当前位置:文档之家› 构造全等三角形之截长补短法

构造全等三角形之截长补短法

构造全等三角形之截长补短法
构造全等三角形之截长补短法

构造全等三角形之截长补短

全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短与倍长中线 一.填空题(共1小题) 1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC 交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.二.解答题(共10小题) 2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD. 3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN 经过点C,且AD⊥MN于点D,BE⊥MN于点E. (1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE; (2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE; (3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明. 5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由. 6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论. 7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明. 8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N. (1)求证:DM=MN; (2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论. 9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE. 10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.

构造全等三角形种常用方法

名师堂 校区地址: 南充 市顺庆区吉隆街 咨询电话: 2244028优学小班——提分更快、针对更强、时效更高 构造全等三角形种常用方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS ”,“SAS ”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角的另一组对应边用“SAS ”;若是判定两个直角三角形全等则优先考虑“HL ”。上述可归纳为: () ()() ()S SSS S A SAS S S SAS A A AAS ASA ??? ????????? ?用用用用或 搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法 例1.如图(1)已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . 解法(一)(补短法或补全法)延长AB 至F 使AF=AC , 由已知△AEF ≌△AEC ,∴∠F=∠ACE=45o, ∴BF=BE ,∴AB+BE=AB+BF=AF=AC . 解法(二)(截长法或分割法)在AC 上截取AG=AB ,由已知 △ ABE ≌△AGE ,∴EG=BE, ∠AGE=∠ABE,∵∠ACE=45o, ∴CG=EG, ∴AB+BE=AG+CG=AC . 2.平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ . 证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC =180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP , ∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB , ∴BD=OD ,∴AB+BP=AD+DB+BP =AQ+OQ+BO=AQ+BQ . A B C P Q D O D

初中数学全等三角形截长补短

全等三角形——截长补短法 一、知识梳理: 截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长法: (1)过某一点作长边的垂线 (2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。…… 二、典型例题: 例1、如图,在ABC ?中,60BAC ∠=?,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数. 及时练习: 如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD . 例2、已知ABC ?中,60A ∠ =,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. D O E C B A

M D C B A P C B A 及时练习: 如图,已知在ABC 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM . 求证:AE =BC +CE . 及时练习: 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C . 2 k h + D . h 例4、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O . 求证:OA 平分DOE ∠.

a全等三角形之手拉手模型倍长中线截长补短法

手拉手模型 要点一:手拉手模型 特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点 结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA平分∠BOC 变形: 例1.如图在直线ABC的同一侧作两个等边三角形ABD ?,连结AE与CD,?与BCE 证明 (1)DBC ? ? ABE? (2)AE与DC之间的夹角为? 60 (3)BH平分AHC ∠ 变式精练1:如图两个等边三角形ABD ?,连结 ?与BCE AE与CD, 证明(1)DBC ? ABE? ? (2)AE与DC之间的夹角为? 60

(3)AE 与DC 的交点设为H ,BH 平分AHC ∠ 变式精练2:如图两个等边三角形ABD ?与BCE ?,连结AE 与CD , 证明(1)DBC ABE ??? (2)AE 与DC 之间的夹角为?60 (3)AE 与DC 的交点设为H ,BH 平分AHC ∠ 例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ???是否成立 (2)AG 是否与CE 相等 (3)AG 与CE 之间的夹角为多少度 (4)HD 是否平分AHE ∠ 例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ???是否成立 (2)AG 是否与CE 相等 (3)AG 与CE 之间的夹角为多少度 (4)HD 是否平分AHE ∠ 例4:两个等腰三角形ABD ?与BCE ?,其中 BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,

全等三角形作辅助线专题一重点截长补短法可

D C B A E D F C B A 全等三角形作辅助线经典例题 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全 等变换中的“旋转”. 3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中 的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻 转折叠”;(遇垂线及角平分线时延长垂线段,构造等腰三角形) 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是 之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 1:已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 3:如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. E D C B A 中考应用: 以ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=? 连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当ABC ?为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)

全等三角形截长补短拔高练习(含答案)

八年级数学全等三角形辅助线添加之截长补短 (全等三角形)拔高练习 试卷简介:本讲测试题共两个大题,第一题是证明题,共7个小题,每小题10分;第二题解答题,2个小题,每小题15分。 学习建议:本讲内容是三角形全等的判定——辅助线添加之截长补短,其中通过截长补短来添加辅助线是重点,也是难点。希望同学们能学会熟练通过截长补短来做辅助线,进而构造出全等的三角形。 一、解答题(共1道,每道20分) 1.如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且AE=(AD+AB).问:∠1和∠2有何关系? 答案: 解:∠1+∠2=180° 证明:过点C作CF⊥AN于点F,由于AC平分∠NAM,所以CF=CE,则在Rt△ACF和Rt△ACE 中 ∴△ACF≌△ACE(HL),∴AF=AE,由于2AE=AD+AB,所以AB-AE=AF-AD ∴DF=BE,在△CFD和△CEB中所以△CFD≌△CEB(SAS),∴∠2=∠FDC,又∠1+∠FDC=180°,∴∠1+∠2=180°。 解题思路:见到角平分线就要想到作垂直,找到全等关系是解决此类问题的关键 易错点:找到三角形全等的所有条件

试题难度:四颗星知识点:三角形 二、证明题(共8道,每道10分) 1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD. 答案: 延长CE交BA的延长线于点H,由BE平分ABC,BE CE,得CE=EH=CH。 又1+H=90°,,2+H=90° 1= 2 在△ACH和△ABD中 HAC=DAB=90° AC=AB 1= 2 △ACH≌△ABD(ASA) CH=BD CE=CH=BD 解题思路: 根据题意,要证明CE=BD,延长CE与BA,由题意的垂直平分线可得CE的两倍长CH,只需证明CH=BD即可,很显然有全等可以证明出结论 易错点:不能正确利用题中已知条件BF平分∠ABC,CE⊥BD于E,做出辅助线,进而解答。试题难度:三颗星知识点:全等三角形的判定与性质 2. 如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.

构造全等三角形的方法

全等三角形的构造方法 全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。判断三角形全等公理有SAS、ASA、AAS、SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 构造方法有: 1.截长补短法。 2.平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。 3.旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。 4.倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内。 5.翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法. “补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成 的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长 的一段,然后证明加长的那部分与另一较短的线段相等.

例1.如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC 交BC于D,求证:AB=AC+CD. 例2 已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且BE=CF,EF 交BC于点D.求证:DE=DF. (2)已知:如图,AB=AC,E为AB上一点,F是AC延长线上一点,且,EF交BC 于点D,且D为EF的中点. 求证:BE=CF.

八年级数学 全等三角形截长补短法专题

A D B C E 图2-1 截长补短法 人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例. 例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC . 求证:∠BAD +∠BCD =180°. 分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现. 证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF , 在Rt △ADE 与Rt △CDF 中, ?? ?==CD AD DF DE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180° 例2. 如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB . 求证:CD =AD +BC . 分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的. 证明:在CD 上截取CF =BC ,如图2-2 在△FCE 与△BCE 中, ?? ? ??=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1. A B C D 图1-1 F E D C B A 图1-2 A D B C E F 1 234 图2-2

全等三角形~截长补短

1 2 截长补短 截长补短”是几何证明题中十分重要的方法, 通常用来证明几条线段的数量关系, 即若 题目条件或结论中含有 a b c ”的条件,需要添加辅助线时可以考虑 截长补短”的方法。 另外的较短线段。 补短法: ①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等 于较长线段。即延长a ,得到b ,证:a b ①延长较短线段中的一条, 使延长后的线段等于较长线段, 一条较短线段。 即延长a ,得到c ,证:b c-a 。 例1.已知:如图,在 △ ABC 中,△仁△Z, △ B=2AC .求证: 1.补短法: 证明:如图,延长 AB 到E ,使BE=BD ,连接DE . △ △ABD 是 △BDE 的一个外角 △ △ABDME + △BDE ABE=BD △ △EMBDE △ △ABD=2 △E △ △ABD=2 △C △ △EMC 在 AADE 和 AADC 中 △ △ADE △△ADC (AAS )截长法:在较长的线段上截取一条线段等于较短线段, 再设法证明较长线段的剩余线段等于 然后证明延长出来的部分等于另 AC=AB+BD . AD AD

1 2 证明:如图,在 CD 上截取CF=CB . △CE 平分△CBD 在△CFE 和 △CBE 中 △AE=AC △AC=AB + BE=AB + BD 2.截长法: 证明:如图,在 AC 上截取AF=AB ,连接DF . 在△ABD 和△AFD 中 AB AF AD AD △ △ABD △△AFD ( SAS ) △ ABMAFD , BD=FD △ △B=2 △C △ △AFD =2 △C △ △AFD 是^DFC 的一个外角 △ △AFD me + 舉DC △ AFDCmC ADF=FC ABD=FC △AC=AF+FC=AB+BD 例2.如图,在四边形 ABCD 中,△ A=AB=90,点 E 为AB 边上一点,且 DE 平分△ ADC , CE 平分△ BCD .求证:CD=AD+BC . CF CB CE CE

全等三角形之截长补短法

例题1 如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD. 考点:全等三角形的判定与性质. 专题:证明题. 分析:利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED(AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD. 解答:证法一:如答图所示,延长AC,到E使CE=CD,连接DE. ∵∠ACB=90°,AC=BC,CE=CD, ∴∠B=∠CAB=45°,∠E=∠CDE=45°, ∴∠B=∠E. ∵AD平分∠BAC, ∴∠1=∠2 在△ABD和△AED中, ∠B=∠E,∠2=∠1,AD=AD, ∴△ABD≌△AED(AAS). ∴AE=AB. ∵AE=AC+CE=AC+CD, ∴AB=AC+CD. 证法二:如答图所示,在AB上 截取AE=AC,连接DE, ∵AD平分∠BAC, ∴∠1=∠2. 在△ACD和△AED中, AC=AE,∠1=∠2,AD=AD, ∴△ACD≌△AED(SAS). ∴∠AED=∠C=90,CD=ED, 又∵AC=BC,

∴∠B=45°. ∴∠EDB=∠B=45°. ∴DE=BE, ∴CD=BE. ∵AB=AE+BE, ∴AB=AC+CD. 点评:本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系. 例题2 图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC). 考点:全等三角形的判定与性质;三角形三边关系. 专题:计算题. 分析:可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之. 解答:证明:如图延长AD至E,使AD=DE,连接BE. ∵BD=DC,AD=DE,∠ADC=∠EDB ∴△ACD≌△EBD∴AC=BE 在△ABE中,AE<AB+BE,即2AD<AB+AC∴AD<(AB+AC) 点评:本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.

构造全等三角形的基本方法

构造全等三角形的基本方法 第一种:倍长中线法(利用中点、中线构造) 例题1、如图,△ABC中,AD是中线,AB=4,AC=6,AD的范围是.2】

第二种:利用角平分线 角平分线常见的辅助线作法: 例题2、已知在△ABC中,∠B=2∠C,∠A的平分线AD交BC边于点D.求证:AC=AB+BD. 3】 【例1】

例题3、BE是角平分线,AD垂直BE于D,求证:∠2=∠1+∠C 第三种:截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等. 例题5:如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 例题6、AB//CD,BE,CE是角平分线,求证:BC=AB+CD

第四种:旋转 对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形 例3、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求∠BPC的度数. 例4、如图,正方形ABCD中,DE=3,BF=1,∠EAF=45°,则EF= .

例5、如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为 第五种:平行线法 例7、如图,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。

构造全等三角形的方法专题

知识体系 利用三角形全等是证明线段或角相等的重要方法之一,但有时不能直接应用,就需要根据条件,通过作辅助线的方法构造全等三角形。构造全等三角形的方法主要有:中线倍长,截长补短,翻折,作平行线或垂线。 (1)遇到与中点有关的条件时,通常将过中点的线段延长一倍,构造 字形全等三角形。 (2)证一条线段等于另外两条线段和或差时,通常在较长的线段上截取一条线段等于较短的线段中的某一条,(此谓之“截长”),或将两条较短的线段转化到一条线段上,(此谓之“补短”)注意:不管是截长还是补短,都要证明截取或补上的线段所在的三角形与另一个对应三角形全等。 (3)遇角平分线时,通常用翻折构造全等或向角两边作垂线构造全等。 例题选讲 例1如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作MF ∥AD 交BA 的延长线于F ,交AC 于P ,求证:CP =BF =21(AB +AC ) 例2如图,△ABC 中,D 为BC 的中点,M 为AB 上一动点,N 为AC 上一动点,且∠MDN =90°. (1)求证:BM +CN >MN ; F P M D C B A A M N C B D

(2)若M在AB的延长线上,N在CA的延长线上,其它条件不变,(1)中的结论是否仍然成立,若成立,请证明,若不成立,说明理由; (3)若点M在BA的延长线上,点N在AC的延长线上,其它条件不变,(1)中的结论是否仍然成立,若成立,请证明,若不成立,说明理由。 例3如图,在四边形ABCD中,AD=DC,BD平分∠ABC,求证:∠A+∠C=180° 变形1,如图,在四边形ABCD中,∠A+∠C=180°,BD平分∠ABC,求证:AD=DC 变形2,如图,在四边形ABCD中,DE⊥BC于E,BD平分∠ABC,若BE=1 2 (AB+AC),求证:∠A+∠C=180° A C B D M B A C N A D C B A D C B A D C B E

(精品)全等三角形——截长补短法

D C B A 全等三角形——截长补短法 一、知识梳理: 截长补短法 截长补短法是几何证明题中十分重要的方法。通常来证明几条线段的数量关系。 截长法: (1)过某一点作长边的垂线 (2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法 (1)延长短边。 (2)通过旋转等方式使两短边拼合到一起。…… 二、典型例题: 例1、如图,在ABC ?中,60BAC ∠=?,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数. 及时练习: 如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD . 例2、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.

N E B M A D M D C B A D O E C B A 及时练习: 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系? 例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM . 求证:AE =BC +CE . 及时练习: 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C . 2 k h + D . h 例4、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O . 求证:OA 平分DOE ∠.

全等三角形专题——截长补短练习

全等三角形专题 ——截长补短 角的平分线具有其特有的性质,这一性质在许多问题里都有着广泛的应用,而“截长补短法”又是解决这一类问题的一种特殊的方法,利用此种方法常可使思路豁然开朗。 1、 如图, AD BC //,点E 在线段AB 上,ADE CDE ∠=∠,DCE ECB ∠=∠, 求证:CD=AD+BC 2、已知如图,1=2∠∠,P 为BN 上一点,且PD BC ⊥于点D,且0 180 BAP BCP ∠+∠=, 求证:AB+BC=2BD 2、 已知,如图在ABC 中,2 C B ∠ = ∠,12∠=∠, 求证:AB=AC+CD 4、已知ABC 中,0 60A ∠=,BD ,CE 分别评分ABC ∠和ACB ∠,BD,CE 交于点O ,试判断BE,CD,BC 的数量关系,并加以证明。 5、如图所示,ABC 是边长为1的等边三角形,BDC 是顶角为0 120的等腰三角形,以D 为顶点的一个 060的MDN ∠,点M ,N 分别在AB,AC 上,求AMN 的周长。 6、如图,在ABC 中,0 60BAC ∠=,AD 是BAC ∠的平分线,且AC=AB+BD,求ABC ∠的度数。 7、已知如图,ABCD 是正方形,FAD FAE ∠=,求证:BE+DF=AF 8、在ABC 中,2B C ∠=∠,且AD BC ⊥于D ,求证:CD=AB+BD

全等三角形在中考中必考题型 1、已知,在中ABC ,0C=90∠,AC=BC ,直线l绕点A旋转,过点B,C分别向直线l做垂线,垂足 分别是点D、点E。 (1)如图1,求证:BD+CE=AE; (2)当直线l绕点A顺时针转到如图2,则BD、CE 、AE 之间满足的数量关系 是 2、已知ABCD ,连接AC,AC=AB,E为线段BC上的一动点,F为直线DC上一动点,且EAF B ∠=∠。 (1)如图(1) ,当060B ∠=时,求证:CE+CF=CA 。 3、已知ABC ,有一个以P 为顶点的角,且1 2 APE ACD ∠=∠,将此角的顶点放在边BC 上,角的一边始 终经过点A ,另一边与ACB ∠的外角的平分线交于点E 。 (1)如图1,当ABC 三角形为等边三角形时,求证:CP+CE=CA 。 4、在中Rt ABC 中,090ACB ∠=,AC=BC ,点P 为BC 所在直线上一点,分别过点B 、C 作直线AP 的垂线,垂足分别为点D ,X 。 (1)当点P 在线段BC 上时,如图1,求证:2AD BD CE -= (2)当点P 在CB 的反向延长线上时,如图2,线段AD 、BD 、CE 三者之间满足的数量关系是 B

全等三角形作辅助线专题一(重点_截长补短法)可打印版

全等三角形作辅助线经典例题 常见辅助线的作法有以下几种: 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” ? 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全 等变换中的“旋转” ? 3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中 的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻 转折叠”;(遇垂线及角平分线时延长垂线段,构造等腰三角形) 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是 之与特定线段相等,再利用三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 1:已知,如图△ ABC中,AB=5,AC=3,则中线AD的取值范围是 _______________ . 2 :如图,△ ABC中,E、F分别在AB、AC 上, DE丄DF,D是中点,试比较BE+CF 与EF的大小. 3 :如图,△ ABC中,BD=DC=AC ,E是DC的中点,求证:AD平分/ BAE. 中考应用: ABC的两边AB、AC为腰分别向外作等腰Rt ABD和等腰Rt ACE BAD CAE 90,连接DE,M、N分别是BC、DE的中点?探究:AM与DE的位 置关系及数量关系. (1 )如图① 当ABC为直角三角形时,AM与DE的位置关系 是________________ ,线段AM与DE的数量关系是________________ ; (2 )将图①中的等腰Rt ABD绕点A沿逆时针方向旋转(0< <90)后,如图②所示,(1 )

构造全等三角形之截长补短

构造全等三角形之截长补短 【笔记】 截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目(例:EF=DE+BF,CD=2CE)截长:在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。 补短:通过延长短边或旋转等方式使两短边拼合到一起。 【例1】如下图所示,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD. … 【例2】如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上.求证:BC=AB+CD. 】

【例3】如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,且∠EAF=45,求BE,DF,EF之间的数量关系. 》 【例4】如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE. @ 【过关检测】 1如图,已知△ABC中,AH⊥BC于H,∠C=35°,∠B=70°,求证AB+BH=HC.

… 2.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q,且AP与BQ 相交于点O.求证:AB+BP=BQ+AQ. 3.如图,△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究BM、MN、NC之间的关系,并说明理由. & 4.已知,AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明. `

【出门测】 1.如图,已知△ABC 中,∠A =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BD 于E ,求证:CE = BD . 2.如图,已知正方形ABCD 中,E 为BC 边上任意一点,AF 平分∠DAE .求证:AE -BE =DF . ? 3.已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD .求证:∠BAP +∠BCP =180° 4.如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF=EF ,求证:AC=BE . 1 2 A B C D P 12 N

构造全等三角形的方法-

构造全等三角形的方法-

构造全等三角形的方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到第二组条件是对应边,则再找这两边的夹角用“SAS”或再找第三组对应边用“SSS”;若找到第二组条件是角,则需找另一组角(可能用“ASA”或“AAS”)或夹这个角的另一组对应边用“SAS”;若是判定两个直角三角形全等则优先考虑“HL”。搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了. 一、利用三角形的角平分线来构造全等三角形 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 1、如图,在△ABC中,AD平分∠BAC。画一画。 法一:在AB上截取AE=AC,连结DE。 法二:延长AC到F,使AF=AB,连结DF。

ABC的角平分线,AD=CD. 求证:∠A+∠C=180° D B C 法一:证明:在BC上截取BE,使BE=AB,连结DE。法二:延长BA到F,使BF=BC,连结DF。∵BD是∠ABC的角平分线(已知)∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∴∠1=∠2(角平分线定义) 在△ABD和△EBD中在△BFD和△BCD中 ∵AB=EB(已知)BF=BC(已知) ∠1=∠2(已证)∠1=∠2(已证) BD=BD(公共边)BD=BD(公共边) ∴△ABD≌△EBD(S.A.S)∴△BFD≌△BCD(S.A.S) ∴∠A=∠3(全等三角形的对应角相等)∴∠F=∠C(全等三角形的对应角相等AD=DE(全等三角形的对应边相等)DF=DC(全等三角形的对应边相等)∵AD=CD(已知),AD=DE(已证)∵AD=CD(已知),DF=DC(已证)∴DE=DC(等量代换)∴DF=AD(等量代换) ∴∠4=∠C(等边对等角)∴∠4=∠F(等边对等角) ∵∠3+ ∠4=180°(平角定义),∵∠F=∠C(已证) ∠A=∠3(已证)∴∠4=∠C(等量代换) ∴∠A+ ∠C=180°(等量代换)∵∠3+ ∠4=180°(平角定义) ∴∠A+ ∠C=180°(等量代换) 法三:作DM⊥BC于M,DN⊥BA交BA的延长线于N。 ∵BD是∠ABC的角平分线(已知) ∴∠1=∠2(角平分线定义) ∵DN⊥BA,DM⊥BC(已知)∴∠N=∠DMB=90°(垂直的定义) 在△NBD和△MBD中 ∵∠N=∠DMB (已证) ∠1=∠2(已证) BD=BD(公共边) ∴△NBD≌△MBD(A.A.S) ∴ND=MD(全等三角形的对应边相等) ∵DN⊥BA,DM⊥BC(已知)∴△NAD和△MCD是Rt△ 在Rt△NAD和Rt△MCD中 ∵ND=MD (已证) AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L) ∴∠4=∠C(全等三角形的对应角相等)

全等三角形专题:构造全等三角形方法总结

专题:构造全等三角形 倍长中线法:即把中线延长一倍,来构造全等三角形。 1、如图1,在△ABC 中,AD 是中线,BE 交AD 于点F ,且AE =EF . 试说明线段AC 与BF 相等的理由. 简析 由于AD 是中线,于是可延长AD 到G ,使DG =AD ,连结BG ,则 在△ACD 和△GBD 中,AD =GD ,∠ADC =∠GDB ,CD =BD ,所以△ACD ≌△GBD (SAS ), 所以 AC =GB ,∠CAD =∠G ,而AE =EF ,所以∠CAD =∠AFE , 又∠AFE =∠BFG ,所以∠BFG =∠G ,所以BF =BG ,所以AC =BF . 说明 要说明线段或角相等,通常的思路是说明它们所在的两个 三角形全等,而遇到中线时又通常通过延长中线来构造全等三角形. 法一:如图,在△ABC 中,AD 平分∠BAC 。在AB 上截取AE=AC ,连结DE 。 ( 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 法二:如图,在△ABC 中,AD 平分∠BAC 。延长AC 到F ,使AF=AB ,连结DF 。 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 法三:在△ABC 中,AD 平分∠BAC 。作DM ⊥AB 于M ,DN ⊥AC 于N 。 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形) 图1 G C F B A E D

(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN) 2、已知:如图,在四边形ABCD中,BD是∠ABC的角平分线,AD=CD,求证:∠A+∠C=180° 法一:证明:在BC上截取BE,使BE=AB,连结DE。法二:延长BA到F,使BF=BC,连结DF。 ∵BD是∠ABC的角平分线(已知)∵BD是∠ABC的角平分线(已知)∴∠1=∠2(角平分线定义)∴∠1=∠2(角平分线定义) 在△ABD和△EBD中在△BFD和△BCD中 ∵AB=EB(已知)BF=BC(已知) ∠1=∠2(已证)∠1=∠2(已证) BD=BD(公共边)BD=BD(公共边) ∴△ABD≌△EBD(S.A.S)∴△BFD≌△BCD(S.A.S) ∴∠A=∠3(全等三角形的对应角相等)∴∠F=∠C(全等三角形的对应角相等AD=DE(全等三角形的对应边相等)DF=DC(全等三角形的对应边相等)∵AD=CD(已知),AD=DE(已证)∵AD=CD(已知),DF=DC(已证)∴DE=DC(等量代换)∴DF=AD(等量代换) ∴∠4=∠C(等边对等角)∴∠4=∠F(等边对等角) ∵∠3+ ∠4=180°(平角定义),∵∠F=∠C(已证) ∠A=∠3(已证)∴∠4=∠C(等量代换) ∴∠A+ ∠C=180°(等量代换)∵∠3+ ∠4=180°(平角定义) ∴∠A+ ∠C=180°(等量代换) 法三:作DM⊥BC于M,DN⊥BA交BA的延长线于N。 ∵BD是∠ABC的角平分线(已知) ∴∠1=∠2(角平分线定义) ∵DN⊥BA,DM⊥BC(已知) ∴∠N=∠DMB=90°(垂直的定义) 在△NBD和△MBD中 ∵∠N=∠DMB (已证) ∠1=∠2(已证) BD=BD(公共边) ∴△NBD≌△MBD(A.A.S) ∴ND=MD(全等三角形的对应边相等) ∵DN⊥BA,DM⊥BC(已知) ∴△NAD和△MCD是Rt△ 在Rt△NAD和Rt△MCD中 ∵ND=MD (已证) AD=CD(已知)∴Rt△NAD≌Rt△MCD(H.L) ∴∠4=∠C(全等三角形的对应角相等) ∵∠3+ ∠4=180°(平角定义),

构造全等三角形的方法-

构造全等三角形的方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到第二组条件就是对应边,则再找这两边的夹角用“SAS”或再找第三组对应边用“SSS”;若找到第二组条件就是角,则需找另一组角(可能用“ASA”或“AAS”)或夹这个角的另一组对应边用“SAS”;若就是判定两个直角三角形全等则优先考虑“HL”。搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了. 一、利用三角形的角平分线来构造全等三角形 ( 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 1、如图,在△ABC中,AD平分∠BAC。画一画。 法一:在AB上截取AE=AC,连结DE。 法二:延长AC到F,使AF=AB,连结DF。 法三:作DM⊥AB于M,DN⊥AC于N。 C B A C B A C B A 2、如图,DC∥AB,∠BAD与∠ADC的平分线相交于E,过E的直线 分别交DC、AB于C、B两点、求证:AD=AB+DC、 证明:在线段AD上取AF=AB,连接EF, ∵AE就是∠BAD的角平分线,∴∠1=∠2, ∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE 由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°, 又∵∠DFE+∠AFE=180°,∴∠C=∠DFE, ∵DE就是∠ADC的平分线,∴∠3=∠4, 又∵DE=DE,∴△CDE≌△FDE,∴DF=DC, ∵AD=DF+AF,∴AD=AB+DC.

构造全等三角形的方法技巧

D C B A 【知识点1】 倍长中线(线段)造全等专题 几何证明题,用现有的条件没有办法证明出结论时,考虑添加辅助线。添加辅助线方法:遇到三角形的中线或中点,通常用倍长中线法,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 【例题讲解】 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解题思路:直接求中线的取值范围,有点困难,考虑用中线法,再利用三角形三边关系得解。答案:1

例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 解题思路:倍长中线AD 到点G ,等到一对全等三角形?DBG 和?DCA,从而得等 腰三角形BEG ,利用角的等量代换,得到∠FAE=∠AEF 从而得证。 【练一练】 1:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 2:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 解题思路:倍长AE 到点F ,连接DF ,证明?ADF 全等于?ADC 第 1 题图 A B F D E C

相关主题
文本预览
相关文档 最新文档