当前位置:文档之家› 高中物理解题(微元法)

高中物理解题(微元法)

高中物理解题(微元法)
高中物理解题(微元法)

高中奥林匹克物理竞赛解题方法

微元法

方法简介

微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲

例1:如图3—1所示,一个身高为h的人在灯以悟空速度v沿水平直线行走。设灯距地面高为H,求证人影的顶端C点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

设某一时间人经过AB处,再经过一微小过程

△t(△t→0),则人由AB到达A′B′,人影顶端

C点到达C′点,由于△S AA′=v△t则人影顶端的

移动速度

可见v c与所取时间△t的长短无关,所以人影的顶

端C点做匀速直线运动.

例2:如图3—2所示,一个半径为R的四分之一光滑球

面放在水平桌面上,球面上放置一光滑均匀铁链,其A

端固定在球面的顶点,B端恰与桌面不接触,铁链单位

长度的质量为ρ.试求铁链A端受的拉力T.

解析:以铁链为研究对象,由由于整条铁链的长度不能

忽略不计,所以整条铁链不能看成质点,要分析铁链的受

力情况,须考虑将铁链分割,使每一小段铁链可以看成质

点,分析每一小段铁边的受力,根据物体的平衡条件得出

整条铁链的受力情况.

在铁链上任取长为△L的一小段(微元)为研究对象,

其受力分析如图3—2—甲所示.由于该元处于静止状态,

所以受力平衡,在切线方向上应满足:

由于每段铁链沿切线向上的拉力比沿切线向下的拉力大

△Tθ,所以整个铁链对A端的拉力是各段上△Tθ的和,

观察的意义,见图3—2—乙,由于△θ很小,

所以CD⊥OC,∠OCE=θ△Lcosθ表示△L在竖直方向上的投影△R,所以可得铁链A端受的拉力

例3:某行星围绕太阳C沿圆弧轨道运行,它的近日点

A离太阳的距离为a,行星经过近日点A时的速度为,

行星的远日点B离开太阳的距离为b,如图3—3所示,

求它经过远日点B时的速度的大小.

解析:此题可根据万有引力提供行星的向心力求解.也

可根据开普勒第二定律,用微元法求解.

设行星在近日点A时又向前运动了极短的时间△t,由于时间极短可以认为行星在△t时间内做匀速圆周运动,线速度为,半径为a,可以得到行星在△t时间内扫过的面积

同理,设行星在经过远日点B时也运动了相同的极短时间△t,

则也有由开普勒第二定律可知:S a=S b

即得此题也可用对称法求解.

例4:如图3—4所示,长为L的船静止在平静的水面上,

立于船头的人质量为m,船的质量为M,不计水的阻力,

人从船头走到船尾的过程中,问:船的位移为多大?

解析:取人和船整体作为研究系统,人在走动过程中,

系统所受合外力为零,可知系统动量守恒.设人在走动过

程中的△t时间内为匀速运动,则可计算出船的位移.

设v1、v2分别是人和船在任何一时刻的速率,则有

①两边同时乘以一个极短的时间△t,有②

由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为,

由此将②式化为③

把所有的元位移分别相加有④

即 ms1=Ms2⑤此式即为质心不变原理. 其中s1、s2分别为全过程中人和船对地位移的大小,又因为 L=s1+s2⑥

由⑤、⑥两式得船的位移

例5:半径为R的光滑球固定在水平桌面上,有一质量

为M的圆环状均匀弹性绳圈,原长为πR,且弹性绳圈

的劲度系数为k,将弹性绳圈从球的正上方轻放到球上,

使弹性绳圈水平停留在平衡位置上,如图3—5所示,若

平衡时弹性绳圈长为,求弹性绳圈的劲度系数k.

解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈

不能看成质点,所以应将弹性绳圈分割成许多小段,其中

每一小段△m两端受的拉力就是弹性绳圈内部的弹力F.在

弹性绳圈上任取一小段质量为△m作为研究对象,进行受力分析.但是△m受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙.

先看俯视图3—5—甲,设在弹性绳圈的平面上,△m所对的圆心角是

△θ,则每一小段的质量△m在该平面上受拉力F的作用,合力为

因为当θ很小时,所以

再看正视图3—5—乙,△m受重力△mg,支持力N,

二力的合力与T平衡.即

现在弹性绳圈的半径为

所以

因此T= ①、②联立,,

解得弹性绳圈的张力为:

设弹性绳圈的伸长量为x则

所以绳圈的劲度系数为:

例6:一质量为M、均匀分布的圆环,其半径为r,几何轴与水平面垂直,若它能经受的最大张力为T,求此圆环可以绕几何轴旋转的最大角速度.

解析:因为向心力F=mrω2,当ω一定时,r越大,向心力越大,所以要想求最大张力T所对应的角速度ω,r应取最大值.

如图3—6所示,在圆环上取一小段△L,对应的圆心角

为△θ,其质量可表示为,受圆环对它的张

力为T,则同上例分析可得

因为△θ很小,所以,即

解得最大角速度

例7:一根质量为M,长度为L的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x时,链条对地面的压力为多大?

解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.

设开始下落的时刻t=0,在t时刻落在地面上的链条长为x,未到达地面部分链条的速度为v,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t时刻起取很小一段时间△t,在△t内又有

△M=ρ△x落到地面上静止.地面对△M作用的冲量为

因为

所以解得冲力:

,其中就是t时刻链条的速度v,

故链条在t时刻的速度v即为链条下落

长为x时的即时速度,即v2=2g x,代入F的表达式中,得

此即t时刻链对地面的作用力,也就是t时刻链条对地面的冲力.

所以在t时刻链条对地面的总压力为

例8:一根均匀柔软的绳长为L,质量为m,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大?

解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,

由此可用微元法求解.如图3—8所示,当左边绳端离钉子

的距离为x时,左边绳长为,速度,

右边绳长为又经过一段很短的时间△t以后,

左边绳子又有长度的一小段转移到右边去了,我们就分

析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉

力T和它本身的重力为绳子的线密度),

根据动量定理,设向上方向为正

由于△t取得很小,因此这一小段绳子的重力相对于T来说是很小的,可以忽略,

所以有因此钉子对右边绳端的作用力为

例9:图3—9中,半径为R的圆盘固定不可转动,细绳不可伸长

但质量可忽略,绳下悬挂的两物体质量分别为M、m.设圆盘与

绳间光滑接触,试求盘对绳的法向支持力线密度.

解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位

长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,

其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,

故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求

解.在与圆盘接触的半圆形中取一小段绳元△L,△L所对应的

圆心角为△θ,如图3—9—甲所示,绳元△L两端的张力均为T,

绳元所受圆盘法向支持力为△N,因细绳质量可忽略,法向合力为

零,则由平衡条件得:

当△θ很小时,∴△N=T△θ

又因为△L=R△θ

则绳所受法向支持力线密度为①

以M、m分别为研究对象,根据牛顿定律有 Mg-T=Ma ②

T-mg=m a③由②、③解得:

将④式代入①式得:

例10:粗细均匀质量分布也均匀的半径为分别为R和r的两圆环相切.若在切点放一质点m,恰使两边圆环对m的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?

解析:若要直接求整个圆对质点m的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m的相互作用,然后推及整个圆环即可求解.

如图3—10所示,过切点作直线交大小圆分别于P、Q两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元

其对应的质量分别为

由于△α很小,

故△m1、△m2与m的距离可以认为分别是

所以△m1、△m2与m的万有引力分别为

由于α具有任意性,若△F1与△F2的合力为零,

则两圆环对m的引力的合力也为零,即

解得大小圆环的线密度之比为:

例11:一枚质量为M的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v,那么火箭发动机的功率是多少?

解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.

选取在△t时间内喷出的气体为研究对象,设火箭推气体的力为F,根据动量定理,有

F△t=△m·v因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg

即 Mg·△t=△m·v△t=△m·v/Mg

对同样这一部分气体用动能定理,火箭对它做的功为:

所以发动机的功率

例12:如图3—11所示,小环O和O′分别套在不动的竖直

杆AB和A′B′上,一根不可伸长的绳子穿过环O′,绳的

两端分别系在A′点和O环上,设环O′以恒定速度v向下

运动,求当∠AOO′=α时,环O的速度.

解析:O、O′之间的速度关系与O、O′的位置有关,即与α

角有关,因此要用微元法找它们之间的速度关系.

设经历一段极短时间△t,O′环移到C′,O环移到C,自C′

与C分别作为O′O的垂线C′D′和CD,从图中看出.

因此OC+O′C′= ①

因△α极小,所以EC′≈ED′,EC≈ED,

从而OD+O′D′≈OO′-CC′ ②

由于绳子总长度不变,故 OO′-CC′=O′C′ ③

由以上三式可得:OC+O′C′= 即

等式两边同除以△t得环O的速度为

例13:在水平位置的洁净的平玻璃板上倒一些水银,由于重力和

表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆

饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的

接触角可按180°计算.已知水银密度,水

银的表面张力系数当圆饼的半径很大时,试估算其厚度h的数值大约为多少?(取1位有效数字即可)

解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h的简单函数,而且支持力N和重力mg

都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.

在圆饼的侧面取一个宽度为△x,高为h的体积元,,如图

3—12—甲所示,该体积元受重力G、液体内部作用在面

积△x·h上的压力F,,

还有上表面分界线上的张力F1=σ△x和下表面分界线上的

张力F2=σ△x.作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲

分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出.

由力的平衡条件有:

解得:

由于故2.7×10-3m

题目要求只取1位有效数字,所以水银层厚度h的估算值为3×10-3m或4×10-3m.

例14:把一个容器内的空气抽出一些,压强降为p,容器

上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示.

问空气最初以多大初速度冲进容器?(外界空气压强为p0、

密度为ρ)

解析:该题由于不知开始时进入容器内分有多少,不知它

们在容器外如何分布,也不知空气分子进入容器后压强如

何变化,使我们难以找到解题途径.注意到题目中“最初”

二字,可以这样考虑:设小孔的面积为S,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L,因△L很小,所以其质量△m进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.

由以上分析,得:F=(p0-p)S ①对进入的△m气体,

由动能定理得:②而△m=ρS△L

联立①、②、③式可得:最初中进容器的空气速度

例15:电量Q均匀分布在半径为R的圆环上(如图3—14

所示),求在圆环轴线上距圆心O点为x处的P点的电场

强度.

解析:带电圆环产生的电场不能看做点电荷产生的电场,

故采用微元法,用点电荷形成的电场结合对称性求解.

选电荷元它在P点产生的电场的场强的x分量为:

根据对称性

由此可见,此带电圆环在轴线P点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P点产生的场强大小,方向是沿轴线的方向.

例16:如图3—15所示,一质量均匀分布的细圆环,

其半径为R,质量为m.令此环均匀带正电,总电

量为Q.现将此环平放在绝缘的光滑水平桌面上,并

处于磁感应强度为B的均匀磁场中,磁场方向竖直向下.

当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向

旋转时,环中的张力等于多少?(设圆环的带电量不减

少,不考虑环上电荷之间的作用)

解析:当环静止时,因环上没有电流,在磁场中不受力,则

环中也就没有因磁场力引起的张力.当环匀速转动时,环上电

荷也随环一起转动,形成电流,电流在磁场中受力导致环中存

在张力,显然此张力一定与电流在磁场中受到的安培力有关.

由题意可知环上各点所受安培力方向均不同,张力方向也不同,

因而只能在环上取一小段作为研究对象,从而求出环中张力的

大小.

在圆环上取△L=R△θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流,电流元I△L所受的安培力

因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,

当△θ很小时,

解得圆环中张力为

例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量

为m的金属杆,导轨间距为L,导轨的一端连接一阻值为R的电

阻,其他电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面.

现给金属杆一个水平向右的初速度v0,然后任其运动,导轨足够

长,试求金属杆在导轨上向右移动的最大距离是多少?

解析:水平地从a向b看,杆在运动过程中的受力分析

如图3—16—甲所示,这是一个典型的在变力作用下求位

移的题,用我们已学过的知识好像无法解决,其实只要

采用的方法得当仍然可以求解.

设杆在减速中的某一时刻速度为v,取一极短时间△t,发

生了一段极小的位移△x,在△t时间内,磁通量的变化为

△φ △φ=BL△x

金属杆受到安培力为

由于时间极短,可以认为F安为恒力,选向右为正方向,在△t时间内,安培力F安的冲量为:

对所有的位移求和,可得安培力的总冲量为

①其中x为杆运动的最大距离,

对金属杆用动量定理可得 I=0-mV0②

由①、②两式得:

例18:如图3—17所示,电源的电动热为E,电容器的

电容为C,S是单刀双掷开关,MN、PQ是两根位于同

一水平面上的平行光滑长导轨,它们的电阻可以忽略不计,

两导轨间距为L,导轨处在磁感应强度为B的均匀磁场

中,磁场方向垂直于两导轨所在的平面并指向图中纸面

向里的方向.L1和L2是两根横放在导轨上的导体小棒,

质量分别为m1和m2,且.它们在导轨上滑动

时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻

相同,开始时两根小棒均静止在导轨上.现将开关S先合向

1,然后合向2.求:

(1)两根小棒最终速度的大小;

(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计)

解析:当开关S先合上1时,电源给电容器充电,当开关S再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.

(1)设两小棒最终的速度的大小为v,则分别为L1、L2为研究对象得:①同理得:②

由①、②得:

又因为

所以

而Q=CE q=CU′=CBL v

所以解得小棒的最终速度

(2)因为总能量守恒,所以

即产生的热量

针对训练

1.某地强风的风速为v,设空气的密度为ρ,如果将通过横截面积为S的风的动能全部转化为电能,则其电功率为多少?

2.如图3—19所示,山高为H,山顶A和水平面上B点的水平距离为s.现在修一条冰道ACB,其中AC为斜面,冰道光滑,

物体从A点由静止释放,用最短时间经C到B,不计过C点

的能量损失.问AC和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C端以速度v匀速收绳从而拉动低处的物体M水平前进,当绳AO段也水平恰成α角时,物体M的速度多大?

4,如图3—22所示,质量相等的两个小球A和B通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C球的两绳的夹角为θ,设A、B两球此时下落的速度为v,则C球上升的速度多大?

5.质量为M的平板小车在光滑的水平面上以v0向左匀速运动,一质量为m的小球从高h处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m,碰撞弹力N>>g,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是()

A. B.0 C. D.v0

6.半径为R的刚性球固定在水平桌面上.有一质量为M的圆环状均匀弹性细绳圈,原长

2πa,a=R/2,绳圈的弹性系数为k(绳伸长s时,绳中弹性张力为ks).将绳圈从球的正

上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个

静力平衡位置.考

虑重力,忽略摩擦.

(1)设平衡时弹性绳圈长2πb,b=,求弹性系数k;(用M、R、g表示,g为重力加速度)

(2)设k=Mg/2π2R,求绳圈的最后平衡位置及长度.

7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,

在环内的环底A处有一质量为m、直径比管径略小的小球,

小球上连有一根穿过环顶B处管口的轻绳,在外力F作用

下小球以恒定速度v沿管壁做半径为R的匀速圆周运动,

如图3—23所示.已知小球与管内壁中位于大环外侧

部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑

的.忽略大环内、外侧半径的差别,认为均为R.试求小

球从A点运动到B点过程中F做的功W F.

8.如图3—24,来自质子源的质子(初速度为零),经一

加速电压为800kV的直线加速器加速,形成电流为1.0mA

的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子

流每秒打到靶上的质子数为 .假设分布在质子源

到靶之间的加速电场是均匀的,在质子束中与质子源相距l

和4l的两处,各取一段极短的相等长度的质子流,其中质

子数分别为n1和n2,则n1: n2 .

9.如图3—25所示,电量Q均匀分布在一个半径为R的

细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.

10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.

11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN垂直于这

两直导线,如图所示.LN的长度为2R.试求在LN的

中点O处的电场强度.

12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.

该点与直导线间垂直距离为r.

13.如图3—29所示,半径为R的均匀带电半球面,电

荷面密度为δ,求球心O处的电场强度.

14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长

为a(a

磁场边界滑过磁场后,速度变为v(v

(1)线框在这过程中产生的热量Q;

(2)线框完全进入磁场后的速度v′.

15.如图3—31所示,在离水平地面h高的平台上有一相距L的光滑轨道,左端接有已充电的电容器,电容为C,充电后两端电压为U1.轨道平面处于垂直向上的磁感应

强度为B的匀强磁场中.在轨道右端放一质量为m的金

属棒,当闭合S,棒离开轨道后电容器的两极电压变为U2,求棒落在离平台多远的位置.

16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B,一光滑导轨竖直放置,导轨上接有一电容为C的电

容器,并套一可自由滑动的金属棒,质量为m,释放后,求金属棒的加速度a.

答案:

1. 2.θ=60° 3. 4. 5.CD

6.(1)(2)绳圈掉地上,长度为原长 7.

8.6.25×1015,2:1 9. 10. 11. 12.

13. 14. 15. 16.

高考物理图示法图像法解决物理试题解题技巧及练习题

高考物理图示法图像法解决物理试题解题技巧及练习题 一、图示法图像法解决物理试题 1.甲乙两图中,某时刻绳子AB 与水平方向的夹角均为θ,绳子上端以速度v 0匀速拉动,在两车运动过程中,下列说法正确的是( ) A .甲、乙两车运动速度大小之比cos 1cos θ θ + B .甲车运动速度大小为 cos v θ C .相同时间t ?内乙车速度增量大于甲车速度增量 D .此刻若将速度v 0改成拉力F ,则两车加速度大小之比1:1 【答案】AC 【解析】 【详解】 ABC .由甲图可知,甲车的速度 11cos v v θ = + 乙车的速度 2cos v v θ = 所以,甲、乙两车运动速度大小之比cos 11cos θ θ <+,相同时间t ?内乙车速度增量大于甲车 速度增量.故AC 正确,B 错误; D .改成拉力F ,甲车所绳子合力沿两绳子夹角的角平分线上,汽车甲的合力大小为 22cos 2 F θ ,汽车乙的合力大小为cos F θ,因此合力不相等,加速度不相等,故D 错误. 2.如图所示,将一劲度系数为k 的轻弹簧一端固定在内壁光滑的半球形容器底部O ′处(O 为球心),弹簧另一端与质量为m 的小球相连,小球静止于P 点。已知容器半径为R ,与水平面间的动摩擦因数为μ,OP 与水平方向的夹角为θ=30°。下列说法正确的是 A .容器相对于水平面有向左运动的趋势

B.轻弹簧对小球的作用力大小为 mg C.容器对小球的作用力竖直向上 D.弹簧原长为R+ 【答案】BD 【解析】 【分析】 对容器和小球整体研究,分析受力可求得半球形容器受到的摩擦力.对小球进行受力分析可知,小球受重力、支持力及弹簧的弹力而处于静止,由共点力的平衡条件可求得小球受到的轻弹簧的弹力及小球受到的支持力,由胡克定律求出弹簧的压缩量,即可求得原长.【详解】 由于容器和小球组成的系统处于平衡状态,容器相对于水平面没有向左运动的趋势,故A 错误;容器对小球的作用力是弹力,指向球心O,故B正确;对小球受力分析,如图所示 由可知,支持力和弹簧的弹力之间的夹角为120°,则由几何关系可知,小球受到容器的支持力和弹簧对小球的弹力大小均为mg,故C错误;图中弹簧长度为R,压缩量 为,故原长为,故D正确。故选BD。 【点睛】 本题考查共点力的平衡条件应用,要注意明确共点力平衡问题重点在于正确选择研究对象,本题运用隔离法和整体法两种方法进行受力分析得出结论.同时注意几何关系的正确应用. 3.一快艇从离岸边100m远的河流中央向岸边行驶.已知快艇在静水中的速度图象如(图甲)所示;河中各处水流速度相同,且速度图象如(图乙)所示.则() A.快艇的运动轨迹一定为直线 B.快艇的运动轨迹一定为曲线 C.快艇最快到达岸边,所用的时间为20s D.快艇最快到达岸边,经过的位移为100m 【答案】BC 【解析】

高考物理微元法解决物理试题及其解题技巧及练习题

高考物理微元法解决物理试题及其解题技巧及练习题 一、微元法解决物理试题 1.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( ) A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=1 2 ρsv2 【答案】B 【解析】 【分析】 【详解】 设t时间内吹到建筑物上的空气质量为m,则有: m=ρsvt 根据动量定理有: -Ft=0-mv=0-ρsv2t 得: F=ρsv2 A.F =ρsv,与结论不相符,选项A错误; B.F =ρsv2,与结论相符,选项B正确; C.F =ρsv3,与结论不相符,选项C错误; D.F=1 2 ρsv2,与结论不相符,选项D错误; 故选B。 2.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm。查询得知,当时雨滴竖直下落速度约为12m/s。据此估算该压强约为()(设雨滴撞击唾莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3) A.0.15Pa B.0.54Pa C.1.5Pa D.5.1Pa 【答案】A 【解析】 【分析】 【详解】 由于是估算压强,所以不计雨滴的重力。设雨滴受到支持面的平均作用力为F。设在△t时间内有质量为△m的雨水的速度由v=12m/s减为零。以向上为正方向,对这部分雨水应用动量定理有 () F t mv mv ?=--?=?

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

高中物理解题技巧:图像法2

高物理解题技巧:图像法2 图象法能简明形象地反映某物理量随另一物理量变化的规律,故图象法在物理有广泛的应用,在定性或定量讨论分析某些物理问题时,应用图象比例解析方程求解,会容易、简明得多 不论是解图象问题或利用图象求解物理问题,都要求: 1 认识坐标轴的意义(包括其正、负号的意义),这是认识图象的开始,是区别图象性质的关键 2 会写图象所表示的函数(如:正比例函数、一次函数、二次函数等),会画已知函数的图象,这是解答图象问题或利用图象求解物理问题的关键 3 清楚图象斜率的意义 4 知道图象在坐标轴上截距的意义 5 理解图线下所围“面积”的意义 全面理解物理图象的意义,熟练应用图象处理物理问题,是同们应该掌握的一个基本技能 一、利用图象解题 例1 某物体从静止开始匀加速直线运动,一段时间后做匀速直线运动直至停止,已知物体共用时间10s,总位移为20m,求物体在运动过程的最大速度 解析:作物体运动的图象,如图1所示,根据图线下所围“面积”表示 位移,可得

图1 即 点评:本题还可以运用求解,若引入加速度分析求解会更麻烦, 借助图象,使物体运动过程更形象、直观地表现了,简捷明快,有着曲径通幽之妙 二、利用图象解题 例2 质量为2g的物体在恒力F作用下,从静止开始运动,已知物体所受恒力F与 位移s的关系是,那么,当位移为2m时,物体的速度多大? 解析:作物体的图象,如图2所示,根据图线下所围“面积”表示F做的功, 可知 由动能定理得 图2 点评:本题物体受力及运动加速度都是变化的,可以利用平均力计算F的功,也可以利用平均加速度求解,但显然没有利用图象求解得直接、直观 三、利用图象解题

(完整)高中物理解题(微元法)

高中奥林匹克物理竞赛解题方法 微元法 方法简介 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 赛题精讲 例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。 解析:该题不能用速度分解求解,考虑采用“微元法”。 设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?' →?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶 端C 点做匀速直线运动. 例2:如图3—2所示,一个半径为R 的四分之一光滑球 面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不能 忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=?

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高考物理万能答题模板汇总

2019高考物理万能答题模板汇总 高考物理万能答题模板(一) 题型1〓直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2〓物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 题型3〓运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 题型4〓抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足 vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解. 题型5〓圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

最新高中物理模型解题法的构建

浅谈高中物理的模型构建 思维定势是人们在思维活动中所倾向的特定的思维模式。它是指人们按照某种固定的思路和模式去考虑问题,表现为思维的倾向性和专注性。它有消极的一面,消极的思维定势是指人将头脑中已有的、习惯了的思维模式生搬硬套到新的物理情景中去,不善于变换认识的角度和改变解决问题的方式。但是它也有积极的一面,积极的思维定势有利于物理概念的形成和对物理规律的理解。构建物理模型一定程度上可以说是利用了思维定势积极的一面。 物理学科的研究对象是自然界物质的结构和最普遍的运动形式,对于那些纷繁复杂事物的研究,首先就需要抓住其主要的特征,而舍去那些次要的因素,形成一种经过抽象概括了的理想化的“模型”,这种以模型概括复杂事物的方法,是对复杂事物的合理的简化。如运动员的跳水问题是一个“竖直上抛”运动的物理模型;人体心脏收缩使血液在血管中流动可简化为一个“做功”的模型等等。物理模型是同类通性问题的本质体现和核心归整。 高中物理模型可以分为三类,即实物模型、过程模型、试题模型。接下来分别详细阐述: 一、实体模型 它是用来代替由具体物质组成的,代表研究对象的实体系统。这一类模型在中学物理中最为常见,如力学中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子;热学中有弹性球分子模型、理想气体、黑体;电学中有点电荷、试验电荷、理想导体、绝缘体、理想电表、纯电阻、无限长螺线管;光学中的薄透镜、光的波粒二象性模型、原子物理中原子的核式结构模型等。 这种模型教材中较常见,是研究问题时,抓住事物的主要因素,忽略次要因素建立起来的实物模型,对理解的概念起着不可估量的作用。 例1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有:()

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理解题方法---微元法

高中物理解题方法----微元法 一、什么是微元法: 在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。 二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。所以,微元法又叫小量分析法,它是微积分的理论基础。 三、微元法解题思想: 在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。 微元法的灵魂是无限分割与逼近。用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。 例1、如图所示,岸高为h ,人用不可伸长的绳经滑轮拉船靠岸,若当绳与水平方向为θ时,人收绳速率为υ,则该位置船的速率为多大? 例2、如图所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大? 例3、如图所示,半径为R ,质量为m 的匀质细圆环,置于光滑水平面上,若圆环以角 速度ω绕环心O 转动,试证明:(1)圆环的张力π ω22R m T = (2)圆环的动能2)(2 1 R m E k ω= 例4、一根质量为M ,长度为L 的匀质铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图所示,求链条下落了长度x 时,链条对地面的压力为多大? 例5、如图所示,半径为R 的半圆形绝缘细线上、下1/4圆弧上分别均匀带电+q 和-q ,求圆心处的场强. 例6、如图所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置. 例7、(1)试证明:质量为M 的匀质球壳,对放置在空腔内任意一点的质量为m 的质点的万有引力为零。 (2)若将上述质点移至球壳外距球心O 距离为r 处,求此时系统具有的引力势能为多少?规定∞→r 时,系统引力势能为零

高中物理解题常用的几种思维方法

高中物理解题常用的几种思维方法 北京二中通州分校:高中物理组 2012年4月 中学物理解题中涉及到科学思维方法大体上两类, 一类是物理学的研究方法—— 理想化的方法: 数学推理方法:函数、函数图象、极限 替代方法:、 近似替代(平均值)、极限替代 比值定义法 图象法: 实验验证法 实验分析法 平行四边形法等效替代法 假设法 反推法 理想实验法--“物理学中的福尔摩斯” 控制变量法 变量转换法(a-1/m) 整体法 隔离法 正交分解法 三力平衡三角形法 相似形法 (力的矢量图与几何图形)等 一类是解题方法 ------ 就解题方法而论,解题方法和解题技巧也很多,这里将高中物理解题中经常要用到的 几种科学思维方法作一些介绍。 1、物理模型法 物理模型法是只考虑对实际物理现象来说是主要的、本质的因素,忽略次要的、非本质 的因素的一种思维方法。是利用物理模型,实现高效解题的策略。 例1:某校物理兴趣小组决定举行遥控赛车比 赛。比赛路径如图所示,赛车从起点A 出发,沿水 平直线轨道运动L 后,由B 点进入半径为R 的光滑 竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨 道上运动到C 点,并能越过壕沟。已知赛车质量 m =0.1kg ,通电后以额定功率P =1.5w 工作,进入竖 直轨道前受到阻力恒为0.3N ,随后在运动中受到的 阻力均可不计。图中L =10.00m ,R =0.32m ,h =1.25m ,S =1.50m 。问:要使赛车完成比赛,电 动机至少工作多长时间?(取g=10m/s 2 ) 解析:设赛车越过壕沟需要的最小速度为1v ,由平抛运动的规律 1S v t = 2 12h gt = 解得 1v =3/2g S m s h = 设赛车恰好越过圆轨道,对应圆轨道最高点的速度为2v ,最低点的速度为3v ,由牛顿 运动定律及机械能守恒定律得 22v mg m R = 223211(2)22mv mv mg R =+ 解得 354/v gR m s == 通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是

高中物理图像法解决物理试题解题技巧(超强)及练习题

高中物理图像法解决物理试题解题技巧(超强)及练习题 一、图像法解决物理试题 1.如图所示,分别为汽车甲的位移-时间图象和汽车乙的速度-时间图象,则( ) A .甲的加速度大小为25/m s B .乙的加速度大小为25/m s C .甲在4s 内的位移大小为40 m D .乙在4 s 内的位移大小为20 m 【答案】B 【解析】 A 、在x t -图象中,斜率表示速度,由图象可知:甲做匀速直线运动,加速度为0,故A 错误; B 、在速度-时间图象中,斜率表示加速度,乙的加速度大小为 a 2220/5/4 v a m s m s t = ==,故B 正确; C 、甲在4s 内的位移大小为20020x m m =-=,故C 错误; D 、由v t -图象与时间轴围成的面积表示位移可知:乙在4s 内的位移大小为 204 402 x m m ?= =,故D 错误. 点睛:本题的关键要明确x t -图象与v t -图象的区别,知道v-t 图象的斜率表示加速度, x t -图象的斜率表示速度,两种图象不能混淆. 2.一质点t =0时刻从原点开始沿x 轴正方向做直线运动,其运动的v -t 图象如图所示.下列说法正确的是( ) A .t =4s 时,质点在x =1m 处 B .t =3s 时,质点运动方向改变 C .第3s 内和第4s 内,合力对质点做的功相同 D .0~2s 内和0~4s 内,质点的平均速度相同 【答案】B

【解析】 【详解】 A 、0?4s 内质点的位移等于0?2s 的位移,为12 2m 3m 2 x += ?=,0t =时质点位于0x =处,则4s t =时,质点在3m x =处,故选项A 错误; B 、在2s-3s 内速度图象都在时间轴的上方,在3s-4s 内速度图象都在时间轴的下方,所以 3s t =时,质点运动方向改变,故选项B 正确; C 、第3s 内质点的速度减小,动能减小,合力做负功;第4s 内速度增大,动能增加,合力做正功,由动能定理知第3s 内和第4s 内,合力对质点做的功不等,故选项C 错误; D 、根据图象与坐标轴围成的面积表示位移,在时间轴上方的位移为正,下方的面积表示位移为负,则知0~2s 内和0~4s 内,质点的位移相同,但所用时间不同,则平均速度不同,故选项D 错误。 3.两个质点A 、B 放在同一水平面上,从同一位置沿相同方向做直线运动,其运动的v-t 图象如图所示.对A 、B 运动情况的分析,下列结论正确的是 A .在6s 末,质点A 的加速度大于质点 B 的加速度 B .在0-12s 时间内,质点A 的平均速度为 7 6 ms C .质点A 在0-9s 时间内的位移大小等于质点B 在0-3s 时间内的位移大小 D .在12s 末,A 、B 两质点相遇 【答案】A 【解析】 【详解】 A 、根据v-t 图象中图线的斜率表示加速度,斜率绝对值越大,加速度越大,可知质点A 在 6 s 末的加速度是 13 m/s 2,质点B 在6 s 时末的加速度是2431 a /1239B m s -= =-,所以A 的加速度较大,故A 正确; B 、在0~12s 时间内,质点A 的位移为1614 310.522 x m m m ?+= +?=,平均速度为10.57 //128 x v m s m s t = ==,故B 错误; C 、质点A 在0-9s 时间内的位移大小16 32 A x m m ?= =,质点B 在0-3s 时间内的位移

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

(完整word版)高中物理解题方法:图解法

高中物理解题方法:图解法 2012-8-17 图解法,也叫图形法,是一种利用几何的方法解决物理问题的一种方法。解答共点力的平衡问题,动态平衡问题,常用图解法。基本法则有平行四边形法则,矢量三角形法则等,图解法的优点是简捷,方便,直观。可以化繁为简,化难为易,提高解题的效率。 【例题1】 (2012全国新课标).如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大 [答案]B 与N2的合力为定值,与重力反向等大。作图。由图形可 知,当板缓慢转动中,N1与N2的方向便发生如图示变 化,但合力不变,可得答案B 。 【点评】:该题为动态平衡问题,在挡板夹角连续变化中,重力始终保持不变,根据共点力平衡的条件,做出力的平行四边形,可以直观看出合力不变,但水平方向的支持力N1连续减小,挡板的支持力也N2始终减小。 【例题2】如图2所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向夹30°角且绷紧,小球A 处于静止,对小球施加的最小的力是 ( C ) A.mg 3 B.mg 23 C.mg 2 1- D.mg 33 【解析】:将mg 在沿绳方向与垂直于绳方向分解,如图所示. 所以施加的力与F1等大反向即可使小球静止,故 mg mg F 2 130sin 0min = =,故选C. 答案:C

高考物理图示法图像法解决物理试题解题技巧及练习题含解析

高考物理图示法图像法解决物理试题解题技巧及练习题含解析 一、图示法图像法解决物理试题 1.如图所示,质量相同的小球A 、B 通过质量不计的细杆相连接,紧靠竖直墙壁放置。由于轻微扰动,小球A 、B 分别沿水平地面和竖直墙面滑动,滑动过程中小球和杆始终在同一竖直平面内,当细杆与水平方向成37°角时,小球B 的速度大小为v ,重力加速度为g ,忽略一切摩擦和阻力,sin37°=0.6,cos37°=0.8。则 A .小球A 的速度为 34 v B .小球A 的速度为 43 v C .细杆的长度为2 12564v g D .细杆的长度为2 12536v g 【答案】AC 【解析】 【详解】 小球B 的速度为v 时,设小球A 的速度大小为v ',则有5337vcos v cos ?='?,解得: 3 4 v v '= ,A 正确,B 错误;两球下滑过程中系统的机械能守恒,即:()22 111sin 3722 mgL mv mv '-=+o ,解得:212564v L g =,C 正确,D 错误。 2.如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是 A .小环刚释放时轻绳中的张力一定大于2mg B .小环到达B 处时,重物上升的高度也为d

C .小环在B 处的速度与重物上升的速度大小之比等于 D .小环在B 处的速度与重物上升的速度大小之比等于 【答案】AC 【解析】 【分析】 【详解】 由题意,释放时小环向下加速运动,则重物将加速上升,对重物由牛顿第二定律可知绳中张力一定大于重力2mg ,所以A 正确;小环到达B 处时,重物上升的高度应为绳子缩短的长度,即2h d d ?= -,所以B 错误;根据题意,沿绳子方向的速度大小相等,将小环A 速度沿绳子方向与垂直于绳子方向正交分解应满足: A B v cos v θ=,即1 2A B v v cos θ ==,所以C 正确,D 错误. 【点睛】 应明确:①对与绳子牵连有关的问题,物体上的高度应等于绳子缩短的长度;②物体的实际速度即为合速度,应将物体速度沿绳子和垂直于绳子的方向正交分解,然后列出沿绳子方向速度相等的表达式即可求解. 3.如图所示,水平光滑长杆上套有一物块Q ,跨过悬挂于O 点的轻小光滑圆环的细线一端连接Q ,另一端悬挂一物块P .设细线的左边部分与水平方向的夹角为θ,初始时θ很小.现将P 、Q 由静止同时释放.关于P 、Q 以后的运动下列说法正确的是 A .当θ =60o时,P 、Q 的速度之比1:2 B .当θ =90o时,Q 的速度最大 C .当θ =90o时,Q 的速度为零 D .当θ向90o增大的过程中Q 的合力一直增大 【答案】AB 【解析】 【分析】 【详解】 A 、则Q 物块沿水平杆的速度为合速度对其按沿绳方向和垂直绳方向分解,P 、Q 用同一根绳连接,则Q 沿绳子方向的速度与P 的速度相等,则当θ =60°时,Q 的速度

微元法在高中物理中的应用

微元法在高中物理中的应用 江苏省靖江市斜桥中学夏桂钱 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。 一、挖掘教材中微元素材,认知微元思想 微元法思想在新课标教材(人教版)上时有渗透。如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t时刻的瞬时速度。正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。 必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。这两个功的计算,前者的难点在于物体运动的路径是曲线,后者的难点在于力的大小在变化。教材中的处理方法是前者采用了“化曲为直”的思想,后者采用了“化变为恒”的思想。

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

相关主题
文本预览
相关文档 最新文档