的工作原理 发布时间:2012年4月20日 螺杆式制冷压缩机的工作原理 1、螺杆式制冷压缩机的特点 与活塞压缩机的往复容积式不同,螺杆式压缩机是一种回转容积式压缩机。与活塞压缩机相比,螺杆式制冷压缩机有以下优点: a.体积小重量轻,结构简单,零部件少,只相当于活塞压缩机的1/3~1/2; b.转速高,单机制冷量大; c.易损件少,使用维护方便; d.运转平稳,振动小; e.单级压比大,可以在较低蒸发温度下使用; f.排气温度低,可以在高压比下工作; g.对湿行程不敏感; h.制冷量可以在10%~100%之间无级调节; i.操作方便,便于实现自动控制; j.体积小,便于实现机组化。 缺点: 转子、机体等部件加工精度要求高,装配要求比较严格; 油路系统及辅助设备比较复杂;因为转速高,所以噪声比较大。 2、螺杆式制冷压缩机工作原理 双螺杆(压缩机)是由一对相互啮合、旋向相反的阴、阳转子,阴转子为凹型,阳转子为凸型。随着转子按照一定的传动比旋转,转子基元容积由于阴阳转子相继侵入而发生改变。侵入段(啮合线)向排气端推移,于是封闭在沟槽内的气体容积逐渐缩小,压力逐渐升高,压力升高到一定值(或者说转子旋转到一定位置)时,齿槽(密闭容积)与排气孔相通,高压气体排出压缩机,进入油分离器。吸气、压缩、排气过程见示意图。 3、内压比与螺杆压缩机经济性的关系 螺杆压缩机是没有气阀的容积型回转式压缩机,吸、排气孔的打开和关闭完全为几何结构决定的,即吸气终了的体积和压缩结束时的体积是固定的,即内容积比是固定的。而活塞压缩机的吸、排气阀片的打开是由吸、排气腔的压力决定的。 内容积比:Vi=VS/Vd VS—吸气终了时的容积,Vd—压缩终了时的容积 内压力比:Za =Pd / P0 Pd—压缩终了压力,P0—吸入压力 可见,内压比是由内容积比决定的。所以,压缩终了压力Pd是由吸气压力和内容

制冷原理逆卡诺循环

制冷原理: 逆xx 卡诺循环1824年,法国青年工程师卡诺研究了一种理想热机的效率,这种热机的循环过程叫做“卡诺循环”。这是一种特殊的,又是非常重要的循环,因为采用这种循环的热机效率最大。 卡诺循环是由四个循环过程组成,两个绝热过程和两个等温过程。它是1824年N.L.S.卡诺(见卡诺父子)在对热机的最大可能效率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、磨擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机。 xx进一步证明了下述xx定理: ①在相同的高温热源和相同的低温热源之间工作的一切可逆热机的效率都相等,与工作物质无关,为,其中T 1、T2分别是高温和低温热源的绝对温度。②在相同的高温热源和相同的低温热源之间工作的一切不可逆热机的效率不可能大于可逆卡诺热机的效率。可逆和不可逆热机分别经历可逆和不可逆的循环过程。 阐明 卡诺定理阐明了热机效率的限制,指出了提高热机效率的方向(提高T 1、降低T 2、减少散热、漏气、摩擦等不可逆损耗,使循环尽量接近卡诺循环),成为热机研究的理论依据、热机效率的限制、实际热力学过程的不可逆性及其间联系的研究,导致热力学第二定律的建立。 在卡诺定理基础上建立的与测温物质及测温属性无关的绝对热力学温标,使温度测量建立在客观的基础之上。此外,应用卡诺循环和卡诺定理,还可以研究表面张力、饱和蒸气压与温度的关系及可逆电池的电动势等。还应强调,

卡诺定理这种撇开具体装置和具体工作物质的抽象而普遍的理论研究,已经贯穿在整个热力学的研究之中。 逆卡诺循环奠定了制冷理论的基础,逆卡诺循环揭示了空调制冷系数(俗称EER或COP)的极限。一切蒸发式制冷都不能突破逆卡诺循环。 理论 在逆卡诺循环理论中间,要提高空调制冷系数就只有以下二招: 1。提高压机效率,从上面推导可以发现小型空调理论上只存在效率提高空间19%;大型螺杆水机效率提高空间9%。 2。膨胀功损失与内部摩擦损失(所谓内部不可逆循环): 其中减少内部摩擦损失几乎没有空间与意义。在我们songrui版主的液压马达没有问世之前,解决膨胀功损失的唯一方法是采用比容大的制冷剂,达到减少输送质量的目的。如R410A等复合冷剂由于比容较R22大,使膨胀功损失有所减少,相对提高了制冷系数。但是就目前情况看通过采用比容大的制冷剂,制冷系数提高空间不会超过6%。(极限空间12%) 工作原理 根据逆xx基本原理: 高温高压气态制冷剂经膨胀机构节流处理后变为低温低压的液态制冷剂,进入空气交换机中蒸发吸热,从空气中吸收大量的热量Q2; 蒸发吸热后的制冷剂以气态形式进入压缩机,被压缩后,变成高温高压的制冷剂(此时制冷剂中所蕴藏的热量分为两部分: 一部分是从空气中吸收的热量Q2,一部分是输入压缩机中的电能在压缩制冷剂时转化成的热量Q1; 被压缩后的高温高压制冷剂进入热交换器,将其所含热量(Q1+Q2)释放给进入热换热器中的冷水,冷水被加热到60℃直接进入保温水箱储存起来供用户使用;

双级压缩式制冷循环

双级压缩式制冷循环 2.5两级压缩及复叠式制冷原理 2.5.1采用两级压缩的原因 单级压缩在选用合适的制冷剂时,其蒸发温度只能达到-25~-35℃,原因是压缩比0 p p k 不能 再提高了。因为: (1)↑↓ ↓→ ↓→00p p p T k o ,压缩机输气量↓→制冷量↓ (2)↑→0p p k 压缩机排气温度↑(↑=↑RT pv )→汽缸壁温↑→吸入蒸汽温度↑→↑v →吸气量↓ 例如:当蒸发温度-30℃,冷凝温度40℃时,单级氨压缩机排气温度可达160℃以上。必须作如下限制: ① 单级氨压缩机排气温度<140℃ ② 单级氟压缩机(R12)排气温度<100℃ ③ 单级氟压缩机(R22)排气温度<115℃ (3) ↑→0 p p k 偏离理想等熵压缩机过程的程度↑→压缩机效率↓ 我国规定:R717: 0p p k ≤8 R12、R22:0 p p k ≤10 (P38表2-3) 要获得-30~-65℃的蒸发温度,又要符合合适的压缩比,则需要两级压缩制冷。 2.5.2两级压缩制冷循环 1.两级压缩制冷循环的类型 k m p p p p 压缩 压缩 (中间冷却器冷却后)→→→0201 总压缩比02 01p p p p k m ?= 每一级压缩比≤8~10以下 可分为???一级节流两级节流? ? ?中间不完全冷却中间完全冷却 * 两级节流:冷凝压力k p 节流到m p 中间压力,再节流到蒸发压力0p

* 一级节流:冷凝压力k p节流到蒸发压力0p,容易调节,实际生产中常用一级节流。 * 两级压缩采用中间冷却的目的是降低高压级的排气温度,降低压缩机功耗。 ①中间完全冷却——低压级排气温度(过热蒸汽)被冷却成m p中间压力下的干饱和蒸汽温 度。(氨压缩机) ②中间不完全冷却——低压级排气温度(过热蒸汽)被冷却降低了温度,来达到m p中间压 力下的干饱和蒸汽温度。(氟压缩机) 2.一级节流中间完全冷却循环 这种循环形式被大多数的两级压缩氨制冷系统所采用。 如图所示:从压缩机高压级排出的高压高温过热蒸汽4,进入冷凝器后被冷却成饱和液体5;从冷凝器出来的液体分为两路,一路经膨胀阀A进行节流,节流后降温为6,然后进入中间冷却器吸热,使中间冷却器中来自低压级的排气2充分冷却,6与2混合后的气体3为中间压力m p下的饱和温度m t,3作为高压级的吸气经高压级压缩后变成过热蒸汽4,至此构成一个高压级的循环回路;另一路饱和液体5经中间冷却器过冷后变成过冷液7,经膨胀阀B进行节流后变成低压液体8,进入蒸发器汽化制冷,然后变成饱和蒸汽1,在低压级压缩后变成过热蒸汽2,在中间冷却器冷却并与在中间冷却器汽化的蒸汽混合,变成饱和蒸汽了,作为高压级的吸气经压缩后变成高压级排气4,形成另一个循环,这是实现低温制冷的主循环。如果高压液体不要过冷时,可经过旁通阀直接进入膨胀阀B。 从图(b)可看到,循环3—4—5—6—3在中间冷却器里产生冷量,供另一个循环中饱和液体的过冷(过程5—7)和低压级过热蒸汽的完全冷却(过程2—3)之用。另一个循环1—2—3

多级制冷循环能量的分析

《化工热力学》过程论文 题目:多级制冷循环能量分析系别:化学材料与工程系班级:13级化工卓越班姓名: 学号:1303022014 教师: 日期:2016-1-12

多级制冷循环能量分析 摘要本文综合分析了多级蒸汽压缩制冷循环的特点,主要介绍了两级蒸汽压缩制冷的系统流程及能量分析。 关键词多级蒸汽压缩制冷;循环;能量分析

目录 1 引言................................................................. - 3 - 2 两级压缩制冷的循环形式 ........................................ - 4 - 2.1 两级压缩制冷的工作原理 ............................................. - 4 - 2.2 两级蒸气压缩类型...................................................... - 4 - 3 两级压缩制冷的系统流程与循环分析........................... - 7 - 3.1 一次节流中间完全冷却的两级压缩制冷循环........................ - 7 - 3.2 热力计算 ................................................................ - 8 - 4 多级离心压缩制冷循环........................................... - 9 - 5 结论................................................................. - 9 - 6 参考文献 ........................................................... - 9 -

压缩机制冷原理

压缩机制冷原理 点击次数:2295 发布时间:2009-12-1 17:00:08 压缩机制冷原理 作者:admin 最简单的制冷由四大要件组成:①压缩机;②冷凝器;③节流阀;④蒸发器; 首先讲讲什么叫制冷。制冷两字只能说是技术上的术语,严格讲是错误的,世界上没有那国的科学家能制造出“冷”来。那到底什么是冷,先举例说明:在寒冬腊月,气温降到-5℃,我们说今天天气真冷,可东北人说不冷;在大伏天,气温在+32℃时,我们会说不算热,但气温突然降到+25℃,我们会说太冷了;这冷是随着人的常识来定的,在物理学中没有冷的定义。在工程中冷是跟着生产需要而定的。如老总问,冷库打冷了吗?你说打冷了,这个冷是指-18℃;老总问,水果库温度稳定吗?你说很稳定,这回答的含义是水果库温度稳定在±0℃了,这是我们这个行业对冷的定义。但是我们还是把这种利用机械设备把降温对象降到所需温度的方法叫制冷,这就是术语。什么叫制冷,比如我们将装有一公斤20℃冷水的水壶放到一块烧到500℃的铁板上,没有多久水就开了,如果不拿开水壶,不多久水就干了。大家和说钢板在对水加热,反过来也可以说水在对钢板降温。而且,降了多少度,都可计算出来,因为一公斤水从20℃升到100℃,它需要外界提供它80大卡热量,水从100℃到烧干,它需要外界提供539大卡热量,也就是说一公斤20℃冷水烧到干,要外界提供619大卡热量。如果按制冷的角度它从外界或钢板中提取了619大卡热量而变成了水蒸汽,使钢板降温了,这就是制冷,是利用水对钢板制冷。如果将水倒在钢板上,那就更直观了。 在上述的制冷过程中,如果钢板的大小一定,并排除外界空气的降温因素,那么钢板降了多少度,是可以精确计算出来的。在这里所述及到的‘热量’、‘温度’、‘大卡’、‘℃’等物理量,我想学过物理的人都能理解。初中物理就讲到,热量总是通过传导、对流、辐射,从温度高的物体转移到温度低的物体,绝不可能反过来进行。一个物体失去一些热量后,它的温度也会降低一些。我们的目的就是通过制冷系统,将商品中和空气中的热量向比商品温度更低的制冷剂传递,达到降低商品温度的目的。 我们的制冷系统与锅炉的制热系统在热力学上来讲是完全一样的,它们的热传导公式也完全一样,我们先以锅炉作比拟,进一步讲讲制冷剂在制冷时的作用。上面讲的烧水壶也可算是一只锅炉,不过水烧开了,我们就灌热水瓶了,如果我们在壶嘴上套根管子,通到浴室,那就可以洗桑拿了,水壶就成小锅炉了。要注意的是这时水壶中的水永远是100℃,水壶出口处的蒸汽温度也是100℃,为什么不是110℃,不是90℃?这是因为在一个大气压下水的沸腾温度是100℃,这是水的物理性能所决定了的。在青藏高原,大气压力较低,水70℃左右就开了,没有高压锅就只能吃夹生饭,而在高压锅里,温度可达到110℃,因为高压锅排气阀的重量,刚好使锅内压力保持在1Kg/CM2表压力(实际是2个大气压)。一般小型锅炉可烧4Kg/CM2表压力蒸汽,蒸汽温度也接近140℃,锅炉中的水温也与蒸汽温度一样也是140℃。煤气炉的火头温度可达1000℃左右,火头将热量传递给水,使水的温度上升直达沸点,一公斤水从沸点到烧干(全部变成蒸汽),将从煤气火头中带走的热量与上面所讲水壶给钢板降温是一样的,接近壶底的火焰是一个降温过程。锅炉中的煤燃烧温度在1200℃左右,没有锅炉中水的降温,锅炉中的排管将被烧塌。从我们的角度来讲,在这里的水就是制

两级压缩

1.1.3.3 多级蒸汽压缩制冷循环 在单级蒸气压缩式制冷循环中,当制冷剂选定后,其冷凝压力,蒸发压力由冷凝温度和蒸发温度决定。冷凝温度受环境介质(水或空气)温度的限制,蒸发温度由制冷装臵的用途确定的,当冷凝温度升高或蒸发温度降低时,压缩机的压力增大,排气温度上升,在常温冷却条件下能够获得低温程度是有限的,即制冷温差是有限的。 当要求的制冷温差使循环的压力比超过单级压力比的上述限制时,一种解决办法是采用分级压缩,中间冷却,就是分两极或多级达到循环所要求的总压力比,并且在低压即完成压缩后,现将其排气冷却降温后再到高压级继续压缩,从而每一级的压力比和排气温度均不超限。 由于考虑到超过两级后系统设计的复杂性及其他许多因素,故两级以上的循环在实际中很少使用,通常采用两级压缩循环,所以一下重点讨论两级压缩制冷循环。 1.1.3.3.1 两级压缩制冷循环概述 在蒸气压缩式制冷循环中,当制冷剂选定后,其冷凝压力、蒸发压力由冷凝温度和蒸发温度决定。冷凝温度受环境介质(水或空气)温度的限制,蒸发温度由制冷装臵的用途确定。当冷凝温度升高或蒸发温度降低时,压缩机的压力比将增大。由于压缩机余隙容积的存在,压力比提高到一定数值后,压缩机的容积系数变为零,压缩机不再吸气,制冷机虽然在不断运行,制冷量却变为零。

例1 有一台制冷压缩机,工质为R22,相对余隙容积,膨胀过程指数,冷凝温度℃,求允许最低蒸发温度。 解容积系数的计算公式为 当达到最低蒸发温度时,,上式可变为 代入具体数值,即 冷凝温度℃时,R22的冷凝压力,因此最低蒸发压力为 与相对应的蒸发温度℃,这就是蒸发温度的极限值。 单级压缩的最低蒸发温度不仅受到容积系数为零的限制,随着压力比的增大,除了引起制冷量下降,功耗增加、制冷系数下降、经济性降低外,排气温度的限制也是选择压缩机级数的另一个重要原因。排气温度过高,它将使润滑油变稀,润滑条件恶化,甚至会引起润滑油的碳化和出现拉缸等现象。当冷凝温度为40℃,蒸发温度为-30℃时,单级氨压缩机即使在等熵压缩的情况下,排气温度已高达160℃,显然它已超过了规的最高排气温度为150℃的限制。

制冷循环的热力学原理概要

第一节制冷循环的热力学原理 一、常用术语 1、物质 具有一定质量并占据空间的任何物体称为物质。 物质通常以固、液、气三态存在。 蒸气压缩式制冷机都依靠内部循环流动的工作物质来实现制冷过程。制冷机中的工作物质称为制冷剂。制冷装置中用来传递冷量的工作物质称为载冷剂。 2、温度 温度是物体冷热程度的量度。它是物质分子热运动剧烈程度的标志尺度。 常用的温度度量单位有摄氏温标t和开氏温标T(绝对温标)。

T(k)=t(℃)+273.15 图2-1 两种常用温标的比较 3、热量 物体在热过程中所放出或吸收的能量称为热量。 生产中常用制冷能力来衡量设备产冷量大小。 制冷能力:制冷设备单位时间内从冷库取走的热量。 4、比热(specific heat) 比热是一个物性参数,意为单位度量的物质温度变化1k时所吸进或放出的热量。 体积比热Cv(J/m3.k) 摩尔比热Cp(J/mol.k) 5、显热和潜热 不改变物质的形态而引起其温度变化的热量称为显热。 不改变物质的温度而引起其形态变化的热量称为潜热。 制冷剂的汽化潜热有何要求? 表1-1 几种制冷物质的汽化潜热(kJ/kg) 物质水氨R12 R22 氯甲 烷 二氧 化硫 R114 R502 汽化热2256.8 1369 167.5 234.5 427.1 397.8 137.9 6 150.0 2 6、压力 垂直作用在单位面积上的力称为压力p(压强)。p是确定物质状态的基本参数之一。1bar=105Pa,饱和压力Ps与饱和温度ts 的对应

关系。 7、比容v和密度 比容:每千克物质所占有的容积。v是基本状态参数。v=1 8、导热系数 表示材料传导热量的能力,是一个物性参数。数值上等于:1m 厚的材料两边温差1k时在1小时内通过1m2表面积所传导的热量。单位:w/m.k 9、压-焓图(lgp-h) 物质的热力状态性质可以绘制成曲线图的形式。制冷剂性质曲线图有多种形式。行业中最常用的是lgp-h图。 lgp-h图的构成可以总结为一个临界点、二条饱和线、三个状态区、六组等值线。

制冷循环系统的基本知识与简单原理

制冷循环系统的基本知识与简单原理 一、概念 1、定义;制冷是指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。 2、制冷机:机械制冷中所需机器和设备的总称为制冷机。 3、制冷剂:制冷机中使用的工作介质称为制冷剂。制冷剂在制冷机中循环流动,同时与外界发生能量交换,即不断地从被冷却对象中吸取热量,向环境排放热量。制冷剂一系列状态变化过程的综合为制冷循环。 4、制冷的方法:制冷的方法很多,可分为物理方法和化学方法。但绝大多数为物理方法。目前人工制冷的方法主要有相变制冷、气体绝热膨胀制冷、半导体制冷和磁制冷等。 4.1.相变制冷:即利用物质相变的吸热效应实现制冷。如冰融化时要吸取80 kcal/kg的熔解热;干冰在1标准大气压下升华要吸取137kcal/kg的热量,其升华温度为-78.9℃。 4.2.气体绝热膨胀制冷:利用气体通过节流阀或膨胀机绝热膨胀时,对外输出膨胀功,同时温度降低,达到制冷目的。 4.3.半导体制冷:两种不同金属组成的闭合电路中接上一个直流电源时,则一个接合点变冷,另一个接合点变热。但纯金属的珀尔帖效应很弱,且热量通过导线对冷热端有相互干扰,而用两种半导体(N型和P型)组成的直流闭合电路,则有明显的珀尔帖效应且冷热端无相互干扰。因此,半导体制冷就是利用半导体的温差电效应实现制冷。(两种不同的金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差。 利用物理现象制冷的方法还有很多,我们不一一介绍。目前生产实际中广泛应用的制冷方法是:利用液体的气化实现制冷,这种制冷常称为蒸气制冷。它的类型有:蒸汽压缩式制冷(消耗机械能)、吸收式制冷(消耗热能)、蒸汽喷射式制冷(消耗热能)和吸附式制冷等几种。 二、制冷循环原理 一般制冷机的制冷原理,液体制冷剂在蒸发器中吸收被冷却的物体热量之后→汽化成低温低压的蒸汽→被压缩机吸入→压缩成高压高温的蒸汽后排入冷凝器→在冷凝器中向冷却介质(水或空气)放热→冷凝为低温高压液体→经节流阀节流→再次进入蒸发器吸热汽化变成低温低压的气态(湿蒸汽)→吸入压缩机达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环 三、构成制冷系统的四大要素

制冷循环原理

制冷循环原理 3.1蒸气压缩式制冷原理 如果制冷工质的状态变化跨越液、气两态,则制冷循环称为蒸气压缩制冷循环。蒸气压缩制冷装置是目前使用最广泛的一种制冷装置,绝大多数家用冰箱、空调机、冷柜等都是采用蒸气压缩式制冷。 3.1.1单级蒸气压缩制冷循环分析 家用冰箱、空调机、冷柜等制冷装置的功能、结构形式、整体布局虽然不同,其主要部件都包括压缩机、冷凝器、膨胀阀(或称节流阀)和蒸发器四部分。通过简化如图3-1所示。 图3-1是蒸气压缩制冷装置制冷循环示意图。其工作循环如下:经过膨胀阀(毛细管)绝热节流,降压降温至状态4的湿蒸气进入蒸发器(冷库),进行定压蒸发吸热,离开蒸发器时已成为干饱和蒸气;从蒸发器出来的状态1的干饱和蒸气被吸入压缩机进行压缩,升压、升温至过热蒸气状态2;进入冷凝器,进行定压放热,凝结为液体3;从冷凝器出来的液体经过膨胀阀(毛细管)节流降压至湿蒸气状态4进入蒸发器(冷库),从而完成了一个循环4-1-2-3-4。 蒸气压缩式制冷循环可概括为四个过程。 ①蒸发过程4-1低温低压的液体制冷剂从冷库中以汽化潜热方式吸收被冷却物热量后,变成低温低压的制冷剂蒸气。 ②压缩过程1-2为了维持一定的蒸发温度,制冷剂蒸气必须不断地从蒸发器引出,从蒸发器出来的制冷剂蒸气被压缩机吸入并被压缩成高压气体,且由于在压缩过程中,压缩机要消耗一定的机械功,机械能又在此过程中转换为热能,所以制冷剂蒸气的温度有所升高,制冷剂蒸气呈过热状态。

③冷凝过程2-3从制冷压缩机排出的高温高压过热的制冷剂蒸气,进入冷凝器后受到冷却物(如冷却水、空气等)的冷却而变为液体。 ④节流过程3-4从冷凝器出来的制冷剂液体经过降压设备(如节流阀、膨胀阀等)减压到蒸发压力。节流后的制冷剂温度也下降到蒸发温度,并产生部分闪蒸气体。节流后的气液混合物进入蒸发器进行蒸发过程。 上述四个过程依次不断进行循环,从而达到连续制冷的目的。 3.1.2单级压缩式制冷循环在压-焓图上的表示 单级压缩式制冷循环主要由压缩机、冷凝器、节流装置和蒸发器四大件所组成,这四大件由管道连接起来,便构成了一个最简单的制冷系统(如图3-1所示)。 单级蒸气压缩式制冷理论循环的假设条件是: ①压缩过程1-2是绝热压缩过程,前后熵值不变; ②不考虑制冷剂在流动时摩擦、阻力等损失,即制冷剂在流经冷凝器、蒸发器及连接管道中的压力保持不变,冷凝压力p k保持不变;蒸发压力p0不变; ③节流过程为绝热过程,液态制冷剂的节流前后焓值不变; 该制冷系统运行状态则可在压一焓图上绘制和表示出来,如图3-2所示。其中各点表示的位置是: 0点——蒸发器出口; 1点——压缩机吸气口; 2点——压缩机排气口; 5点——节流装置入口; 6点——蒸发器入口。

制冷压缩机的工作原理结构

制冷压缩机的工作原理及结构 第一节螺杆式制冷压缩机的工作原理 1、螺杆式制冷压缩机的特点 与活塞压缩机的往复容积式不同,螺杆式压缩机是一种回转容积式压缩机。与活塞压缩机相比,螺杆式制冷压缩机有以下优点: a.体积小重量轻,结构简单,零部件少,只相当于活塞压缩机的1/3~1/2; b.转速高,单机制冷量大; c.易损件少,使用维护方便; d.运转平稳,振动小; e.单级压比大,可以在较低蒸发温度下使用; f. g.对湿行程不敏感; h. 制冷量可以在10%~ 100%之间无级调节; i.操作方便,便于实现自动控制; j.体积小,便于实现机组化。 缺点: 转子、机体等部件加工精度要求高,装配要求比较严格;

油路系统及辅助设备比较复杂;因为转速高,所以噪声比较大。2、螺杆式制冷压缩机工作原理 双螺杆(压缩机)是由一对相互啮合、旋向相反的阴、阳转子,阴转子为凹型,阳转子为凸型。随着转子按照一定的传动比旋转,转子基元容积由于阴阳转子相继侵入而发生改变。侵入段(啮合线)向排气端推移,于是封闭在沟槽内的气体容积逐渐缩小,压力逐渐升高,压力升高到一定值(或者说转子旋转到一定位置)时,齿槽(密闭容积)与排气孔相通,高压气体排出压缩机,进入油分离器。吸气、压缩、排气过程见示意图。 3、内压比与螺杆压缩机经济性的关系 螺杆压缩机是没有气阀的容积型回转式压缩机,吸、排气孔的打开和关闭完全为几何结构决定的,即吸气终了的体积和压缩结束时的体积是固定的,即内容积比是固定的。而活塞压缩机的吸、排气阀片的打开是由吸、排气腔的压力决定的。 内容积比:Vi=VS/Vd VS—吸气终了时的容积,Vd—压缩终了时的容积 内压力比:Za = Pd / P0 Pd—压缩终了压力,P0—吸入压力 可见,内压比是由内容积比决定的。所以,压缩终了压力Pd是由吸气压力和内容积比决定的。 外压力比:Zy = Py / P0 Py—排气背压力,或者说冷凝压力

制冷原理知识点总结

制冷原理及设备期末复习 有不全的大家相互补充 题型:填空20分;选择10分;判断10分;简答45分(5道);计算1道,带计算器。 绪论 实现人工制冷的方法(4大类,简单了解原理) 1.利用物质的相变来吸热制冷; 融化(固体—液体),气化(液体—气体),升华(固体—气体) 气化制冷(蒸气制冷): 包括蒸气压缩式制冷、吸收式制冷、蒸汽喷射式制冷、吸附式制冷。 2.利用气体膨胀产生低温 气体等熵膨胀时温度总是降低的,产生冷效应。 3.气体涡流制冷 高压气体经涡流管膨胀后,可分为冷热两股气流; 4.热电制冷(半导体制冷) 利用半导体的温差电效应实现的制冷。 根据制冷温度的不同,制冷技术可大体上划分三大类: 普通冷冻:>120K【我们只考普冷】 深度冷冻:120K~20K 低温和超低温:<20K。 t= (t, ℃; T, Kelvin 开)T=273+t 常用制冷的方法有:液体蒸发制冷循环必须具备以下四个基本过程:液体气化制冷制冷剂液体在低压下汽化产生低压蒸气,气体膨胀制冷将低压蒸气抽出并提高压力变成高压气,涡流管制冷将高压气冷凝成高压液体, 热电制冷高压液体再降低压力回到初始的低压状态。按照实现循环所采用的方式之不同,液体蒸发制冷有 蒸气压缩式制冷蒸气吸收式制冷蒸气喷射式制冷吸附式制冷等 蒸气压缩式制冷 系统组成:

1-压缩机2-冷凝器3-膨胀阀4-蒸发器组成的密闭系统。 工作原理:制冷剂在蒸发器中吸收被冷却对象的热量而蒸发,产生的低压蒸气被压缩机吸入,经压缩机压缩后制冷剂压力升高,压缩机排出的高压蒸气在冷凝器中被常温冷却介质冷却,凝结成高压液体。高压液体经膨胀阀节流,变成低压、低温湿蒸气,进入蒸发器,低压液体在蒸发器中再次汽化蒸发。如此周而复始。 蒸气吸收式制冷 系统组成: 发生器、吸收器、冷凝器、蒸发器、溶液热交换器、溶液泵、冷剂泵等 工质对:制冷剂与吸收剂常用:氨—水溶液溴化锂—水溶液 工作原理:Ⅰ.溴化锂溶液在发生器中被热源加热沸腾,产生出制冷剂蒸汽在冷凝器被冷凝成冷剂水。冷剂水经U型管节流进入蒸发器,在低压下蒸发,产生制冷效应。 Ⅱ.发生器中出来的浓溶液,经热交换器降温、降压后进入吸收器,与吸收器中的稀溶液混合为中间浓度的溶液。中间热度的溶液被吸收器泵输送并喷淋,吸收从蒸发器中产生的冷剂蒸汽,形成稀溶液。稀溶液由发生器泵输送到发生器,重新被热源加热,形成浓溶液。 氨水吸收式制冷循环工作原理: 在发生器中的氨水浓溶液被热源加热至沸腾,产生的蒸气(氨气中含有一小部分水蒸汽)经精馏塔精馏后(得到几乎是纯氨的蒸气),进入冷凝器放出热量后被冷凝成液体,经节流机构节流,进入蒸发器,低压液体制冷剂,吸收被冷却物体的热量而蒸发,达到制冷的目的,产生的低压蒸气进入吸收器。而发生器中发生后的稀溶液,降压后也进入吸收器,吸收由蒸发器来的制冷剂蒸气,浓溶液经溶液泵加压后送入发生器。如此不断循环。

制冷压缩机讲义第二章

Δ第二章,活塞式制冷压缩机的工作原理和基本热力计算 熟悉活塞式制冷压缩机的工作过程,掌握理论工作过程和实际工作过程的差异,能正确分析影响活塞式制冷压缩机输气量和输气系数的各种因素,掌握输气系数、制冷量、功率和效率的计算方法。能正确运用性能曲线图。 第一节,单级活塞式制冷压缩机的工作原理和理想工作过程, 分析工作原理就是要研究压缩机的工作过程,一般要通过它的工作循环来说明。压缩机工作循环:是指活塞在汽缸内往复运动一次,缸内汽体经过一系列状态变化重现原始状态所经过的全部过程。 为了便于分析实际工作过程,我们设想存在没有余隙容积损失和能量损失的理想工作过程,将它作为实际工作过程的比较标准。(便于简化分析) 一、活塞式制冷压缩机理论工作过程的理想条件。 1、压缩机没有余隙容积,理论输气量与汽缸容积相等。 2、吸气和排气过程没有压力损失,(吸气压力等于蒸发压力,排气压力等于冷凝压力) 3、吸气与排气过程中无热量传递,即汽体与汽缸壁无热交换,绝热压缩。 4、无漏气损失。高低压汽体不发生串漏。 5、无摩擦损失。运动机件在工作中没有摩擦,不消耗摩擦功。 (电机功率消耗全部转化为压缩功。) 二、压缩机理论工作过程的组成。 压缩机的理论工作过程由吸气过程、压缩过程、排气过程组成。

1、吸气过程。 活塞从外止点向右运动时缸内容积增大,压力降低,吸气管中压力为P1的汽体顶开吸气阀进入汽缸内,直到活塞一向内止点,吸气完毕。吸气过程结束。 吸气过程体积增大,压力不变,过程线为0——1. 2、压缩过程, 当活塞从内止点向左移动时,吸气阀关闭,缸内容积缩小,汽体压力逐渐升高,当压力身高到排气管压力P2时,排气阀会打开,此时压缩过程结束,如图1——2点,特点:体积缩小压力升高。 3、排气过程。 当汽缸内压力升高到P2时,汽体顶开排气阀片进入排气管,活塞继续向左移动,缸内体积缩小,压力不变。直到活塞移到外止点。此时缸内汽体排尽,排气过程结束。过程线2——3,特点:体积缩小,压力不变。 上述三个过程共同组成一个循环,称为压缩机的理想工作循环。 在上述三个过程中,只有压缩过程存在汽体状态变化,(压力、比容、温度变化),是热力过程,其它过程是一般的汽体流动过程。 三、压缩机的理论排气量。 一个汽缸工作容积:Vp=(π/4)D2S (m3) 设压缩机的汽缸数为i,转速为n. 则压缩机理论排气量Vh=60*i*n*Vp=47.12insD2米3/时 理论排气量可用来表示压缩机排气量的大小。 四、压缩机理想工作过程的耗功。 理论压缩循环示功图 理论循环耗功: 压缩机在理想工作过程中曲轴每旋转一周(一个工作循环),活塞对汽体所做的功: 吸气过程:汽体对活塞做功为负值:P1V1, 相当于面积:0-0’-1’-1-0.值:P1V1,单位:Kg/m2*m3=Kgm. 压缩过程:活塞对汽体做功,正值,

相关主题
文本预览
相关文档 最新文档