当前位置:文档之家› 公路水泥混凝土路面工程设计规范标准

公路水泥混凝土路面工程设计规范标准

公路水泥混凝土路面工程设计规范标准
公路水泥混凝土路面工程设计规范标准

公路水泥混凝土路面工程设计规范-----------------------作者:

-----------------------日期:公路水泥混凝土路面设计规范

1 总则

1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。

1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。

1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践经验以及环境保护要求等,通过技术经

济分析确定。水泥混凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋

配制等。水泥混凝土路面结构应按规定的安全等级和目标可靠度,承受预期的荷

载作用,并同所处的自然环境相适应,满足预定的使用性能要求。

1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。

2 术语、符号

2.1 术语

2.1.1 水泥混凝土路面cement concrete pavement

以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。

2.1.2 普通混凝土路面plain concrete pavement

除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。

2.1.3 钢筋混凝土路面jointed reinforced concrete pavement

面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。

2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。

2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。

2.1.6 复合式路面composite pavement

面层由两层不同类型和力学性质的结构层复合而成的路面。

2.1.7 水泥混凝土预制块路面concrete block pavement

面层由水泥混凝土预制块铺砌成的路面。

2.1.8 碾压混凝土 roller compected concrete

采用振动碾压成型的水泥混凝土。

2.1.9 贫混凝土 lean concrete

水泥用量较低的水泥混凝土。

2.1.10 设计基准期限 design reference period

计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。

2.1.11 安全等级safety classes

根据路面结构的重要性和破坏可能产生后果的严重程度而划分的设计等级。

2.1.12 可靠度reliability

路面结构在规定的时间内和规定的条件下完成预定功能的概率。

2.1.13 目标可靠度objective reliability

作为设计依据的可靠度。

2.1.14 可靠指标reliability index

度量路面结构可靠性的一种数量指标。

2.1.15 目标可靠指标objective reliability index

作为设计依据的可靠指标。

2.1.16 可靠度系数reliability coefficient

为保证所设计的结构具有规定的可靠度,而在极限状态设计表达式中采用的单一综合系数。

2.2 符号

2.2.1作用及作用效应符号

N e——设计基准期内标准轴载累计作用次数

N s——标准轴载的作用次数

P——轴载

P s——标准轴载

w——弯沉

εs h——干缩应变

σp r——荷载疲劳应力

σp s——标准轴载的引力

σs——钢筋应力

σt m——最大温度梯度时的温度翘曲应力

σt r——温度梯度疲劳应力

2.2.2 设计参数和计算系数符号

B x——温度应力系数

C v——变异系数

C x——温度翘曲应力系数

g r ——交通量年平均增长率

k c——综合影响系数

k f——荷载疲劳应力系数

k j——接缝传荷系数

k p——轴载当量换算系数

k r——接缝传荷能力的应力折减系数

k s——粘结刚度系数

k t——温度疲劳应力系数

k u——层间结合系数

p——概率或频率

T g——混凝土面层最大温度梯度

αc——混凝土线膨胀系数

αs——钢筋线膨胀系数

γr——可靠度系数

δi——轴-轮型系数

η——车辆轮迹横向分布系数

λc——混凝土温缩应力系数

λs t——钢筋温度应力系数

λb——裂缝宽度系数

μ——面层与基层之间的摩阻系数

ρ——配筋率

ρf——钢纤维体积率

φ——钢筋刚度贡献率

2.2.3 几何参数符号

A s——钢筋面积

b j ——裂缝缝隙宽度

d f ——钢纤维直径

d s——钢筋直径

h——结构层厚度

l——钢纤维长度

f

l——面层板长度

L d——裂缝间距

2.2.4 材料性能和混凝土板抗力符号

D——面层的弯曲刚度

D g——双层混凝土面层的总弯曲刚度

E——土基或基、垫导线材料回弹模量

E c——水泥混凝土的弯拉弹性模量

E s——钢筋的弹性模量

E t——基层顶面当量回弹模量

f r ——混凝土弯拉强度

f r m——混凝土配合比设计强度

f s p ——混凝土劈裂强度

f s y ——钢筋屈服强度

f t ——混凝土抗拉强度

r——混凝土面层的相对刚度半径

3 设计依据

3.0.1 各级公路水泥混凝土路面结构的设计安全等级及相应的设计基准期、目标可靠指

标和目标可靠度,应符合表3 .0 .1的规定。各安全等级路面的材料性能和结构尺寸参数的变异水平等级,宜按表3 .0 1的建议选用。

设计参数的变异系数变化范围,应符合表3 .0 .2的规定。

设计的极限状态,其表达式采用式(3 .0 .3)。 ()pr tr r f γσσ+≤ (3 .0 .3)

式中:

γ r ——可靠度系数,依据所选目标可靠度及变异水平等级按表3 .0 3确定; σp r ——行车荷载疲劳应力(Mpa ),计算方法见附录B.1; σt r ——温度梯度疲劳应力(Mpa ),计算方法见符录B.2; f r ——水泥混凝土弯拉强度标准值(Mpa ),见3. 0. 6条。

值。

3.0.4 水泥混凝土路面结构设计以100KN 的单轴-双轮组荷载作为标准轴载。不同轴- 轮型和轴载的作用次数,按式(3 .0 4-1)换算为标准轴载的作用次数。

16

1

100n

i s i i i P N N δ=??

= ???∑ (3.0.4-1)

30.432.2210i i P δ-=? (3.0.4-2 )

或 50.22

1.0710i i P δ--=? (3.0.4-3 ) 或 80.22

2.2410i i P δ--=? (

3.0.4-4 )

式中:

N s ——100KN 的单轴-双轮组标准轴载的作用次数;

P i ——单轴-单轮、单轴-双轮组或三轴-双轮组轴型i 级轴载的总重(KN ); n ——轴型和轴载级位数;

i N ——各类轴型i 级轴载的作用次数;

i δ——轴-轮型系数,单轴-双轮组时,i δ=1;单轴-单轮时,按式(3.0.4-2)计算;

轴-双轮组时,按式(3.0.4-3)计算;三轴-双轮组时,按式(3.0.4-4)计算。

3.0.5 水泥混凝土路面所承受的轴载作用,按设计基准期内设计车道所承受的标准轴载

累计作用次数分为4级,分级范围如表3.0.5。

e 3.0.6 水泥混凝土的强度以28d 龄期的弯拉强度控制。当混凝土浇筑后90d 内不开放

交通时,可采用90d 龄期的弯拉强度。各交通等级要求的混凝土弯拉强度标准 值不得低于表3。0。6的规定。

3.0.7 在季节性冰冻地区,路面的总厚度不应小于表3.0.7规定的最小防冻厚度。

挖方及地下水位高的路段,或者基、垫层为隔湿性能较差的材料,应采用高值;

②冻深小于0.50m 的地区,一般不考虑结构层防冻厚度。

3.0.8 水泥混凝土面层的最大温度梯度标准值T g ,可按照公路所在地的公路自然区划 按表3.0.8 选用。

4结构组合设计

4.1 路基

4.1.1 路基应稳定、密实、均质,对路面结构提供均匀的支承。

4.1.2 高液限粘土及含有机质细粒土,不能用做高速公路和一级公路的路床填料或二级

和二级以下公路和上路床填料;高液限粉土及塑性指数大于16或膨胀率大于3%的低液限粘土,不能用做高速公路和一级公路的上路床填料。因条件限制而必须

采用上述土做填料时,应掺加石灰或水泥等结合料改善。

4.1.3 地下水位高时,宜提高路堤设计标高。在设计标高受限制,未能达到中湿状态的路基临界高度时,应选用粗粒土或低剂量石灰或水泥稳定细粒土做路床或上

路床填料;未能达到潮湿状态的路基临界高度时,除采用上述填料措施外,还

应采取在边沟下设置排水渗沟等降低地下水位的措施。

4.1.4 路基压实度应符合《公路路基设计规范》(JTJ013)的要求。多雨潮湿地区,对于高液限土及塑性指数大于16或膨胀率大于3%的低液限粘土,宜采用由

轻型压实标准确定的压实度,并在含水量略大于其最传佳含水量时压实。

4.1.5 岩石或填石路床顶面应铺设整平层。整平层可采用未筛分碎石和石屑或低剂量水泥稳定粒料,其厚度视路床顶面不平整程度而定,一般为100~500mm。4.2垫层

4.2.1遇有下述情况时,需在层基下设置垫层:

——季节性冰冻地区,路面总厚度小于最小防冻厚度要求(表3.0.7)时,其

差值应以垫层厚度补足;

——水文地质条件不良的土质路堑,路床土湿度较大时,宜设置排水垫层;

——路基可能产生不均匀沉降或不均匀变形时,可加设半刚性垫层。4.2.2 垫层的宽应与路基同宽,其最小厚度为150mm。

4.2.3 防冻垫层和排水垫宜采用砂、砂砾等颗粒材料。半刚性垫层可采用低剂量无机结

合料稳定粒料或土。

4.3 基层

4.3.1 基层应具有足够的抗冲刷能力和一定的刚度。

4.3.2基层类型宜依照交通等级按表4.3.2选用。混凝土预制块面层应采用水泥稳定粒

料基层。

4.3.3 湿润和多雨地区,路基为低透水性细粒土的高速公路和一级公路或者承受特重或

重交通的二级公路,宜采用排水基层。排水基层可选用多孔隙的开级配水泥稳定

碎石、沥青稳定碎石或碎石,其孔隙率约为20%。

4.3.4 基层的宽度应比混凝土面层每侧至少宽出300mm(采用小型机具施工时)或 500mm(轨模式摊铺机施工时)或650mm(滑模式摊铺机施工时)。路肩采用混凝土面层,其厚度与行车道面层相同时,基层宽度宜与路基同宽。级配粒料

基层

的宽度也宜与路基同宽。

4.3.5 各类基层厚度和适宜范围见表4.3.5。

4.3.6 碾压混凝土基层应设置与混凝土面层相对应的接缝。贫混凝土基层在其弯拉强度超过1.8MPa时,应设置与混凝土面层相对应的横向缩缝;一次摊铺宽度大

于7.5m时,应设置纵向缩缝。

4.3.7 基层下未设垫层,上路床为细粒土、粘土质砂或级配不良砂(承受特重或重交通时),或者为细粒土(承受中等交通时),应在基层下设置底基层。底基层

可采用级配粒料、水泥稳定粒料或石灰粉煤灰稳定粒料,厚度一般为

200mm。

4.3.8排水基层下应设置由水泥稳定粒料或者密级配粒料组成的不透水底基层,厚度一般为200mm。底基层顶面宜铺设沥青封层或防水土工织物。

4.4面层

4.4.1水泥混凝土面层应具有足够的强度、耐久性,表面抗滑、耐磨、平整。

4.4.2面层一般采用设接缝的普通混凝土;面层板的平面尺寸较大或形状不规则,路面结构下埋有地下设施,高填方、软土地基、填挖交界段的路等有可能产生不

均匀沉降时,应采用设置接缝的钢筋混凝土面层。其他面层类型可根据适用条

件按表4.4.2选用。

4.4.3普通混凝土、钢筋混凝土、碾压混凝土或钢纤维混凝土面层板一般采用矩形。

其纵向和横向接缝应垂直相交,纵缝两侧的横缝不得相互错位。

4.4.4 纵向接缝的间距按路面宽度在3.0~4.5m范围内确定。碾压混凝土、钢纤维混凝土面层在全幅摊铺时,可不设纵向缩缝。

4.4.5 横向接缝的间距按面层类型和厚度选定:

——普通混凝土面层一般为4~6m,面层板的长宽不宜超过1.30,平面尺寸不宜大于25m2;

——碾压混凝土或钢纤维混凝土面层一般为6~10m;

——钢筋混凝土面层一般为6~15m。

4.4.6 普通混凝土、钢筋混凝土、碾压混凝土或配筋混凝土面层所需的厚度,可参照表4.4.6所示参考范围并按4.4.9条规定计算确定。

时,其厚度为普通混凝土面层厚度的0.65~0.75倍。特重或重交通时,其最

小厚度为160mm;中等或轻交通时,其最小厚度为140mm。

4.4.8 复合式路面沥青上面层的厚度一般为25~80mm。

4.4.9 除混凝土预制块面层外,各种混凝土面层的计算厚度应满足式(3.0.3)的要求。荷载疲劳应力和温度疲劳应力分别按附录B.1和B.2计算。面层设计厚度

依计算厚度按10mm向上取整。

采用碾压混凝土或贫混凝土做基层时,宜将基层与混凝土面层视作分离式双层板

进行应力分析。上、下层板在临界荷位处的荷载疲劳应力和温度疲劳应力分别按

附录C.1和C.2计算。上、下层板的计算厚度应分别满足式(3.0.3)的要求。

具有沥青上面层的水泥混凝土板,在临界荷位处的荷载疲劳应力和温度疲劳应

力分别按附录D.1和D.2计算。混凝土板的计算厚度,应满足式(3.0.3)的要

求。

4.4.10 路面表面构造应采用刻槽、压槽、拉槽或拉毛等方法制作。构造深度在使用初期应满足表4.4.10的要求。

对于其他等级公路系指急弯、陡坡、交叉口或集镇附近;

②年降雨量600mm以下的地区,表列数值可适当降低。

4.4.11混凝土预制块可采用异形块或矩形块。预制块的长度为200~250mm,宽度为100~125mm,长宽比通常为2∶1。预制块厚度为100~120mm。预

制块下稳平层的厚度为30~50mm。

4.5 路肩

4.5.1 路肩铺面结构应具有一定的承载能力,其结构导线组合和材料选用应与行车道路

面相协调,并保证进入路面结构中的水的排除。

4.5.2 路肩铺面可选用水泥混凝土面层或沥青面层。

4.5.3 路肩水泥混凝土面层的厚度通常采用与行车道面层等厚,其基层宜与行车道基层相同。选用薄面层时,其厚度不宜小于150mm,基层应采用开级配粒

料。

4.5.4 路肩沥青面层宜选用密实型沥青混合料。其基层可选用无机结合料稳定粒料或级

配粒料。行车道路面结构不设内部排水设施时,沥青面层和不透水基层的总厚度

不宜超过行车道面层的厚度,基层下应选用透水性粒料填筑。

4.6 路面排水

4.6.1 行车道路面应设置双向或单向横坡,坡度为1%~2%。路肩铺面的横向坡度值宜比行车道路面的横坡值大1%~2%。

4.6.2 行车道路面结构设置排水基层或垫层时,应在排水基层或垫外侧边缘设置纵向集水沟和带孔集水管,并间隔50~100m设置横向排水管。

4.6.3 排水基层的纵向边缘集水沟,路肩采用水泥混凝土面层时,可设在路肩下或路肩外侧边缘内;路肩采用沥青面层时,可设在路肩内侧边缘内。排水垫层的

纵向边缘集水沟设在路床边缘。

4.6.4 带孔集水管和孔径通常采用100~150mm。集水沟的宽度通常采用300mm。

集水沟的深度应能保证集水管管顶低于排水层底面,并有足够厚度和回填料

使集水管不被施工机械压裂。沟内回填料宜采用与排水基层或垫层相同的透

水性材料,或者不含细料的碎石或砾石粒料。回填料与沟壁间应铺设无纺反

滤织物。横向排水管不带孔,其管径与集水管相同。

4.6.5 集水沟和集水管的纵坡宜与路线纵坡相同,但不得小于0.25%。横向排水管的坡度不宜小于5%。

4.6.6 横向排水管出口端应设端墙。端头用镀锌铁丝网或格栅罩住,出水口应进行冲刷防护。在横向排水管上方的路肩边缘处应设置标志,标明出水口位置。

5 接缝设计

5.1 纵向接缝

5.1.1 纵向接缝的布设应路面宽度和施工铺筑宽度而定:

——一次铺筑宽度小于路面宽度时,应设置纵向施工缝。纵向施工缝采用平缝形

式,上部应锯切槽口,深度为30~40mm,宽度为3~8mm,槽内灌塞填缝

料,构造如图5.1.1a)所示;

——一次铺筑宽度大于4.5m时,应设置纵向缩缝。纵向缩缝采用假缝形式,锯切的槽口深度应大于施工缝的槽口深度。采用粒料基层时,槽口深度应为板厚的1/3;

采用半刚性基层时,槽口深度为板厚的2/5。其构造如图5.1.1b)所示。

5.1.2 纵缝应与路线中缝平行。在路面等宽的路段内或路面变宽路段的等宽部分,纵缝

的间距和形式应保持一致。路面变宽段的加宽部分与等宽部分之间,以纵向施工

缝隔开。加宽板在变宽段起终点处的宽度不应小于1m。

5.1.3 拉杆应采用螺纹钢筋,设在板后中央,并应对拉杆中部100mm范围内进行防锈

处理。拉杆的直径、长度和间距,可参照表5.1.3选用。施工布设时,拉杆间距应按横向接缝的实际位置予以调整,最外侧的拉杆距横向接缝的距离不得小于100 mm。

5.1.4 连续配筋混凝土面层的纵缝拉杆可由板内横向钢筋延伸穿过接缝代替。

5.2 横向接缝

5.2.1 每日施工结束或因临时原因中断施工时,必须设置横向施工缝,其位置应尽可能

选在缩缝或胀缝处。设在缩缝处的施工缝,应采用传力杆的平缝形式,其构造如

图5.2.1a)所示;设在胀缝处的施工缝,其构造与胀缝相同.遇有困难需设在缩缝之间

时,施工缝采用设拉杆的企口缝形式,其构造如图5.2.1b)所示。

5.2.2 横向缩缝可等间距或变间距布置,采用假缝形式。特重和重交通公路、收费广场

以及邻近胀缝或自由端部的3条缩缝,应采用设传力杆假缝形式,其构造如图

5.2.2a)所示。其他情况可采用不设传力杆假缝形式,其构造如图5.2.2b)所示。5.2.3 横向缩缝顶部应锯切槽口,深度为面层厚度的1/5~1/4,宽度为3~8mm,槽内填

塞填缝料。高速公路的横向缩缝槽口宜增设深20mm、宽6~10mm的浅槽口,其构造如图5.2.3所示。

5.2.4 在邻近桥梁或其他固定构造物处或其他道路相交处应设置横向胀缝。设置的胀缝

条数,视膨胀量大小而定。低湿浇筑混凝土面层或选用膨胀性高的集料时,宜酌

情确定是否设置胀缝。胀缝宽20mm,缝内设置填缝板和可滑动的传力杆。胀缝

的构造如图5.2.4所示。

5.2.5传力杆应采用光面钢筋。其尺寸和间距可按表5.2.5选用。最外侧传力杆距纵向

接缝或自由边的距离为150~250mm。

5.3交叉口接缝布设

5.3.1 两条道路正交时,各条道路和直道部分均保持本身纵缝的连贯,而相交路段内各

条道路的横缝位置应按相对道路的纵缝间距作相应变动,保证两条道路的纵横缝

垂直相交,互不错位。两条道路斜交时,主要道路的直道部分保持纵缝的连贯,

而相交路段内的横缝位置应按次要道路的纵缝间距作相应变动,保证与次要道路

的纵缝相连接。相交道路弯道加宽部分的接缝布置,应不出现或少出现错缝和锐

角板。

5.3.2 在次要道路弯道加宽段起终点断面处的横向接缝,应采用胀缝形式。膨胀量大时,

应在直线段连续布置2~3条胀缝。

5.4 端部处理

5.4.1 混凝土路面与固定构造物相衔接的胀缝无法设置传力杆时,可在毗邻构造物的板

端部内配置双层钢筋网;或在长度约为6~10倍板厚的范围内逐渐将板厚增加

20%。

5.4.2 混凝土路面与桥梁相接,桥头设有搭板时,应在搭板与混凝土面层板之间设置长6~10m的钢筋混凝土面层过渡板。后者与搭板间的横缝采用设拉杆平缝形式,与混凝土面层间的横缝采用设传力杆胀缝形式。膨胀量大时,应连续设置2~3条

设传力杆胀缝。当桥梁为斜交时,钢筋混凝土板的锐角部分应采用钢筋网补强。

桥头未设搭板时,宜在混凝土面层与桥台之间设置长10~15m的钢筋混凝土面层

板;或设置由混凝土预制块面层或沥青面层铺筑的过渡段,其长度不小于8m。5.4.3 混凝土路面与沥青路面相接时,其间应设置至少3m长的过渡段。过渡段的路面

采用两种路面呈阶梯状叠合布置,其下面铺设的变厚度混凝土过渡板的厚度不得

小与200mm,如图5.4.3所示。过渡板与混凝土面层相接处的接缝内设置直径25mm、长700mm、间距400mm的拉杆。混凝土面层毗邻该接缝的1~2

条横向

接缝应设置胀缝。

5.4.4 连续配筋混凝土面层与其他类型路面或构造物相连接的端部,应设置锚固结构。

端部锚固结构可采用钢筋混凝土地梁或宽翼缘工字钢梁接缝等形式:

——钢筋混凝土地梁一般采用3~5个,梁宽400~600mm,梁高1200~1500mm,间距5000~6000mm;地梁与连续配筋混凝土面层连

成一体;其构造如图5.4.4-1所示;

——宽翼缘工字钢梁的底部锚入钢筋混凝土枕梁内,枕梁一般长3000mm、厚200mm ;钢梁腹板与连续配筋混凝土面层端部间填入胀缝材料;其构造

如图5.4.4-2所示。

5.5 接缝填封材料

5.5.1 胀缝接缝板应选用能适应混凝土板膨胀收缩、施工时不变形、复原率高和耐久性好的材料。高速公路和一级公路宜选用泡沫橡胶板、沥青纤维板;其他等级

公路也可选用木材类或纤维类板。

5.5.2 接缝填料应选用与混凝土接缝槽壁粘结力强、回弹性好、适应混凝土板收缩、不溶于水、不渗水、高温时不流淌、低温时不脆裂、耐老化的材料。常用的填

缝材料有聚氨酯焦油类、氯丁橡胶类、乳化沥青类、聚氯乙烯胶泥、沥青橡胶

类、沥青玛蹄脂及橡胶嵌缝条等。

6面层配筋设计

6.1特殊部位配筋

6.1.1 混凝土面层自由边缘下基础薄弱或接缝为未设传力杆的平缝时,可在面层边缘的

下部配置钢筋。通常选用2根直径为12~16mm的螺纹钢筋,置于面层底面之上

1/4厚度处并不小于50mm,间距为100mm,钢筋两端向上弯起,如图6.1.1所示。

6.1.2 承受特重交通的胀缝、施工缝和自由边的面层角隅及锐角面层角隅,宜配置角隅

钢筋。通常选用2根直径为12~16mm的螺纹钢筋,置于面层上部,距顶面不小

于50mm,距边缘为100mm,如图6.1.2所示。

6.1.3 混凝土面层下有箱形构造物横向穿越,其顶面至面层底面的距离小于400mm 或

嵌入基层时,在构造物顶宽及两侧各(H+1)m且不小于4m的范围内,混凝土

面层内应布设双层钢筋网,上下层钢筋网各距面层顶面和底面1/4~1/3厚度处,

如图6.1.3-1所示。构造物顶面至面层底面的距离在400~1200mm时,则在上述长

度范围内的混凝土面层中应布设单层钢筋网。钢筋网设在距顶面1/4~1/3厚度处,

如图6.1.3-2所示。钢筋筋直径为12mm,纵向钢筋间距100mm,横向钢筋间距 200mm。配筋混凝土面层与相邻混凝土面层之间设置传力杆缩缝。

6.1.4 混凝土面层下有圆形管状构造物横向穿越,其顶面至面层底面的距离小于1200 mm时,在构造物两侧各(H+1)m且不小于4m的范围内,混凝土面层内应设单层钢筋网,钢筋网设在距面层顶面1/4~1/3厚度处,如图6.1.4所示。钢筋尺寸

和间距及传力杆接缝设置与6.1.3条相同。

6.2 钢筋混凝土面层配筋

6.2.1 钢筋混凝土面层的配筋量按式(6.1.2)确定。

16s s sy

L h A f μ

=

(6.1.2) 式中:

A s ——每延米混凝土面层宽(或长)所需的钢筋面积(mm 2);

L s ——纵向钢筋时,为横缝间距(m );横向钢筋时,为无拉杆的纵缝或自由边 之间的距离(m ); h ——面层厚度(mm );

μ——面层与基层之间的磨阻系数,基层为水泥、石灰或沥青稳定粒料时,可取

1.8;基层为无结合料的粒料时,可取1.5;

f sy ——钢筋的屈服强度(Mpa ),按附录F.4选用。

6.2.2 纵向和横向钢筋宜采用相同或相近的直径,其直径差不应大于4mm 。钢筋的最

小直径和最大间距,应符合表6.2.2的规定。钢筋的最小间距为集料最大粒径的2

倍。

6.2 ——纵向钢筋设在面层顶面下1/3~1/2厚度范围内,横向钢筋位于纵向钢筋之

下;

——纵向钢筋的搭接长度一般不小于35倍钢筋直径,搭接位置应错开,各搭接 端接线与纵向钢筋的夹角应小于600;

——边缘钢筋至纵缝或自由边的距离一般为100~150mm 。 6.3 连续配筋混凝土面层配筋

6.1.3 连续配筋混凝土面层的纵向配筋率按允许的裂缝间距(1.0~2.5m )、缝隙宽度 (<1mm)和钢筋屈服强度确定,通常为0.6%~0.8%。最小纵向配筋率,冰冻地区

为0.7%,一般地区为0.6%。具体计算方法见附录E 。横向钢筋的用量,按6.2.1条计算确定。

6.3.2 连续配筋混凝土面层的纵向和横向钢筋均应采用螺纹钢筋,其直径为

12~20mm 。

6.3.3 钢筋布置应符合下列要求:

——纵向钢筋设在面层表面下1/2~1/3厚度范围内,横向钢筋位于纵向钢筋之

下;

——纵向钢筋的间距不大于250mm ,不小于100mm 或集料最大粒径的2.5倍; ——横向钢筋的间距不大于800mm ;

——纵向钢筋的焊接长度一般不小于10倍(单面焊)或5倍(双面焊)钢筋直

径,焊接位置应错开,各焊接端连线与纵向钢筋的夹角应小于600;

——边缘钢筋至纵缝或自由边的距离一般为100~150mm 。

7 材料组成要求及性质参数

7.1垫层材料

7.1.1 防冻垫层所用砂、砂砾材料中通过0.075mm筛孔的细粒含量不宜大于5%。7.1.2 排水层材料的级配应满足下述渗滤标准:

——垫层材料通过率为15%时的粒径D15不小于路床土通过率为15%时的粒径d15的5倍(D15≥5d15);

——垫层材料通过率为15%时的粒径D15不大于路床土通过率为85%时的粒径d85的5倍(D15≤5d 85);

——垫层材料通过率为50%时的粒径D50不大于路床土通过率为50%时的粒径d50的25倍(D50≤25d50);

——垫层材料的均匀系数(D60 / D10)不大于20。

7.2 基层材料

7.2.1 贫混凝土集料公称最大粒径不宜大于31.5mm,水泥用量不得少于170kg/m3,28d

弯拉强度标准值宜控制在1.0~1.8Mpa范围内。碾压混凝土集料公称最大粒径不得大于26.5mm。

7.2.2 沥青混凝土基层宜采用集料公称最大粒径为19.0mm或26.5mm的混合料。

沥青

碎石基层宜采用集料公称最大粒径为26.5mm或31.5mm的混合料。

7.2.3 水泥稳定粒料、级配碎石或砾石的集料公称最大粒径宜为26.5mm或

19.0mm。

小于0.075mm的细粒含量不得大于5%,小于4.75mm的颗粒含量不宜大于50%,

细粒土的液限应小于25%,塑性指数应小于6。承受重交通时,水泥剂量宜为

5%;中等和轻交通时,水泥剂量宜为4%。

7.2.4 石灰粉煤灰稳定粒料的集料公称最大粒径宜为26.5mm。小于0.075mm的细粒含

量不得大于7%;小于4.75mm的颗粒含量不宜大于52%。石灰与粉煤灰的配比宜为1∶2~1∶4;粒料与石灰粉煤灰的配比宜为85∶15~80∶20。

7.2.5 多孔隙水泥稳定碎石的集料公称最大粒径宜为31.5mm或26.5mm。小于

0.075mm

的细粒含量不得大于2%;小于2.36mm的颗粒含量不宜大于5%;小于4.75mm 的颗粒含量不宜大于10%。水泥剂量一般为9.5%~11%,水灰比一般为

0.39~0.43。

7.2.6 多孔隙沥青稳定碎石的集料公称最大粒径宜为26.5mm或19.00mm。小于

0.075mm

的细粒含量不得大于2%;小于0.6mm的颗料含量不宜大于5%;小于2.36mm 的

颗粒含量不宜大于15%;小于4.75mm的颗粒含量不宜大于20%。沥青标号应选用

AH-50或AH-70,沥青用量一般为2.5%~3.5%。

7.3 面层材料

7.3.1 水泥混凝土集公称最大粒径不应大于31.5mm(碎石)或19.0mm(卵石)。砂的细

度模数不宜小于2.5;高速公路面层的用砂,其硅质砂或石英砂的含量不宜低于

25%。

水泥用量不得小于300kg /m 3(非冰冻地区)或320kg /m 3(冰冻地区)。冰冻

地区的混凝土中必须掺加引气剂。

7.3.2 厚度大于280mm 的普通混凝土面层,分上下两层连续铺筑时,上层一般为总

厚度的1/3,可采用高强、耐磨的混凝土材料,碎石集料公称最大粒径为19mm 。

7.3.3 钢纤维混凝土集料公称最大粒径宜为钢纤维长度的1/2~2/3,并不宜大于

26.5mm (铣削型钢纤维)或19mm (剪切型或熔抽型钢纤维)。钢纤维的抗拉强度标准值不宜小于600级(600~1000Mpa ),以体积率计的钢纤维掺量一般为0.6%~1.0%。水泥用量不得低于360kg /m 3(非冰冻地区)或380kg /m 3(冰冻地区)。

7.3.4 碾压混凝土面层混凝土的集料公称最大粒径不宜大于19.0mm ,水泥用量不得

少于280kg /m 3(非冰冻地区)或310kg /m 3(冰冻地区)。

7.3.5 混凝土预制块的抗压强度不宜低于50Mpa (非冰冻地区)或60Mpa (冰冻地

区)。其外观质量、尺寸偏差和物理性能应符合优等品或一等品的规定。稳平层垫砂宜选用细度模数为2.3~3.0的天然砂,4.75mm 筛孔的累计筛余量不应大于5%, 含泥量不应大于5%。

7.4 材料性质参数

7.4.1 路床土和路面各结构层混合料的各项性质参数,应按有关试验规程的标准试验方

法试验确定,其标准值按概率分布的0.85分位值确定。

7.4.2 受条件限制而无试验数据时,混凝土弯拉弹性模量以及路床土和垫层、基层混合

料的回弹模量标准值,可参照附录F 的相关经验数值范围或有关规定数值,结合 工程经验分析确定。

7.4.3 混凝土配合比设计时的混凝土试配弯拉强度的均值应按式(7.4.3)确定。 1 1.04r

rm v

f f ts c =+- (7.4.3)

式中:

rm f ——混凝土试配弯拉强度的均值(Mpa ); r f ——混凝土弯拉强度标准值(Mpa );

c v ——混凝土弯拉强度的变异系数,按表3.0.2取用; s ——混凝土弯拉强度试验样本的标准差;

t ——保证率系数,按样本数n 和判别概率p 参照表7.4.3确定。

8 加铺层结构设计

8.1 一般规定

8.1.1 在进行旧混凝土路面加铺层设计之前,应调查下列内容:

——公路修建和养护技术资料:路面结构和材料组成、接缝构造及养护历史等; ——路面损坏状况:损坏类型、轻重程度、范围及修补措施等;

——路面结构强度:路表弯沉、接缝荷能力、板底脱空状况、面层厚度和混凝土

强度等;

——已承受的交通荷载及预计的交通需求:交通量、轴载组成及增长率等; ——环境条件:沿线气候条件、地下水位以及路基和路面的排水状况等。

8.1.2 加铺层应根据使用要求及旧混凝土路面的状况,选用分离式或结合式水泥混凝土

加铺结构,或沥青混凝土加铺结构,经技术经济比较后选定。

8.1.3 地表或地下排水不良路段,应采取措施改善或增设地表或地下排水设施;旧混

凝土路面结构排水不良路段,应增设路面边缘排水系统。

8.1.4 加铺层设计应包括施工期间维持通车的设计方案。

8.1.5 旧混凝土面层损坏状况等级为差时,宜将混凝土板破碎成小于400mm 的小

块,用做新建路面的底基层或垫层,并应按新建混凝土路面或沥青路面类型进行设计。

8.2 路面损坏状况调查评定

8.2.1 旧混凝土路面的损坏状况采用断板率和平均错台量两项指标评定。断板率的调

查和计算可按《公路水泥混凝土路面养护技术规范》(JTJ 073.1)的规定进行;错台调查可采用错台仪或其它方法量测接缝两侧板边的高程差,量测点的位置在错台严重车道右侧边缘内300mm 处,以调查路段内各条接缝高程差的平均值表示该路段的平均错台量。

8.2.2 路面损坏状况分为4个等级,各个等级的断板率和平均错台量的分级标准见表

8.2.2。

8.3 8.3.1 旧混凝土面层板的接缝传荷能力和板底脱空状况采用弯沉测试法调查评定。弯

沉测试宜采用落锤式弯沉仪,也可采用梁式弯沉仪,其支点不得落在弯沉盆内。

8.3.2 测定接缝传荷能力的试验荷载应接近与标准轴载的一侧轮载(50kN )。将荷载

施加在邻近接缝的路面表面,实测接缝两侧边缘的弯沉值。按式(8.3.2)计算接缝的传荷系数。 ()100%u

j l

w k w =? (8.3.2) 式中:

j k ——接缝传荷系数;

u w ——未受荷板接缝边缘处的弯沉值; l w ——受荷板接缝边缘处的弯沉值。

8.3.3 旧混凝土面层的接缝传荷能力分为4个等级,分级标准见表8.3.3。

8.3.4 板底脱空可根据面层板角隅处的多级荷载弯沉测试结果,并综合考虑唧泥和错

台发展程度以及接缝传荷能力进行判别。

8.4 旧混凝土路面结构参数调查

8.4.1 旧混凝土面层厚度的标准值可根据钻孔芯样的量测高度按式(8.4.1)计算确定。 1.04e e sh h h =- (8.4.1) 式中:

e h ——旧混凝土面层测量厚度的标准值(mm ); e h ——旧混凝土面层量测厚度的均值(mm );

sh ——旧混凝土面层厚度量测值标准差(mm )。

8.4.2 旧混凝土面层弯拉强度的标准值可采用钻孔芯样的劈裂试验测定结果按式

(8.4.2-1)和式(8.4.2-2)计算确定。 0.621 2.64r sp f f =+ (8.4.2-1) 1.04sp sp sp f f s =- (8.4.2-2) 式中:

r f ——旧混凝土弯拉强度标准值(Mpa ); sp f ——旧混凝土劈裂强度标准值(Mpa ); sp f ——旧混凝土劈裂强度测定值的均值(Mpa ); sp s ——旧混凝土劈裂强度测定值的标准差(Mpa )。

8.4.3 旧混凝土的弯拉弹性模量标准值可按式(8.4.3)计算确定。

4

100.9634

0.0915c r

E f =+

(8.4.3)

式中:

c E ——旧混凝土的弯拉弹性模量标准值(Mpa ); r f ——旧混凝土的弯拉强度标准值(Mpa )。

8.4.4 旧混凝土路面基层顶面的当量回弹模量标准值,宜采用落锤式弯沉仪(标准荷

载100KN 、承载板半径150mm )量测板中荷载作用下的弯沉曲线,按式(8.4.4-1)和式(8.4.4-2)确定。 ()

0.057

0.2220

3.602

4.031

5.63100w

SI t e E -+-= (8.4.4-1)

0300600900

w w w w SI w +++= (8.4.4-2)

式中:

t E ——基层顶面的当量回弹模量标准值(Mpa ); SI ——路面结构的荷载扩散系数; 0w ——荷载中心处弯沉值(μm );

300w 、600w 、900w ——距离荷载中心300mm 、600mm 和900mm 处的弯沉值 (μm )。

当采用落落锤式弯沉仪的条件受到限制时,出可选择在清除断裂混凝土板后的基层

顶面进行梁式弯沉测量后按式工(B.16)反算或根据基层钻芯的材料组成及性能情况依经验确定。

8.5 分离式混凝土加铺层结构设计

8.5.1 当旧混凝土路面的损坏状况和接缝传荷能力评定等级为中或次,或者新旧混凝

土板的平面尺寸不同、接缝形式或位置不对应或路拱横坡不一致时,应采用分离式混凝土加铺层。加铺层铺筑前应更换破碎板,修补裂缝,磨平错台,压浆填封板底脱空,清除夹缝中失效的填缝料和杂物,并重新封缝。

8.5.2 在旧混凝土面层与加铺层之间应设置隔离层。隔离层材料可选用沥青混凝土、

沥青砂或油毡等,不宜选用砂砾或碎石等松散粒料。沥青混合料隔离层的厚度不宜小于25mm 。

8.5.3 分离式混凝土加铺层的接缝形式和位置,按新建混凝土面层的要求布置。

8.5.4 加铺层可采用普通混凝土、钢纤维混凝土、钢筋混凝土和连续配筋混凝土。普

通混、钢筋混凝土和连续配筋混凝土加铺层的厚度不宜小于180mm ;钢纤维混凝土加铺层的厚度不宜小于140mm 。

8.5.5 加铺层和旧混凝土面层应力分析,按分离式双层板进行,计算方法见附录C 0旧

混凝土板的厚度、混凝土的弯拉强度和弹性模量标准值以及基层顶面当量回弹模量标准值,采用旧混凝土路面的实测值,按8.4节规定的方法确定。加铺层混凝土的弯拉强度标准值应符合表3.0.6的要求。加铺层的设计厚度,按加铺层和旧混凝土板的应力分别满足(3.0.3)的要求确定。

8.6 结合式混凝土加铺层结构设计

8.6.1 当旧混凝土路面的损坏状况和接缝传荷能力评定等级为优良,面层板的平面尺

寸及接缝布置合理,路拱横坡符合要求时,可采用结合式混凝土加铺层。清除

公路工程水泥及水泥混凝土试验规程

公路工程水泥及水泥混凝土试验规程 T0501—2005 水泥取样方法 1目的、适用范围和引用标准 本方法规定了水泥取样的工具、部位、数量及步骤等。 本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰硅酸盐水泥、复合硅酸盐水泥、道路硅酸盐水泥及指定采用本方法的其它品种水泥。 引用标准: GB 175-1999《硅酸盐水泥、普通硅酸盐水泥》 GB 1344—1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》 GB 12958—1999《复合硅酸盐水泥》 GB 13693—1992《道路硅酸盐水泥》 2仪器设备 ⑴袋装水泥取样器。 ⑵散装水泥取样器。 3取样步骤 3.1取样数量应符合各相应水泥标准的规定。 3.2分割样 3.2.1袋装水泥:毎1/10编号从一袋中取至少6kg。 3.2.2散装水泥:每1/10编号在5min内取至少6kg。 3.3袋装水泥取样器:随机选择20个以上不同的部位,将取样管插入水泥适当深度,用大拇指按住气孔,小心抽出取样管。将所取样品放入洁净、干燥、不易受污染的容器中。 3.4散装水泥取样器:通过转动取样内管控制开关,在适当位置插

入水泥—定深度,关闭后小心抽出。将所取样品放入洁净、干燥、不易受污染的容器中。 4样品制备 4.1样品缩分 样品缩分可采用二分器,一次或多次将样品缩分到标准要求的规定量。 4.2试验样及封存样 将每一编号所取水泥混合样通过0.9mm方孔筛,均分为试验样和封存样。 4.3 分割样 每一编号所取10个分割样应分别通过0.9mm方孔筛,不得混杂。5样品的包装与贮存 5.1样品取得后应存放在密封的金属容器中,加封条。容器应洁净、干燥、防潮、密闭、不易破损、不与水泥发生反应。 5.2封存样应密封保管3个月。试验样与分割样亦应妥善保管。5.3在交货与验收时,水泥厂和用户共同取实物试样,封存样由买卖双方共同签封。以抽取实物试样的检验结果为验收依据时,水泥厂封存样保存期为40d;以同编号水泥的检验报告为验收依据时,水泥厂封存样保存期为3个月。 5.4存放样品的容器应至少在一处加盖清晰、不易擦掉的标有编号、取样时间、地点、人员的密封印,如只在一处标志应在器壁上。 5.5封存样应贮存于干燥、通风的环境中。 6取样单 样品取得后,均应由负责取样操作人员填写取样单. T0504—2005 水泥比表面积测定方法(勃氏法) 1目的、适用范围和引用标准 本方法规定采用勃氏法进行水泥比表面积测定。

公路路基设计规范

关于发布《公路路基设计规范》、 2008-08-02 19:32:15| 分类:默认分类| 标签:|字号大中小订阅 交公路发[1995」 1141号 现批准发布《公路路基设计规范》(编号JTJO13-95)、《公路路基施工技术规范》(编号JTJ 033-95)作为行业标准,自 1996年10月1日起施行。 《公路路基设计规范》及《公路路基施工技术规范》分别由交通部第二公路勘察设计院和交通部第一公路工程总公司负责解释,由人民交通出版社出版。1986年发布的《公路路基设计规范》和《公路路基施工技术规范》同时废止。希望各单位在实践中注意积累资料,总结经验,及时将发现的问题和修改意见分别函告交通部第二公路勘察设计院和交通部第一公路工程总公司,以便修订时参考。 中华人民共和国交通部 1995年 11月 30日 目次 1 总则 2 术语、符号 2.1 术语 2.2 符号 3 施工前的准备 3.1 施工准备 3.2 施工测量 3.3 施工前的复查和试验 3.4 场地清理 3.5 试验路段。 4 路基施工的一般规定 4.1 基本要求 4.2 路基施工排水 4.3 路基施工取土和弃土 4.4 土方机械化施工 5 填方路堤的施工 5.1 一般规定 5.2 土方路堤的填筑 5.3 桥涵及其他构造物处的填筑 5.4 填石路堤 5.5 土石路堤 5.6 高填方路堤 6 挖方路堑的施工 6.1 一般规定 6.2 土方路堑的开挖 6.3 石方的开挖 6.4 深挖路堑的施工 7 路基压实 7.1 一般规定 7.2 填方地段基底的压实 7.3 压实机械的要求与选择

7.4 填方路堤的压实 7.5 路堑路基的压实 7.6 桥涵及其他构造物处填土的压实 7.7 填石路堤的压实 7.8 土石路堤的压实 7.9 高填方路堤的压实 8 路基排水 8.1 一般规定 8.2 地面水的排除 8.3 地下水的排除 8.4 高速公路、一级公路的路基排水 9 特殊地区的路基施工 9.1 水稻田地区路基施工 9.2 河、塘、湖、海地区路基施工 9.3 软土、沼泽地区路基施工 9.4 盐渍土地区路基施工 9.5 风沙地区路基施工 9.6 黄土地区路基施工 9.7 多雨潮湿地区路基施工 9.8 季节性冻融翻浆地区路基施工 9.9 多年冻土地区路基施工 9.10 岩溶地区路基施工 9.11 滑坡地段路基施工 9.12 崩坍岩堆地段路基施工 9.13 膨胀土地区路基施工 10 季节性路基施工 10.1 路基的冬季施工 10.2 路基的雨季施工 11 路基防护与加固 11.1 一般规定 11.2 坡面防护 11.3 路基冲刷防护 11.4 其他加固工程 12 公路绿化工程与环境保护 12.1 公路绿化工程 12.2 空气污染的防治 12.3 防止水、土污染和流失 13 路基整修、检查验收及维修 13.1 路基整修 13.2 检查及验收 13.3 路基维修 13.4 质量标准 附录A 本规范用词说明 附加说明

路基路面工程课程设计 (长安大学)

长安大学 路基路面工程课程设计 院(系)公路学院道路工程专业 专业土木工程 班级 姓名 学号

导师杜老师 2013年12月20日 目录 一、课程设计任务书··02 二、路面结构图··02 三、交通分析··04 四、确定路面等级和面层类型··05 五、各层材料抗压模量和劈裂强度··05 六、路面结构方案设计··05 方案一··05 方案二··07 七、方案经济技术比选··09 八、主要参考资料··09

路基路面工程课程设计任务书 课程设计分路基设计和路面设计两部分内容。以教师提供的设计资料为主,学生在查阅相关文献资料的基础上,结合当地的气候条件、地质条件、水文条件以及给定的交通条件,拟定路基路面的设计方案,对路基的稳定性、路面结构厚度的计算和验算。课程设计要求设计计算条理清晰,计算的方法和结果能符合我国现阶段路基路面设计规范的要求。 路基路面的课程设计是对路基路面工程课堂教学的必要补充和深化,通过设计让学生可以更加切合实际地和灵活地掌握路基路面的基本理论,设计理论体系,加深对路基路面设计方法和设计内容的理解,进而提高和培养学生分析、解决工程实际问题的能力。 高速公路沥青路面设计 一、设计目的: 通过本设计掌握高速公路新建沥青路面设计的基本过程和方法。 二、设计资料 东北某地(II4)拟建二级公路,全长40km(K0~k40),均采用新建沥青路面,有关资料如下: 1.公路技术等级为二级,路面宽度为9.0m。 2.交通状况,经调查交通量为4100辆/日,交通组成如表2所示,交通量年平均增长率γ= 4.9%。 交通组成表1 汽车参数表2 3.路基土质为粘性土,干湿状态为潮湿,道路冻深为160cm。 三、设计要求 1.交通分析,计算累计当量轴次; 2.拟定路面结构,并说明选用该种路面结构的原因;确定材料参数; 3.计算或验算路面结构层厚度; ①沥青路面可采用手工计算或计算机计算两种方式; ②拟定2种路面结构组合和沥青路面厚度方案,进行验算分析比较,确定最优方案; 4.绘制路面结构图,明确标出各结构层的材料、厚度和设计时使用的模量值;

公路水泥混凝土路面施工技术

公路水泥混凝土路面施工技术 包括普通混凝土(素混凝土)、钢筋混凝土、连续配筋混凝土、预应力混凝土、装配式混凝土、钢纤维混凝土和混凝土小块铺砌等面层板和基(垫)层所组成的路面。目前采用最广泛的是就地浇筑的普通混凝土路面,简称混凝土路面。所谓普通混凝土路面,是指除接缝区和局部范围(边缘和角隅)外不配置钢筋的混凝土路面。 水混凝土路面具有强度高、稳定性好、耐久性好、养护费用少、有利于夜间行车、有利带动当地建材业发展等优点。但它对水泥和水的需要量大,且有接缝、开放交通较迟、修复困难等缺点。 水泥混凝土面层铺筑的技术方法有小型机具铺筑、滑模机械铺筑、轨道摊铺机铺筑、三辊轴机组铺筑和碾压混凝土等方法。 一、模板及其架设与拆除 (1)施工模板应采用足够刚度的槽钢,轨模或钢制边侧模板,不应使用木模板、塑料模扳等易变形模板。 (2)支模前在基层上应进行模板安装及摊铺位置的测量放样,核对路面标高、面板分板、胀缝和构造物位置。 (3)纵横曲线路段应采用短模板,每块横板中点应安装在曲线切点上。 (4)模板安装应稳固、平顺、无扭曲,应能承受摊铺、振实、整平设备的负载行进,冲击和振动时不发生位移。 (5)模板与混凝土拌合物接触表面应涂脱模剂。 (6)模板拆除应在混凝土抗压强度不小于8.0MPa方可进行。 二、混摇土拌合物搅拌

(1)搅拌楼的配备,应优先选配间歇式搅拌楼,也可使用连续搅拌楼。 (2)每台搅拌楼在投入使用前,必须进行标定和试拌。在标定有效期满或搅拌楼搬迁安装后,均应重新标定。施工中应每15d校验一次搅拌楼计量精确度。搅拌楼配料计量偏差不得超过规定。不满足时,应分析原因,排除故障,确保拌合计量精确度。采用计算机自动控制系统的搅拌楼时,应使用自动配料生产,并按需要打印每天(周、旬、月)对应路面摊铺桩号的混凝土配料统计数据及偏差。 (3)应根据拌合物的粘聚性、均质性及强度稳定性试拌确定最佳拌合时间。 (4)外加剂应以稀释溶液加入,其稀释用水和原液中的水量,应从拌合加水量中扣除。 (5)拌合引气混凝土时,搅拌楼一次拌合量不应大于其额定搅拌量的90%。纯拌合时间应控制在含气量最大或较大时。 三、混凝土拌合物的运输 (1)应根据施工进度、运量、运距及路况,选配车型和车辆总数。总运力应比总拌合能力略有富余。确保新拌混凝土在规定时间内运到摊铺现场。 (2)运输到现场的拌合物必须具有适宜摊铺的工作性。不同摊铺工艺的混凝土拌合物从搅拌机出料到运输、铺筑完毕的允许最长时间应符合时间控制的规定。不满足时应通过试验,加大缓凝剂或保塑剂的剂量。(3)混凝土运输过程中应防止漏浆、漏料和污染路面,途中不得随意耽搁。自卸车运输应减小颠簸,防止拌合物离析。车辆起步和停车应平稳。

机场道路水泥混凝土路面施工方案

施工组织设计/(专项)施工方案报审表 注:本表一式三份,项目监理机构、建设单位、施工单位各一份。

南阳市城乡一体化示范区机场片区道路 工程项目 机场南四路(白河大道~黄河路) 水泥混凝土路面施工方案 编制: 审核: 审批: 中国建筑第七工程局有限公司 二0一五年十月二日

机场南四路水泥混凝土路面施工方案 一、工程概况 机场南四路(白河大道~黄河路)为南阳新区核心区一条东西走向道路,道路等级为城市次干道,红线宽度18米,其作为区域路网骨架得一部分,建成后为整个区域得开发建设提供基础设施保障。 机场南四路(白河大道~黄河路)为新建工程,西起白河大道交叉口(K0+020),东至黄河路交叉口(K1+651、14),全长约1613、14m,机动车道下基层采用16cm厚水泥稳定级配碎石(4%),上基层为16cm厚水泥稳定级配碎石(5%),其中K0+329-K0+646、419段上基层为20cm厚C30水泥混凝土。 二、编制依据 1、《公路水泥混凝土路面施工技术规范》JTG F30—2014; 2、机场南四路(白河大道~黄河路)道路工程设计图纸; 3、《城镇道路工程施工与质量验收规范》GJJ 1-2008; 三、人员及机械组织 我项目部选择具有丰富施工经验得管理人员负责本工程得施工,由于工程量较小,拟采用人工摊铺,平板振动器振捣得方法施工,合理调配人员与机械设备,项目部管理人员名单如下: 项目部主要人员及职责安排

我项目部选择专业得水泥混凝土施工队伍负责本段混凝土路面得施工,根据本工程具体情况,拟投入作业人员15人,机械设备如下表: 四、施工方案 (一)施工放样 (1)在验收合格得4%水泥稳定碎石基层上进行施工放样工作,直线每段10米一桩,曲线段每5米一桩。同时要在胀缝,缩缝位置相应在路边各设一边桩。 (2)根据定位出得中心线及边桩,浇筑前在现场根据设计图纸划分

路基路面工程课程设计

设计说明书 设计任务 一、设计资料: 设计路线K58+070—K58+130,傍山路线,设计高程为1600.50,山坡为砾石地层,附近有开挖石方路堑的石炭岩片石可供作挡土墙材料。 1、设计路段为直线段,横断面资料见附。 2、山坡基础为中密砾石土,摩阻系数f=0.4,基本承载为[σ]=520KPa。 3、填土边坡为1:m=1:1.5,路基宽度为7.0米。 4、墙背填料为就地开挖砾石土,容重为γ =18.6KN/m3,计算内摩阻角 ?=35?。 5、墙体用5号砂浆砌片石,容重为γ=22.5 KN/m3,容许压应力 ?=17.5?。 [σ]=2450KPa,容许剪应力[τ]=862.4KPa,外摩阻力δ=/2 6、设计荷载为汽-20 7、稳定系数:滑动稳定系数[kо]=1.3,倾覆稳定系数[kс]=1.5 二、设计成果 1、详细的设计计算书: ①分析确定挡土墙设计方案,选择挡土墙形式(最好以两个墙型工程量比较 后确定); ②挡土墙基础与断面设计:确定基础形式与埋置深度;拟定墙身断面尺寸; 计算荷载换算土层厚;主动土压力计算。 ③稳定性验算。 2、按横断面资料绘制等高线地形图(比例1:200),路线横断面图(1:200), 路基外侧边缘地形图(1:200)并在其上进行挡土墙布置,得出挡土墙平面图、横断面图和立面图。 三、参考文献 1、《公路设计手册-路基》 2、《路基路面工程》课本 设计步骤(供参考) 一、设计说明:(抄任务书有关内容) 二、绘制平面图及横断面图(见任务书附) 三、确定设计方案: 1、阐述设挡土墙的理由; 2、选定挡土墙的类型(路堤、路肩、路堑),要有比较; 3、选定挡土墙的形式(仰斜、俯斜、衡重等),最好选两种分别计算。 四、初拟断面尺寸 1、确定分段长及路堤的衔接方式; 2、确定基础埋深、墙高及墙背倾角; 3、绘出挡土墙的立面图; 4、初拟其它部位的尺寸(按各部分对尺寸的基本要求拟定)。 h 五、计算换算土层厚

乡村公路水泥砼路面工程施工设计方案

乡村公路水泥砼路面工程施工组织设计

1.施工组织设计文字说明 1.1编制依据及原则 1.1.1编制依据 1、乡村公路水泥砼路面工程施工图设计文件(第一册) 2、现行城市道路设计规,公路工程施工技术规程及相应的质量检验评标准。 3、本单位拥有的科技成果、管理水平、技术设备力量,多年积累的公路施工。 4、经验用施工现场及周围环境的调查所掌握有关资料。 1.1.2编制原则 1、单位工程合格率100%。 2、遵循招标文件各项条款要求,严格按照设计标准,现行施工规和质量检验评定标准,正确组织施工,确保工程质量合格。 3、根据工期要求,抓住关键线路,合理安排施工进度,搞好工序衔接,达到均衡生产,在保证工程质量、安全的前提下,尽量缩短工期。 4、坚持实事的原则,在制定施工方案中,充分发挥我队专业化、机械化的施工优势,借鉴以往类似工程施工经验,坚持科学管理、精心施工,确保高速度、高质量、高效益地完成本合同段的建设。

5、科学合理配置资源,做到机械化作业、流水作业和标准化作业,合理配备劳动力资源,加强部管理,降低工程成本,提高经济效益。 6、在满足业主各种要求的前提下,确保实现进度、质量、安全的预期目标。 1.2工程概况及主要工程数量 1.2.1工程简介: 本合同项目为乡村水泥砼路面工程,工程地点位于横河子村,路线经乌兰坝村、太平屯,终点至乌兰坝林场。工程围:全长21.00KM(含6.00公里支线),设计技术标准为山岭重丘四级公路,路基宽7.5M,路面宽5.5M,水泥砼路面。K22+750—K26+684.853段路基宽6.5,路面宽3.5m。 本工程的设计指标为:公路路线等级采用部颁四级公路标准,设计行车速度20 公里/小时,桥涵处设计为过水路面。设计交通等级为轻型,设计年限为20 年。 1.2.2场地工程地质、水文条件: 本合同段工程位于乡村公路段,原道为乡道林宝线(Y101) 1.2.3气候条件 本合同段施工地区属温带大陆性季风气候,年平均降雨量310—400毫米,最大冻深1.85m. 1.2.4设计标准 1、道路等级:公路路线等级采用部颁四级公路标准

农村公路水泥混凝土路面施工工艺流程

农村公路(水泥混凝土路面)施工工艺、流程 一、施工准备工作 1、准备施工机械设备与质量检测仪器 1)主要机械(压路机、推土机、装载机、洒水车、混合料运输车、搅拌机、振动梁、振捣棒、压纹器等等)的数量、型号、性能及配套施工能力应满足施工的最少配置要求,同时还要求满足工程进度的要求。 2)试试验检测设备应能满足本工程施工质量与施工进度的基本要求。 2、对原材料进行源头控制,按规定频率进行自检,报请试验室对原材料按规定频率进行抽检,不合格材料不允许进场,已进场的不合格材料必须清除出场。进场的原材料必须进行明显标识,主要包括原材料名称、产地、进场日期、数量、检验就是否合格等。 3、堆料场、拌与场 1)拌与场的粗、细集料的存放场地必须硬化处理隔水隔泥,隔仓并设有良好的排水设施。水泥、生石灰、熟石灰分仓堆放,生石灰硝化场达到环保要求。水泥、石灰、细集料要求有防雨措施。 2)、拌与场要有明确的水泥混凝土、水泥稳定粒料、水泥砂浆、砂灰碎石等混合料配合比牌子,内容包括设计配合比、施工配合比。 4、混合料组成设计、配合比 承包人必须到试验室进行混合料的组成设计。组成设计包括:根据稳定的材料指标要求,通过试验选取合适的集料、水泥与石灰,确定合格的集料配合比、水灰比、坍落度,水泥与石灰剂量与混合料的最佳含水量。合理的混合料

配合比必须达到强度要求,具有较小的温缩与干缩系数(现场裂缝较少),施工与易性好(粗集料离析较小)。 5、认真检查每块模板高度,高度不够的模板应清除出场。 二、试验检测 按规定频率检查原材料(砂石级配、含水量、含泥量、石灰、水泥)、水泥用量、石灰剂量、混合料强度、弯沉、压实度、厚度、宽度、平整度、横坡等。 三、施工过程控制 (一)、天然级配砂砾石底基层 A、试铺试验路段 1.下承层的检查 天然级配砂砾石底基层铺筑前,应对土路基(或片石垫层)的表面进行检查。对表面的浮土、积水等应清除干净。 2.通过试铺确定以下内容,为正式施工提供依据 1)确定一次铺筑的合适厚度与松铺系数。 2)确定标准施工方法。例:碾压机械组合:顺序、速度、遍数。养生的方法、时机及洒水间隔时间。 3)确定每一作业段的合适长度。 B、施工过程检查 1.施工现场的检查 1)在砂砾石摊铺前,对放样进行复核,检查挂线宽度、高度、线型。 2)对施工段落的作业面表面进行检查,表面要干净、无浮土、积水。

路基路面工程课程设计(+心得)

《路基路面工程》课程设计

沥青路面设计 方案一: (1)轴载换算及设计弯沉值和容许拉应力计算 序号车型名称前轴重(kN) 后轴重(kN) 后轴数后轴轮组数后轴距(m) 交通量 1 三菱T653B 29.3 48 1 双轮组2000 2 日野KB222 50.2 104. 3 1 双轮组1000 3 东风EQ140 23.7 69.2 1 双轮组2000 4 解放CA10B 19.4 60.8 5 1 双轮组1000 5 黄河JN163 58. 6 114 1 双轮组1000 设计年限12 车道系数 1 序号分段时间(年) 交通量年增长率 1 5 6 % 2 4 5 % 3 3 4 % 当以设计弯沉值为指标及沥青层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4606 设计年限一个车道上累计当量轴次: 2.745796E+07 当进行半刚性基层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4717 设计年限一个车道上累计当量轴次: 2.811967E+07 公路等级二级公路 公路等级系数 1.1 面层类型系数 1 基层类型系数 1 路面设计弯沉值: 21.5 (0.01mm) 层位结构层材料名称劈裂强度(MPa) 容许拉应力(MPa) 1 细粒式沥青混凝土 1 .28 2 粗粒式沥青混凝土.8 .21 3 石灰水泥粉煤灰土.8 .3 4 天然砂砾 (2)新建路面结构厚度计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 路面设计弯沉值: 21.5 (0.01mm)

路面设计层层位: 4 设计层最小厚度: 10 (cm) 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 容许应力(MPa) (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 1.2 2 粗粒式沥青混凝土7 1200 1300 .8 3 石灰水泥粉煤灰土25 900 900 .4 4 天然砂砾? 250 250 5 土基32 按设计弯沉值计算设计层厚度: LD= 21.5 (0.01mm) H( 4 )= 80 cm LS= 22.2 (0.01mm) H( 4 )= 85 cm LS= 21.5 (0.01mm) H( 4 )= 85 cm(仅考虑弯沉) 按容许拉应力验算设计层厚度: H( 4 )= 85 cm(第1 层底面拉应力验算满足要求) H( 4 )= 85 cm(第2 层底面拉应力验算满足要求) H( 4 )= 85 cm(第3 层底面拉应力验算满足要求) 路面设计层厚度: H( 4 )= 85 cm(仅考虑弯沉) H( 4 )= 85 cm(同时考虑弯沉和拉应力) 验算路面防冻厚度: 路面最小防冻厚度50 cm 验算结果表明,路面总厚度满足防冻要求. 通过对设计层厚度取整, 最后得到路面结构设计结果如下: 细粒式沥青混凝土 3 cm 粗粒式沥青混凝土7 cm 石灰水泥粉煤灰土25 cm 天然砂砾85 cm 土基 (3)竣工验收弯沉值和层底拉应力计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 计算信息 (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 计算应力

公路水泥混凝土路面面层施工工艺

公路水泥混凝土路面面层施工工艺 水泥混凝土路面面层施工工艺 混凝土板的施工工艺为安装模板、安设传力杆、混凝土拌和与运输、混凝土摊铺和振捣、表面修整、接缝处理、混凝土养护和填缝。 1、安装模板 模板宜采用钢模板,弯道等非标准部位以及小型工程也可采用木模板。模板应无损伤,有足够的强度,内侧和顶、底面均应光洁、平整、顺直,局部变形不得大于3mm,振捣时模板横向最大挠曲应小于4mm,高度应与混凝土路面板厚度一致,误差不超过 ±2mm,纵缝模板平缝的拉杆穿孔眼位应准确,企口缝则其企口舌部或凹槽的长度误差为钢模板±1mm,木模板±2mm。 2、安设传为杆 当侧模安装完毕后,即在需要安装传力杆位置上安装传为杆。 当混凝土板连续浇筑时,可采用钢筋支架法安设传力杆。即在嵌缝板上预留园孔,以便传力杆穿过,嵌缝板上面设木制或铁制压缝板条,按传力杆位置和间距,在接缝模板下部做成倒U形槽,使传力杆由此通过,传力杆的两端固定在支架上,支架脚插入基层内。 当混凝土板不连续浇筑时,可采用顶头木模固定法安设传为杆。即在端模板外侧增加一块定位模板,板上按照传为杆的间距及杆径、钻孔眼,将传力杆穿过端模板孔眼,并直至外侧定位模板孔眼。两模板之间可用传力杆一半长度的横木固定。继续浇筑邻板混凝土时,拆除挡板、横木及定位模板,设置接缝板、木制压缝板条和传力杆套管。3、摊铺和振捣 对于半干硬性现场拌制的混凝土一次摊铺容许达到的混凝土路面板最大板厚度为22~24cm;塑性的商品混凝土一次摊铺的最大厚度为26cm。超过一次摊铺的最大厚度时,应分两次摊铺和振捣,两层铺筑的间隔时间不得超过3Omin,下层厚度约大于上层,且下层厚度为3/5。每次混凝土的摊铺、振捣、整平、抹面应连续施工,如需中断,应设施工缝,其位置应在设计规定的接缝位置。振捣时,可用平板式振捣器或插入式振捣器。 施工时,可采用真空吸水法施工。其特点是混凝土拌合物的水灰比比常用的增大5%~10%,可易于摊铺、振捣,减轻劳动强度,加快施工进度,缩短混凝土抹面工序,改善混凝土的抗干缩性、抗渗性和抗冻性。施工中应注意以下几点: 1) 真空吸水深度不可超过30cm。 2) 真空吸水时间宜为混凝土路面板厚度的1.5倍(吸水时间以min计,板厚以cm 计)。 3) 吸垫铺设,特别是周边应紧贴密致。开泵吸水一般控制真空表lmin内逐步升高到400~500mmHg,最高值不宜大于650~700mgHg,计量出水量达到要求。关泵时,亦逐渐减少真空度,并略提起吸垫四角,继续抽吸10~15s,以脱尽作业表面及管路中残余水。 4) 真空吸水后,可用滚杠或振动梁以及抹石机进行复平,以保证表面平整和进一步增强板面强度的均匀性。 4、接缝施工 纵缝应根据设计文件的规定施工,一般纵缝为纵向施工缝。拉杆在立模后浇筑混凝土

公路路基设计规范版

公路路基设计规范最新版 一说到公路路基设计规范2015,相关建筑人士还是比较陌生的,最新版公路路基设计规范相比旧版修订哪些内容呢以下是为建筑人 士公路路基设计规范最新版基本内容,具体内容如下: 通过本网站建筑知识专栏的知识整理,梳理相关建筑施工企业的公路路基设计规范基本概况: 《公路路基设计规范(JTGD30-2004)》主要内容:《公路路基设计规范》的修订是根据交通部交公路发[2000]722号关于下达2000年度公路工程标准规范定额等编制和修订工作计划的通知和交公路发[2002]288号发布公路工程标准规范体系的精神进行的。 最新版公路路基设计规范历史演变: 《公路粉煤灰路堤设计与施工技术规范》JTJ016-93、《公路软土地基路堤设计与施工技术规范》JTJ017-96、《公路土工合成材料应用技术规范》JTJ019-98)、《公路路基设计规范》JTJ013-95 、《公路路基设计规范》 JTG D30-2004 、《公路路基设计规范》 JTG D30-2015

公路路基设计规范修订内容: 1)原规范3.2 节路床根据交通荷载等级调整了路床深度范围;提出了路基结构回弹模量的控制标准及指标预估方法。 2)填方路基 补充了填方路基高度的设计原则与确定路堤高度的方法。 3)高路堤与陡坡路堤修订了路堤稳定性分析方法;补充了高填方路基在连续降雨工况、地震工况下稳定安全系数及稳定性分析方法。 4)将原规范3.9 节粉煤灰路堤改为轻质材料路堤;增加了土工泡沫塑料路堤、泡沫轻质土路堤;明确了轻质材料路堤结构设计、材料设计与稳定性、沉降验算要求。 5)增加3.10 节工业废渣路堤

路基路面工程课程设计

路基路面工程课程设计任务书2014年 3 月12 日至2014 年 4 月20 日 课程名称:路基路面工程实训 专业班级: 姓名: 学号: 指导教师: 2014年3月18日XX公路A标段路基路面结构设计

一、路基稳定性设计 该路段某段路基填土为粘土,填土高度为8米,边坡为直线型,土的重度 γ=18.6KN/m3,土的内摩擦角φ=12°,粘聚力系数C=16.7MPa,设计荷载为公路I 级。 二、路基挡土墙设计 该标段某路基需设计重力式挡土墙,填料为砂性土,土的重度γ=15KN/m3,内摩擦角υ=36°,粘聚力c=10Kpa;最大密实度16.8KN/m3;挡土墙设计参数为:基底摩阻系数:f=0.4;基底承载力:[σ0]=360Kpa;墙身材料:25#浆砌片石,2.5#砂浆,重度γ=24KN/m3,容许压应力[σ]= 580KPa,容许剪应力[τ]= 90Kpa,容许拉应力。 [σw1]=40Kpa;墙身与填料摩擦角:δ=1/2φ;挡土墙最大填土高度为6米。 三、路面工程设计 1、路段初始年交通量,见表1(辆/天)。 表1 汽车交通量的组合 组车型ⅠⅡⅢⅣⅤⅥⅦⅧ解放 220 150 180 160 200 140 200 230 CA10B 解放 150 180 200 220 180 240 170 150 CA30A 东风 170 210 110 180 200 160 150 140 EQ140 黄河 80 100 170 110 90 130 80 90 JN150 黄河 120 100 150 200 180 160 180 190 JN162 黄河 160 80 60 210 230 200 120 100 JN360 长征 180 220 200 150 170 170 160 190 XD160 交通 120 260 230 70 50 100 120 120 SH141 2、交通量增长率取5%,柔性路面设计年寿命15年,刚性路面设计寿命25年,路面材料参数取规范中的数值,自然区划为Ⅲ区,进行柔性和刚性路面设计。 设计一路基稳定性设计 一、设计资料:

水泥混凝土道路工程施工设计方案

1.施工组织设计文字说明 1.1编制依据及原则 1.1.1编制依据 1、乡村公路水泥砼路面工程施工图设计文件(第一册) 2、现行城市道路设计规,公路工程施工技术规程及相应的质量检验评标准。 3、本单位拥有的科技成果、管理水平、技术设备力量,多年积累的公路施工。 4、经验用施工现场及周围环境的调查所掌握有关资料。 1.1.2编制原则 1、单位工程合格率100%。 2、遵循招标文件各项条款要求,严格按照设计标准,现行施工规和质量检验评定标准,正确组织施工,确保工程质量合格。 3、根据工期要求,抓住关键线路,合理安排施工进度,搞好工序衔接,达到均衡生产,在保证工程质量、安全的前提下,尽量缩短工期。 4、坚持实事的原则,在制定施工方案中,充分发挥我队专业化、机械化的施工优势,借鉴以往类似工程施工经验,坚持科学管理、精心施工,确保高速度、高质量、高效益地完成本合同段的建设。 5、科学合理配置资源,做到机械化作业、流水作业和标准化作

业,合理配备劳动力资源,加强部管理,降低工程成本,提高经济效益。 6、在满足业主各种要求的前提下,确保实现进度、质量、安全的预期目标。 1.2工程概况及主要工程数量 1.2.1工程简介: 本合同项目为乡村水泥砼路面工程,工程地点位于横河子村,路线经乌兰坝村、太平屯,终点至乌兰坝林场。工程围:全长21.00KM(含6.00公里支线),设计技术标准为山岭重丘四级公路,路基宽7.5M,路面宽 5.5M,水泥砼路面。K22+750—K26+684.853段路基宽6.5,路面宽3.5m。 本工程的设计指标为:公路路线等级采用部颁四级公路标准,设计行车速度20 公里/小时,桥涵处设计为过水路面。设计交通等级为轻型,设计年限为20 年。 1.2.2场地工程地质、水文条件: 本合同段工程位于乡村公路段,原道为乡道林宝线(Y101) 1.2.3气候条件 本合同段施工地区属温带大陆性季风气候,年平均降雨量310—400毫米,最大冻深1.85m.

公路水泥混凝土路面工程设计规范标准

公路水泥混凝土路面工程设计规范-----------------------作者:

-----------------------日期:公路水泥混凝土路面设计规范

1 总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。 1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践经验以及环境保护要求等,通过技术经 济分析确定。水泥混凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋 配制等。水泥混凝土路面结构应按规定的安全等级和目标可靠度,承受预期的荷 载作用,并同所处的自然环境相适应,满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。 2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土 roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土 lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限 design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes 根据路面结构的重要性和破坏可能产生后果的严重程度而划分的设计等级。 2.1.12 可靠度reliability 路面结构在规定的时间内和规定的条件下完成预定功能的概率。

二级公路水泥混凝土路面厚度计算书

水泥混凝土路面厚度计算书 1 轴载换算 表1.1 日交通车辆情况表 ∑==n i i i i s P N N 1 16)100(δ 其中i δ为轴-轮系数,单轴-双轮组时,1=i δ,单轴-单轮时,按下式计算: 43.031022.2-?=i i P δ 双轴-双轮组时,按下式计算: 22.051007.1--?=i i P δ 三轴-双轮组时,按下式计算: 22.081024.2--?=i i P δ 表1.2 轴载换算结果表

2 确定交通量相关系数。 2.1 设计基准期内交通量的年平均增长率。 可按公路等级和功能以及所在地区的经济和交通发展情况,通过调查分析,预估设计基准期内的交通增长量,确定交通量年平均增长率γ。取%5=γ。 2.2车辆轮迹横向分布系数η 表2.1 车辆轮迹横向分布系数η 0.54~0.62 注:车道或行车道宽或者交通量较大时,取高值;反之,取低值。由规范得:二级公路的设计基准期为20年,安全等级为三级,取39.0=η。 ⒊ 计算基准期内累计当量轴次。 设计基准期内水泥混凝土面层临界荷位处所承受的标准轴载累计作用次数,可按下式计算确定。 [] ηγ γ365 1)1(?-+?= t s e N N 代入数据得[] 62010926.339.005 .0365 1)05.01(834?=??-+?= e N 次

属重交通等级。 4 初拟路面结构。 由规范得,相应于安全等级三级的变异水平等级为中级。根据二级公路、重交通等级和中级变异水平等级,查规范初拟普通混凝土面层厚度为0.22m 。基层选用水泥稳定粒料(水泥用量5%),厚0.18m 。垫层为0.15m 低剂量无机结合料稳定土。普通混凝土板的平面尺寸为宽4.5m,长5.0m 。纵缝为设拉杆平缝,横缝 为设传力杆的假缝。 5 路面材料参数确定。 根据规范,取普通混凝土面层的弯拉强度标准值为 5.0MPa ,相应弯拉弹性模量标准值为 31GPa 。 路基回弹模量取30MPa 。低剂量无机结合料稳定土垫层回弹模量取600MPa ,水泥稳定粒基层回弹模量取1300MPa 。 6 计算荷载疲劳应力。 新建公路的基层顶面当量回弹模量和基层当量厚度计算如下: MPa h h E h E h E x 101315 .018.015.060018.013002 22 2222122121=+?+?=++= 1 2 211221322311)11(4)(12-++++=h E h E h h h E h E D x 1 233)15 .0600118.013001(4)15.018.0(1215.06001218.01300-?+??++?+?= m MN ?=57.2 m E D h x x x 312.01013/57.212)12( 3 3/1=?== 293.4)301013(51.1122.6)(51.1122.645.045.00=?????? ?-?=?? ????-=--E E a x 792.0)30 1013(44.11)( 44.1155 .055.00=?-=-=--E E b x

农村公路水泥混凝土路面施工质量控制方案Word 文档

附件1 农村公路水泥混凝土路面 施工质量控制方案 为确保我县农村公路水泥混凝土路面施工质量得到根本保证,特制订本方案: 一、农村公路水泥混凝土路面施工质量控制方案 为全面控制好我县农村公路水泥混凝土路面的施工质量,现制订以下措施对农村公路水泥混凝土路面施工的若干指标进行控制。 (一)、水泥混凝土路面的抗折强度 1、选定最佳的混凝土配混合比 施工单位施工前一定要用所选定的水泥、砂石等材料到具有试验检测资质的试验检测单位进行送样检测及混凝土配合比试验,确定最佳试验配合比,并出具加盖检测单位公章的报告,避免浪费水泥和有意减少水泥用量的现象发生;没有确定最佳试验配合比的施工单位禁止开工,各项目管理办公室要严格检查落实。在进行最佳配合比试验时,砂石材料要选用连续级配的。在施工的过程中,要跟踪观察砂率是否合适,强度是否最佳,以便确定最佳的施工配合比。在调整砂率时,以混凝土混合料振捣后其表面是否仍有0.5cm左右厚的砂浆为最好。要把备选的水泥(原则上不允许更换水

泥)也进行配合比试验,以便更换水泥时随时调整配合比。

2、选用优质水泥 我县农村公路必须使用PO.42.5水泥(普通硅酸盐水泥),县乡道路应使用散装水泥。要根据混凝土配合比试验结果来选用水泥,选用水泥时要选用那些质量稳定、用量少且强度高的水泥。 3、选用优质砂、石料 (1)砂。其含泥量不得超过1%,且不得含有泥团,否则不得选用。要尽量选用中砂,避免使用细砂,当砂中5 mm 以上颗粒含量超过2%时要进行过筛处理。 (2)碎石料。其强度要够,压碎值不得超过15%,针片状指数不得超过15%,其中不得含有黄尖子颗粒,避免混凝土中有夹层存在。通过近几年的农村公路建设,光山县马畈、湖北大悟县等地的碎石质量比较可靠。 4、控制合适的水灰比 混凝土混合料的水灰比越小越好,但必须保证其有足够的工作性能,至少要达到在混凝土混合料最后压平时仍有良好的工作性能。在控制混凝土混合料水灰比方面,必须做到如下几点: (1)供水计量设备准确。 (2)水灰比的控制只能听前场负责人一人的指挥,并由拌合机操作手一人操作,避免多头指挥造成失误。

路基路面工程知识点

1.按照技术等级,公路分为哪几类?公路交通荷载等级有哪几类,划分依据是什么? 答:高速公路、一级公路、二级公路、三级公路、四级公路、(等外公路) 沥青路面的交通荷载等级分为四类:轻交通、中等交通、重交通、特重交通。 划分依据:设计车道累计当量轴载作用次数(次/车道)和每车道、每日平均大型客车及中型以上的各种货车交通量[辆/(d·车道)]。 水泥混凝土路面分为五类:极重、特重、重、中等、轻。 划分依据:设计基准期内设计车道临界荷位处所承受的设计轴载累计作用次数。 2.名词解释:“7918”网 答:7条首都放射线、9条南北纵向线、18条东西横向线 3.路面结构层次 答:面层、基层和路基(垫层) 第二章 1.路基填料选择依据的指标是什么? 答:CBR(填料最小强度)值 2.什么是路基的水温状况?水温共同作用对路基的典型影响是什么? 答:路基的水温状况:湿度和温度变化对路基产生的共同影响。冻胀和翻浆。积聚的水冻结后体积增大,使路基隆起而造成面层开裂,即冻胀现象。在交通繁重的地区,经重车反复作用,路基路面结构会产生较大的变形,严重时,路基土以泥浆的形式从胀裂的路面缝隙中冒出,形成了翻浆。 3.路基干湿类型划分为哪几种,分别对应于哪种情况?我国路基设计规范要求的路基干湿类型是什么?怎么确定路基的湿度状况? 答:潮湿、中湿、干燥。干燥:路基干燥稳定,路面强度和稳定性不受地下水和地表积水影响。中湿:路基上部土层处于地下水或地表积水影响的过渡带区内。潮湿:路基上部土层处于地下水或地表积水毛细影响区内。 规范108页 4.名词解释:路基工作区 答:汽车荷载通过路面传递到路基的应力与路基土自重力之比大于0.1的应力分布深度范围。 5. 表征土基承载能力的参数有哪些?含义分别是什么? 答:路基回弹模量、路基反应模量、加州承载比。 路基回弹模量:路基、路面及筑路材料在荷载作用下产生的应力与其相应的回弹应变的比值。 路基反应模量:压力与弯沉之比。 加州承载比:对应于某一贯入度的路基单位压力与相应贯入度的标准压力之比的百分数。 6.路基病害主要有哪些? 答:路基边坡塌方:剥落、碎落、滑塌、崩塌及坍塌,路基沿坡面滑动,冻胀,翻浆。

普通水泥混凝土路面

铜陵学院 课程设计任务书 课程名:路基路面工程 班级: 10土木一班 学号: 1011111033 姓名:黄颖 指导老师:谢中友老师

目录一 一、1.1普通水泥混凝土路面结构 1.设计资料 2.交通分析 3.初拟路面结构 4.路面材料参数确定 5.荷载疲劳应力 6.温度疲劳应力 7.主要参考文献 二、1.2沥青混凝土路面结构 1.设计资料 2.交通量组成分析 3.轴载分析 4.土基回弹模量值的确定 5.路面结构方案设计 6.主要参考文献

1.1普通水泥混凝土路面设计 资料:公路自然区划III 区新建一条二级公路,路基回弹模量根据以往经验取30Mpa ,采用普通混凝土路面,路面宽16m(双向四车道),经交通调查与预测知设计车道使用初期标准轴载日作用次数为3200,交通量年增长率取5%,试设计该路面厚度。 1.交通分析 由课本479页表16-20知,二级公路的设计基准期为20年,安全等级为三级。由课本459页表16-3知,临界荷位处的车辆轮迹横向分布系数取0.39。已知交通量年平均增长率为5%。按下式可计算得到设计基准期内设计车道标准荷载累计作用次数为 e N = γ 1 365N [(1+γ)t -1] η= 05 .03200 x 365[(1+0.05)20-1]×0.39=15.06x106 由表16-4可知属重交通等级。 2.由表16-20(课本479页),相应于安全等级三级的变异水平等级为中级。根据二级公路、重交通等级和中级变异水平等级,查表16-17(课本477页),初拟普通混凝土面层厚度为0.22m 。基层选用水泥稳定粒料(水泥用量5%),厚0.18m 。垫层为0.15m 低剂量无机结合料稳定土。普通混凝土板的平面尺寸为宽4.5m ,长5.0m 。纵缝为设拉杆平缝,横缝为设传力杆的假缝。 3.路面材料参数确定 按表16-23、16-25(课本480、481页),取普通混凝土面层的弯拉强度标准值为5.0MPa ,相应弯拉弹性模量标准值为31GPa 。

相关主题
文本预览
相关文档 最新文档