当前位置:文档之家› 波动和声物理力学答案

波动和声物理力学答案

波动和声物理力学答案
波动和声物理力学答案

第十章波动和声

10.1 因为波是振动状态的传播,在媒质中各体元都将重复波源的振动,所以一旦掌握了波源的振动规律,就可以得到波动规律,对不对?为什么?

解:不对。因为要知道波动规律,不仅要知道波源的振动规律,还要知道媒质的情况。 10.2在振源和无色散媒质的条件下传播机械波。(1)若波源频率增加,问波动的波长、频率和波速哪一个将发生变化?如何变?(2)波源频率不变但媒质改变,波长、频率和波速又如何变?(3)在声波波源频率一定的条件下,声波先经过温度较高的空气,后又穿入温度较低的空气,问声波的频率、波长和波速如何变化? 解:(1)频率、波长将发生变化。频率增加,波长减小。 (2)波速、波长变化,波的频率不变。 (3)因为μ

γRT v =

,声速与温度有关,所以声波先经过温度较高的空气,波速大,

穿入温度较低的空气,波速变小。 声波频率不变。 波长变短。

10.3平面简谐波中体元的振动和前一章所谈质点作简谐振动有什么不同? 解:(1)平面简谐波中作简谐振动的体元的园频率ω并非决定于振动系统本身性质,而取决于波源的频率,前一章所谈质点作简谐振动的频率决定于振动系统本身的性质。

(2)平面简谐波中体元振动的动能、势能可同时达到最大值,能量以波速向外传播,而且体元的势能是因形变而为体元所有。前一章所谈质点作简谐振动时,当动能最大时势能为零,势能最大时动能为零,振动系统的能量守衡,不向外传播,而势能属于振动质点和其它物体所共有,如:弹簧振子的势能为质点和弹簧所共有。 10.4 平面简谐波方程)(cos v

x t A y -

=ω中x 取作某常数,则方程表示位移y 作简谐振

动;若取t

等于某常数,也表示位移作简谐振动。这句话对不对?为什么? 解:不对。因为平面简谐波方程)(cos v

x t A y -

=ω中x 取作某常数,,而ω不决定于振动

系统本身性质,而取决于波源的频率,所以不表示位移y 作简谐振动。当t 等于某常数时,

表示t 时刻波线上各体元位移分布、波形,不表示位移y 作简谐振动。

10.5 波动方程

2

2

2

2

x y

t

y

??=

??ρω的推导过程用到那些力学基本规律?其使用范围如何?

解:波动方程的推导过程用到胡克定律、牛顿第二定律。使用范围:弹性媒质并且各质点的形变是在弹性限度内。

10.6用手抖动张紧的弹性绳的一端,手抖的越快,振幅越大,波在绳上传播得越快,又弱又慢的抖动,传播得较慢,对不对,为什么?

解:不对,因为波速仅与介质有关,而于波源的频率、振幅无关。手抖的快,波源频率大,但波速不变,所以传播的并不快,抖度即幅度决定于振源的振幅,所以幅度并不一定大 10.7波速和媒质内体元振动的速度有什么不同?

解:波速是一定振动状态(位相)向前传播的速度,媒质内体元振动的速度是质点位移随时间变化的速度。

10.8所谓声压即有波传播的媒质中的压强,对不对?

解:不对。因为在有声波传播的空间,某一点在某一瞬时的压强p 与没有声波时压强0p 的

差,叫做该点处该瞬时的声压。

10.9举例说明波的传播的确伴随着能量的传播,波传播能量与粒子携带能量有什么不同?

解:(1)每个体元的能量)(sin 222v

x t A dv dE -

=ωωρ,每个体元的能量由振动状态决定,

而振动状态又以波速传播,所以能量也以波速传播。例如:一质点的振动能引起邻近质点的振动,邻近质点的振动又能引起较远质点的振动,质点振动具有能量,说明能量也以波速传播。

(2)波传播能量与粒子携带能量的区别:每个体元的能量在波传播过程中是随时间作周期性变化的,而粒子携带能量不随时间变化,如光子能量hv 不随时间变化。

10.10 通过单位面积波的能量就叫能流密度。这种说法是否正确?能流密度和声强有什么区别和联系? 解:(1)不对,因为能流密度的定义为单位时间通过与波的传播方向垂直的单位面积的能量。 (2)联系:声波平均能流密度的大小叫声强。

区别:能流密度是矢量,方向沿波传播方向,声强为标量。 10.11能否想出一个测量声压从而测出声强的办法? 解:用声压计测出声压,代入声强和声压的关系式Z

p I 22

max =

即可测出声强。

10.12若两列波不是相干波,则当相遇时相互穿过且互不影响,若为相干波则相互影响。这句话对不对?

解:不对。因为不论两列波是否为相干波,是否相遇,都各自以原有的振幅、波长和频率独立传播,彼此互不影响。 10.13试举出驻波和行波不同的地方。 解:(1)行波中每个体元的能量以波速传播。驻波中没有能量的定向传播。 (2)行波波形以波速向前传播,驻波波形不变,不向前传播。 (3)行波是波,驻波不是波。

10.14若入射平面波遇到界面而形成反射平面波和透射平面波,问入射波和反射波的振幅是否可能相同?试解释之。 解:。不可能相同。`因为反射波和透射波能量都来自于入射波。

但当两媒质波阻相差悬殊时,根据反射系数=2

2121

)(z z z z +-,透射系数=1-反射系数。其中1z 与2z 为媒质1和2的波阻。此时主要是反射,可认为反射波入射波振幅相同。

10.15用手抖动两端固定的弦使其振动,能否分析基频和谐频哪一个衰减得更快一些?如何分析?

解:谐频衰减得更快一些。

因为阻尼的作用是难以避免的,振动质点要克服外界阻力做功,能量就不断减少,从而振幅不断减小,振动发生衰减。谐频的频率高,振动的快,单位时间内比基频减少的能量多,所以谐频衰减得更快一些。

10.16为什么用超声波而不是普通声波进行水中探测和医学诊断。 解:水中超声波的衰减系数比在空气中小得多,而且超声波在软组织和肌肉中衰减系数也较小,更兼超声波波长短,直进性强,遇障碍物时易形成反射,所以用超声波而不是普通声波进行水中探测和医学诊断。

10.17群速与相速有什么不同?

解:相速是行波中一定的振动位相向前传播的速度,群速是波包向前传播的速率。无色散时二者相等,有色散时二者不等。

习题

10.2.1频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。00

C 时,空气中的声速为331.5m/s ,求这两种频率声波的波长。

解:根据公式 ν

υ

λ=得

m 58.16205.3311

1==

=

νυλ m 3

2

210

58.1620000

5.331-?==

=

νυλ

10.2.2一平面简谐声波的振幅为0.001m ,频率为1483Hz ,在200C 的水中传播,写出其波方程。

解:此声波在200

C 的水中传播,其波速为s m /1483=υ

角频率 πππνω2966148322=?== A=0.001m

波方程为 )cos(υ

ωωx

t A y =

)22966c o s (001.0x t ππ =

10.2.3 已知平面简谐波的振幅A=0. 1cm ,波长1m ,周期为10-2s ,写出波方程(最简形式)。又距波源9m 和10m 两波面上的相位差是多少?

解:选波源处为坐标原点,初相位为零的时刻为计时起点

s /10

10

112

2

==

T =

波方程 ??

? ?

?

=λνπx A y

t 2cos ()[]χπ t 102cos 1023-=

m x 9=处 振动相位 ()

9t 10221 πα= m x 10=处 振动相位()

01t 10

22

2

πα=

位相差παα212=-

10.2.4 写出振幅为A,f =ν波速为c v =,沿ox 轴正方向传播的平面简谐波方程.波源在原点O ,且当t =0时,波源的振动状态被称为零,速度沿ox 轴正方向.

解:根据题意 波源的振动方程为

)cos(?ω+=t A y

)s i n (αωω+-=t A v

0=t 0c o s 0==αA y

0s i n 0>-=αωA v

解之得α=2

π

-

则波方程 ])-t (2cos[αυ

πν+=x A y = ]2

)c

(2cos[π

π-

-

x t f A

10.2.5已知波源在原点(x=0 )的平面简谐波方程为y=Acos(bt-cx) ,A,b,c 均为常量.试求(1)

振幅、频率、波速和波长;(2)写出在传播方向上距波源 处一点的振动方程式,此质点振动的初相位如何?

解:(1)振幅A

频率ππω22b

v == 波速c

b k

v ==

ω

波长λπ

2=

k c

k π

πλ22=

=

(2)距波源 处一点的振动方程式 y=Acos(bt-c )

其振动初位相为-c

10.2.6 一平面简谐波逆x 轴传播,波方程为y=)3t (2cos ++

υ

πνx

A ,试利用改变计时

起点的方法将波方程化成最简形式。

解:设相对于原来计时起点的某一时刻为 t ,相对于新的计时起点此瞬时为t /

,且新计时起点可使原点初位相为零,则 )3(22/+=t t πνπν 3/+=t t 这样原波方程化为 y= )(2cos /υ

πνx

t A +

计时起点提前3秒。

10.2.7平面简谐波方程y=)4

(2cos 5χ

π+

t ,

试用两种方法画出t=s 5

3时的波形图。

(SI )

2)平移法 )

2

56c o s (5x y π

π+= =)5

12(2

cos

5+

x π

先做出x y 2

cos

=的波形曲线,再向左平移

5

12个单位长,即得做之图线

X/m

10.2.8 λ=0.30m,画出x=0.20m 处

体元的位移-时间曲线。画出t=3s,6s 时的波形图。

解:根据已知得出平面简谐波方程为

)3

.012

(

2cos 01.0x t S -=π

m x 20.0= 处体元的振动方程为

)3

4

6cos(01.0)3212(2cos 01.0πππ-=-=t t S

S/m

-0.01

s

t3

=时的波形为)

3.0

4

1

(

2

c o s

01

.0

x

S-

s

t6

=时的波形为)

3.0

2

(

2

c o s

01

.0

S-

10.2.9

x1、、、x2、x3以及ξ1、ξ2、ξ3各质元的位移和速度为正还是为负?它们的相位如何?(对

于x2和ξ

3

只要求说明其相位在第几象限)

题图.

解:根据波动就是振动状态在空间的传播,并且沿波的传播方向各体元有一定位相落后设质元振动最高处位相为2π,这样可判断各点的相位。再根据图形判断位移的正负。根据

10.2.10图(a )、(b )分别表示t=0s 和t=2s 时的某一平面简谐波的波形图。试写出此平面简谐波波方程。

X/m x/m

解:由图可知 振幅A=2m 由已知和图可得振动在2秒钟内传播

λ4

1,则

波速s m /25.022

41

241

=?==λ

υ

频率s /125.02

25.0===λυν 由图知t=0时A y =则初位相0=α传播方向为沿着ox 正方向 故波方程为 )

(2cos 2υχ

πν-

=t y

)25

.0(25.0cos 2x

t -

)25.0(cos 2χπ-=t

10.3.1 一圆形横截面的铜丝,受张力1.0N ,横截面积为1.0mm 2。求其中传播纵波和横波时的波速各多少?铜的密度为8.9×103kg/m 3,铜的杨氏模量为12×109N/m 2

解:由已知得 T=1.0N 3

3

/109.8m kg ?=ρ Y=122

9/10m N ? 根据ρ

T

v =

横 ρ

Y

v =

得s m v /1006.1?=横 s m v /1016.13

?=纵

10.3.2 已知某种温度下水中声速为1.45×103m/s,求水的体变模量。 解:根据ρ

K

v =

得2

93)

32

/101.2101045.12

ms Kg v K ?=??==(ρ 10.4.1在直径为14cm 管中传播的平面简谐声波。平均能流密度9erg/s.cm 2,ν=300Hz, υ=300m/s.(1)求最大能量密度和平均能量密度,(2)求相邻同相位波面间的总能量。

解:(1) 根据平均能流密度的大小为v I ε=

得平均能量密度为3

5

2

4

7

/10

310

310

109m J v

I ---?=???=

又因为 2

22

1A ρωε=

而 2

2

A ρωε=最大

所以3

5

/10

62m J -?==εε最大

(2)相邻同位相波面间的距离为λ 则管在λ长的体积为ν

υπλπ22R R V ==

总能量J V E 7

5

2210

62.410

3300

300)107(14.3---?=???

??==ε

10.4.2空气中声音传播的过程可视作绝热过程,其过程方程式为=γpv 常量。求证声压p=p 1-p 0可表示作p ≈-γp 0

1v v v -,其中p 0和0v 表示没有声波传播时一定质量空气的压强

和体积,1ν是有声波时空气的体积。

证明:由绝热过程公式 pv γ=常量

两边微分 01

=+-dp V dV V p γ

γγ

则V dV

p V

dV V

p dp γ

γγ

γ-=-

=-1

而 01V V dV -≈ 0V V ≈ =-≈01p p dp P

则P 0

10

V V V p --≈γ

10.4.3 面向街道的窗口面积约40m 2,街道上的噪声在窗口的声强级为60dB,问有多少声功率传入室内(即单位时间内进入多少声能)?

解:根据声强级公式 0

lg 10I I L =

由已知 L=60 所以 6=0

lg

I I

6

10=I I 2

6

6

12

6

0/10

10

10

10

m w I I --=?=?=

窗口的面积为40m 2 则传入室内的声功率为

W IS N 5

6

10

0.44010

--?=?==

10.4.4距一点声源10m 的地方,声音的声强级为20dB 。求(1)距声源5m 处的声强级;(2)距声源多远,就听不见1000Hz 的声音了?

解:(1)根据声强级公式 ][lg 100

dB I I L =

r 1=10m 处 ][lg

100

1010dB I I L =

由于声源为点声源,故传播的波为球面波,则 2

1

222

1r r I I =其中1I 为 r 1=10m 处的声强,2I 为r 2=5m 处的声强。

112

2

2

112425

100I I r r I I ==

=

db

L I I I I I I L 262060.0104lg 10lg

104lg 104lg

10lg

10100

10

10

25=+?=+=+=== (2)由(1)知20lg

100

1=I I 得01100I I =

又刚好能听见的1000Hz 声音的声强约212/10m W -为标准声强0I 设声强为0I 处距点声源为0r 根据球面波的特点2

1

200

1r r I I =

100

1002

r I I =

m r 1000=

10.5.1 声音干涉仪用于显示声波的干涉,见图。薄膜S 在电磁铁的作用下振动。D 为声音检测器,SBD 长度可变,SAD 长度固定。声音干涉仪内充满空气。当B 处于某一位置时,在D 处听到强度为100单位的最小声音,将B 移动则声音加大,当B 移动1.65cm 时听到强度为900单位的最强音。(1)求声波的频率,(2)求到达D 处两声波振幅之比。已知声速为342.4m/s 。

S B A

D 耳朵

10.5.1题图.

解:根据题意S 的振动向两个方向传播成为两列传播方向相反的相干波,干涉结果为振

动最强和最弱的点相距4

λ

(1)由已知得cm 65.14=λ

m cm 2

106.66.6-?==λ

Hz 518810

6.64

.3422

=?=

=

υν (2)由声强公式ρυω2

22

1A I =

得出

2

2212

1A A I I =(由于两列波的频率相同且在同一媒质中传播 ,所以21ωω=

2211υρυρ=)

则3

190

1002

12

1==

=

I I A A

10.5.2

两个波源发出横波,振动方向与纸面垂直,两波源具有相同的相位,波长

0.34m 。(1)至少求出三个x 数值使得在P 点合振动最强,(2)求出三个x 数值使得在P 点合振动最弱。

两波源又具有相同的位相,即位相差恒定,由此得出两波源为相干波源。

两波源在P 点引起的振动为 )cos(11kL t A y -=ω

)](cos[22x L k t A y --=ω

其位相差kx kL t x L k t =----=?)()]([ωω 1) 要使P 点的合振动为最强 πn kx 2==? (n =0,1,2,…)

n n n x 34.022===λλ

π

π

当n =0,1,2时

0=x m x 34.0= m x 68.0= 2)要使P 点的合振动为最弱

λλ

π

π)12(2)12(+=+=n n x

π)12(+==?n kx (n =0,1,2,…)

当n =0,1,2时

m x 17.0= m x 51.0= m x 85.0=

10.5.3试证明两列频率相同、振动方向相同、传播方向相反而振幅大小不同的平面简谐波相叠加可形成一驻波与一行波的叠加。

证明:根据题意,设这两列波方程分别为 )cos(11kx t A y -=ω (1)

)cos(22kx t A y +=ω (2)

其中21A A >

根据波的叠加原理,可把第一列波视为两列频率相同、振动方向相同、传播方向相同、初相相同、振幅分别为2A 和/A 的波叠加而成,即

//

1/

1/

21)cos()cos(y y kx t A kx t A y +=-+-=ωω

显然/1y 和2y 叠加而成驻波,而//

1y 为一行波,即

)

cos()cos()cos(/

2221kx t A kx t A kx t A y y -+++-=+ωωω

L P

L-x

)c o s (c o s )c o s 2(/

2kx t A t kx A -+=ωω证毕

10.5.4入射波)]34

(2000cos[10104x t y -

?=-π在固定端反射,

坐标原点与固定端相距0.51m ,写出反射波方程。无振幅损失。(SI )

解:由已知条件可知反射波与入射波有相同的振幅、频率、波长,因此只需求出反射波在原点的初相φ即可得出反射波的波方程。

对入射波而言,设固定端比原点位相落后1φ,在原点0=x ,质点的振动方程为在

t

A y ωcos 1=

在固定端L x =质点的振动表达式为)cos(2kL t A y -=ω 则λ

π

λπ

φ251

.021==

=L kL

在固定端反射,有半波损失,即反射波比入射波在固定端位相落后π 则在固定端,反射波的位相为

πφωφ--=12t

根据已知条件,反射波在原点的位相比在固定端的位相又落后λ

π

251.0

故反射波在原点的初相 πλ

π

φπφφ-??-

=---=251.0211

πππ6151.01000

3422-=-??-

=

则反射波方程为]61)34(2000cos[10104

/ππ-+?=-x t y ])34(2000cos[10

104

ππ-+

?=-x

t

10.5.5

入射波方程为)](2cos[λ

πx

T t A y +=,在0=x 处的自由端反射,求反射波的

波方程。无振幅损失。

解:由于是在0=x 处的自由端反射,即反射处与原点距离为零,并且自由端反射无半波损失,故反射波与入射波不仅振幅、频率、波长、振动方向相同,而且初相也相同 则反射波方程为

)(

2cos λ

πx

T t

A y -

= 10.5.6 图示某一瞬时入射波的波形图,在固定端反射。试画出此瞬时反射波的波形图。无振幅损失。

解:(1)首先假设无MN ,将波形图继续向右方延伸

(2)取PQ 让其到MN 的距离为半个波长,将此半个波长的波去掉(即半波损失) (3)将b 点右边的波形改为向左传播的波,并平移到A 点(即虚线部分),此波形图即反射波形图。

10.5.7 若10.5.6题图中为自由端反射,画出反射波波形图。

x 因此只需把0点右方的波形改为向左传播即可。

10.5.8 一平面简谐波自左向右传播,在波射线上某质元A 的振动曲线如图示。后来此波在前进方向上遇一障碍物而反射,并与该入射平面简谐波叠加而成驻波,相邻波节波腹距离为3m ,以质元A 的平衡位置为oy 轴原点,写出该入射波波方程。

t/s

由振动图线可知: 振幅 A=m 2.0 周期s T 2=

波速s m T

v /6==

λ

设A 点的振动表达式为 )c o s (φω+=t A x

由图中可知 当0=t 时 0=x 0)s i n (<+-==?ωωt A dt

dx v

则 φcos 0A = 0s i n 0<-=φωA v 得2

π

φ=

从而得入射波方程

]2

)122

(2cos[2.0π

π+

-

=y t x

]2

6

c o s [2.0π

π

π

+

-=y t

10.5.9 同一媒质中有两个平面简谐波波源作同频率、同方向、同振幅的振动。二波相对传播,波长8m 。波射线上A 、B 两点相距20m 。一波在A 处为波峰时,另一波在B 处

相位为-2

π

。求AB 连线上因干涉而静止的各点的位置。

解:根据题意,两波源作同频率、同方向、同振幅的振动,两波相对传播,波长均为8m ,故两波在媒质中相遇,叠加而成驻波。

以A 为坐标原点建立A —x 轴,设由A 向B 传播的波方程为

)cos(1kx t A y -=ω 其中4

822π

πλπ=

=

=

k

由B 向A 传播的波方程为 )c o s (2φω++=kx t A y

由已知条件: 一波在A 处为波峰时,另一波在B 处位相为2

π

-,得此瞬时

πω2=-kx t πω2=t 2

π

φω-

=++kx t 即2

204

φπ

π-

=+?+

得πφ2

15-

=

故)2

cos()2

15cos(2π

ωπω+

+=-

+=kx t A kx t A y

)2

cos()cos(21π

ωω+

++-=+kx t A kx t A y y

)4

c o s ()4

c o s (2π

ωπ

+

+

=t kx A

由于干涉而静止的点为0)4

cos(=+π

kx

即2

)

12(4

π

π

+=+n kx ,...)2,1,0(=n 则2

)

12(44π

π

π

+=+

n x

14+=n x

故AB 连线上因干涉而静止的各点的位置为m x 10=,m x 51=,m x 92=,m x 133=

m x 174=

10.5.10 一提琴弦长50cm ,两端固定。不用手指按时,发出的声音是A 调:440Hz 。若欲发出C 调528Hz ,手指应按在何处? 解:琴弦发出声音的音调是指基波频率 根据弦振动频率公式ρ

νT

L

n n 2=

在这里1=n 即L

T

L

2211υρ

ν=

=

当手指不按时m L L 5.01== 基频率为Hz 4401=ν 当手指按时2L L = 基频率为Hz 5282=ν

则112L v v =

2

22L v v =

1

22

1L L v v =

m m L L 2

12

1210

67.414167.05.0528

440-?==?=

=

νν

即手指按在m 2

1067.41-?处。

10.5.11张紧的提琴弦能发出某一种音调,若欲使它发出的频率比原来提高一倍,问弦内张力应增加多少倍?

解:弦振动的频率公式ρ

νT

L

n 2=

乐器发出声音的音调指基频即1=n

设变化后的频率为/ν且νν2/= 张力为/T 则有 ρνT

L

21=

ρ

ν

/

/

21T

L

=

T

T /

/

=

ν

ν

因为νν2/

= 所以

2/

=T

T 即 T T

4/

=

弦内张力应增加3倍。

10.7.1 火车以速率v 驶过一个在车站上静止的观察者,火车发出的汽笛声频率为f 。求观察者听到的声音的频率的变化。设声速是0v 。

解:此问题有两个物理过程

第一过程:声源以速率v 驶近静止的观察者,在此过程中观察者听到的声音的频率为1ν,根据多普勒效应

f v

v v -=

001ν

第二过程:声源以速率v 离开静止的观察者,在此过程中观察者听到的声音的频率为2ν,根据多普勒效应

f v v v 00

2+=ν

观察者听到的频率的变化为21νν- f f f 2

2

00000021v

v v 2v v

v v v

v v -=

+-

-=

-νν

10.7.2 两个观察者A 和B 携带频率均为1000Hz 的声源。如果A 静止,而B 以10m/s 的速率向A 运动,那么A 和B 听到的拍是多少?设声速为340m/s.

解:对于观察者A ,相当于声源(B )以速率v =10m/s 驶近静止的观察者,则A 听到的由B 传来的声音的频率为1ν,根据多普勒效应

Hz 33

34000100010

340340v

v v 001=

?-=

-=

νν

而自A 所携带的声波发出Hz 1000=ν

的声音。

则A 听到的拍为:频率为1ν、ν的两个振动的合成 拍频为s /301/

=-=ννν

对于B ,相当于观察者(A )以v =10m/s 的速率接近静止的声源,根据多普勒效应,则B 听到的由A 传来的声音的频率为2ν 34

35000)340

101(1000)v v 1(0

2=

+

?=+

=νν

而自B 所携带的声源发出1000Hz =ν的声音 则B 所听到的拍频应为ν、2ν两振动的合振动

s /292//

=-=ννν

10.7.3 一音叉以速率v s =2.5m/s 接近墙壁,观察者在音叉后面听到拍音频率3=νHz ,求音叉振动频率。声速340m/s.

解:观察者所听到的声音是由两个频率的声速叠加而成的

一是音叉以 2.5m/s v =远离观察者的声音,其频率为1ν,二是音叉以 2.5m/s v =接近墙壁发出的声音又被墙壁反射回去,其频率为2ν 设音叉的频率为0ν,根据多普勒效应 0001ννv v v +=

0002ννv

v v -=

观察者所听到的拍频35

.3423405

.337340012=-=-=νννν

Hz 2040=ν

10.7.4 在医学诊断上用多普勒效应测内脏器壁或血球的运动速度。设将频率为ν的超声脉冲垂直射向蠕动的胆囊壁,得到回声频率νν>',求胆囊壁的运动速率。设胆内声速为v 。

解:此问题为波源静止而观察者(蠕动的胆囊壁)运动的情况。蠕动的胆囊壁接收到的频率

/

ν(回声频率)为 )1(v

v /

观+

=νν

其中v 观为胆囊壁的运动速率

故胆囊壁的运动速率为v.)1(v./

-=ν

ν观

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ D ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ B ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ D ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ D ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运 动. [ B ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ D ] 1 4.5432.52-112 t (s) v (m/s) O c b a p

大学物理力学电磁学公式总结

大学物理力学电磁学公式 总结 Newly compiled on November 23, 2020

力学 复习 质点力学 刚体力学 模型: 质点 刚体 运动方程 )(t r r = )(t θθ= 轨迹方程:消去运动方程中的参数t 速度:k v j v i v v dt r d v z y x ++===τ? 角速度:dt d θω= 加速度:k a j a i a n a a dt v d a z y x n ++=+== ??ττ 角加速度:22dt d dt d θωα== 匀加速直线运动 as v v at t v s at v v 2212 02200=-+ =+= 匀角加速转动 ) (221 02022000θθαωωαωθθαωω-=-+=-+=t t t 质点的惯性——质量m 刚体的惯性——转动惯量量J 平行轴定理 2md J J c += 垂直轴定理 y x z J J J += 几个常用的J 改变质点运动的原因:F 改变刚体转动的原因:F r M ?= 牛顿第二定律 a m dt p d F == 转动定理 αJ dt dL M == 质点动量 v m p = 角动量 ωJ L = 质点系统动量 c i i v m P )(∑= 动量定理 122 1 p p dt F p d dt F t t -==? 角动量定理 1221 L L Mdt t t -=? 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功:? ?= ?=2 1 r d F A r d F dA 功:? = =2 1 θθ Md A Md dA

大学物理力学一、二章作业答案

第一章 质点运动学 一、选择题 1、一质点在xoy 平面内运动,其运动方程为2 ,ct b y at x +==,式中a 、b 、c 均为常数。当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。 A .a ; B .a 2; C .2c ; D .224c a +。 2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。 3、一质点的运动方程是j t R i t R r ωωsin cos +=,R 、ω为正常数。从t =ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。 A .2R ; B .R π; C . 0; D .ωπR 。 4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v =2j m/s 的速度通 过坐标原点,该质点任意时刻的位置矢量是[ B ]。 A .22 t i +2j m ; B . j t i t 23 23+m ; C .j t i t 343243+; D .条件不足,无法确定。 二、填空题 1、一质点沿x 轴运动,其运动方程为2 25t t x -+=(x 以米为单位,t 以秒为单位)。质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。 2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。该质点在5s 内的平均速度的大小为 2m/s ,平均加速度的大小为 22 m /5 s π 。 3、一质点沿半径为0.1m 的圆周运动,其运动方程为2 2t +=θ(式中的θ以弧度计, t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。 4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

大学物理”力学和电磁学“练习题(附答案)

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

大学物理习题集力学试题

练习一 质点运动的描述 一. 选择题 1. 以下四种运动,加速度保持不变的运动是( ) (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: ( ) (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2. 3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为( ) (A) 12 m/s . (B) 11.75 m/s . (C) 12.5 m/s . (D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1,则以下说法正确的是( ) (A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示; (B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示; (C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零. 5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为( ) (A) 0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题 1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为 t = 秒. 2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点. 则质点的加速度a = (SI);质点的运动方程为x = (SI). 3. 一质点的运动方程为r=A cos ω t i+B sin ω t j , 其中A , B ,ω为常量.则质点的加速度矢量 为 图1.1

大学物理考试题目及答案2

1.1下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 22484dx v t dt d x a dt ==+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。因加速度为正所以是加速的 1.3 一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求: (1) 第2秒内的平均速度;(2)第2秒末的瞬时速度; (3) 第2秒内的路程. 解:(1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) 由v =9t - 6t 2 可得:当t<1.5s 时,v>0; 当t>1.5s 时,v<0. 所以 S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m

1.8 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 3 4t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 70551021102s m 190102310432101 210=+?+?=?=?+?=-x v 2.8 一颗子弹由枪口射出时速率为10s m -?v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位: (1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量;(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有 0)(=-=bt a F ,得b a t = (2)子弹所受的冲量

大学物理电磁学知识点总结

大学物理电磁学知识点总结 导读:就爱阅读网友为您分享以下“大学物理电磁学知识点总结”资讯,希望对您有所帮助,感谢您对的支持! 大学物理电磁学总结 一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。 uuu r q q ur F21 = k 1 2 2 er r ur u r 高斯定理:a) 静电场:Φ e = E d S = ∫ s ∑q i i ε0

(真空中) b) 稳恒磁场:Φ m = u u r r Bd S = 0 ∫ s 环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁 ∫ L ur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中) L 电磁学 静电场 稳恒磁场稳恒磁场

电场强度:E 磁感应强度:B 定义:B = ur ur F 定义:E = (N/C) q0 基本计算方法:1、点电荷电场强度:E = ur r u r dF (d F = Idl × B )(T) Idl sin θ 方向:沿该点处静止小磁针的N 极指向。基本计算方法:ur q ur er 4πε 0 r 2 1 r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r 2、连续分布的电流元的磁场强度: 2、电场强度叠加原理: ur n ur 1 E = ∑ Ei = 4πε 0 i =1

r qi uu eri ∑ r2 i =1 i n r ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 2 3、安培环路定理(后面介绍) 4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度: ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur ? dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 0 4、高斯定理(后面介绍) 5、通过电势解得(后面介绍) 几种常见的带电体的电场强度公式: 几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:电流轴线上:B = ur 1、点电荷:E = q ur er 4πε 0 r 2 1

大学物理复习题(力学部分)

A. 8m/s,16m/s2. B. -8m/s, -16m/s2. C. -8m/s, 16m/s2. D. 8m/s, -16m/s2. 7、若某质点的运动方程是r=(t2+t+2)i+(6t2+5t+11)j,则其运动方式和受力状况应为[ ]. A.匀速直线运动,质点所受合力为零 B.匀变速直线运动,质点所受合力是变力 C.匀变速直线运动,质点所受合力是恒力 D.变速曲线运动,质点所受合力是变力 8、以下四种运动,加速度矢量保持不变的运动是 [ ]. A. 单摆的运动; B. 圆周运动; C. 抛体运动; D. 匀速率曲线运动. 9、质点沿XOY平面作曲线运动,其运动方程为:x=2t, y=19-2t2. 则质点位置矢量与速度矢量恰好垂直的时刻为[ ] A. 0秒和3.16秒. B. 1.78秒. C. 1.78秒和3秒. D. 0秒和3秒. 10、一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中,[ ]。 A.物体的加速度是不断变化的 B.物体在最高处的速率为零 C.物体在任一点处的切向加速度均不为零 D.物体在最高点处的法向加速度最大 11、如图所示,两个质量分别为m A,m B的物体叠合在一起,在水平面上沿x轴正向做匀减速直线运动,加速度大小为a,,A与B之间的静摩擦因数为μ,则A作用于B的静摩擦力大小和方向分别应为[ ] A. μm B g,沿x轴反向; B. μm B g,沿x轴正向; C. m B a,沿x轴正向; D. m B a,沿x轴反向. 12、在下列叙述中那种说法是正确的[ ] A.在同一直线上,大小相等,方向相反的一对力必定是作用力与反作用力; B.一物体受两个力的作用,其合力必定比这两个力中的任一个为大; C.如果质点所受合外力的方向与质点运动方向成某一角度,则质点一定作曲线运动; D.物体的质量越大,它的重力和重力加速度也必定越大。

大学物理力学一、二章作业答案

大学物理力学一、二章 作业答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点运动学 一、选择题 1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。 A .a ; B .a 2; C .2c ; D .224c a +。 2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。 3、一质点的运动方程是j t R i t R r ωωsin cos +=,R 、ω为正常数。从t = ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。 A .2R ; B .R π; C . 0; D .ωπR 。 4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v =2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。 A .22 t i +2j m ; B .j t i t 23 23+m ; C .j t i t 343243+; D .条件不足,无法确定。 二、填空题 1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。该质点在5s 内 的平均速度的大小为 2m/s ,平均加速度的大小为 22 m /5 s π 。 3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。 4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45 o角时角位移是 3 8 rad 。 5、飞轮半径0.4m ,从静止开始启动,角加速度β=0.2rad/s 2。t =2s 时边缘各点的速度为 0.16m/s ,加速度为 0.102m/s 2 。 6、如图1-2所示,半径为R A 和R B 的两轮和皮带连结,如果皮带不打滑,则两轮的角速度=B A ωω: R R A B : ,两轮边缘A 点和B 点的切向加速度 =B A a a ττ: 1:1 。 三、简述题 1、给出路程和位移的定义,并举例说明二者的联系和区别。 2、给出瞬时速度和平均速度的定义,并举例说明二者的联系和区别。 3、给出速度和速率的定义,并简要描述二者的联系和区别。 4、给出瞬时加速度和平均加速度的定义,并简要描述二者的联系和区别。 四、计算题 图1-2

大学物理复习题答案力学

大学物理力学复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.下列运动中,加速度a 保持不变的是 ( D ) A .单摆的摆动 B .匀速率圆周运动 C .行星的椭圆轨道运动 D .抛体运动。 2.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( D ) A .匀加速直线运动,加速度沿x 轴正方向 B .匀加速直线运动,加速度沿x 轴负方向 C .变加速直线运动,加速度沿x 轴正方向 D .变加速直线运动,加速度沿x 轴负方向 3. 某物体作一维运动, 其运动规律为 dv kv t dt =-2, 式中k 为常数. 当t =0时, 初速为v 0,则该物体速度与时间的关系为 ( D ) A .v kt v =+2012 B .kt v v =-+2011 2 C .kt v v =-+201112 D .kt v v =+20 1112 4.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) ( C ) A .dv dt B .v R 2 C .dv v dt R -??????+?? ? ? ???????? 1242 D . dv v dt R +2 t a t dt dx v 301532 -=-==

5、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示 切向加速度,对下列表达式:(1) a dt dv =;(2) v dt dr =;(3) v dt ds =;(4) t a dt v d = ,下列判断正确的是 ( D ) A 、只有(1)(4)是对的; B 、只有(2)(4)是对的; C 、只有(2)是对的; D 、只有(3)是对的。 6.质点作圆周运动,如果知道其法向加速度越来越小,则质点的运动速度 ( A ) A 、 越来越小; B 、 越来越大; C 、 大小不变; D 、不能确定。 7、一质点在做圆周运动时,则有 ( C ) A 、切向加速度一定改变,法向加速度也改变; B 、切向加速度可能不变,法向加速度一定改变; C 、切向加速度可能不变,法向加速度不变; D 、切向加速度一定改变,法向加速度不变。 8.一质点在外力作用下运动时,下列说法哪个正确 ( D ) A .质点的动量改变时,质点的动能也一定改变 B .质点的动能不变时,质点的动量也一定不变 C .外力的功为零,外力的冲量也一定为零 D .外力的冲量为零,外力的功也一定为零 9、一段路面水平的公路,拐弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽 车不至于发生侧向打滑,汽车在该处的行使速率 ( C ) A .不得小于gR μ B .必须等于gR μ C .不得大于gR μ D .还应由气体的质量m 决定

大学物理力学电磁学公式总结

力学复习 质点力学 刚体力学 模型: 质点 刚体 运动方程 )(t r r = )(t θθ= ?? ? ??===)()()(t z z t y y t x x 轨迹方程:消去运动方程中的参数t 速度:k v j v i v v dt r d v z y x ++===τ? 角速度:dt d θω= dt ds v v v v dt dz v dt dy v dt dx v z y x z y x =++==== 2 22,, 加速度:k a j a i a n a a dt v d a z y x n ++=+== ??ττ 角加速度:22dt d dt d θωα== 2 222222 ,,,n z y x n z z y y x x a a a a a a r r v a r dt dv a dt dv a dt dv a dt dv a += ++======== ττωα 匀加速直线运动 as v v at t v s at v v 2212 02200=-+ =+= 匀角加速转动 ) (221 02022000θθαωωαωθθαωω-=-+=-+=t t t 质点的惯性——质量m 刚体的惯性——转动惯量量J dm r J ?= 2 平行轴定理 2 md J J c += 垂直轴定理 y x z J J J += 几个常用的J 改变质点运动的原因:F 改变刚体转动的原因:F r M ?=

牛顿第二定律 a m dt p d F == 转动定理 αJ dt dL M == 质点动量 v m p = 角动量 ωJ L = 质点系统动量 c i i v m P )(∑= 动量定理 122 1 p p dt F p d dt F t t -==? 角动量定理 122 1 L L Mdt t t -=? 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功:? ?= ?=2 1 r d F A r d F dA 功:? = =2 1 θθ Md A Md dA 功率:v F N ?= 功率:ω ?=M N 动能定理:看课合力E E A -== 动能定理:看课合力矩E E A -== 动能: 221mv E k = 动能: 22 1 ωJ E k = 保守力的功 21p p p E E E A -=?-= 重力势能:mgh E p = 重力势能:c p mgh E = 弹性势能:22 1kx E p = 万有引力势能:r m m G E p 2 1-= 机械能守恒条件:只有保守内力做功 碰撞:动量守恒 碰撞:角动量守恒 碰撞定理:0 20112n n n n v v v v e --= (0≤e ≤1)

《大学物理学》第二版上册课后答案

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相 等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什 么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一 定保持不变? (5) r ?和r ?有区别吗?v ?和v ?有区别吗? 0dv dt =和0d v dt =各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求 出22r x y = + dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a =你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此 其法向加速度也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均

大学物理力学作业分析(5)

大学物里作业分析(5)(2007/04/24) 5.4 求下列刚体对定轴的转动惯量 (1) 一细圆环,半径为R ,质量为m 但非均匀分布,轴过环心且与环面垂直; (2) 一匀质空心圆盘,内径为R 1,外径为R 2,质量为m ,轴过环中心且与环面垂直; (3) 一匀质半圆面,半径为R ,质量为m ,轴过圆心且与圆面垂直。 解:(1) 取质元dm ,质元对轴的转动惯量dJ =R 2 dm 园环转动惯量为各质元转动惯量之和 m R dm R dm R dJ J 222=?=?=?= (2) 园盘的质量面密度为) (2122 R R m - = πσ 若是实心大园盘,转动惯量为 4 2 22222222R 2 1R R 21R m 21J πσπσ=??== 挖去的空心部分小园盘的转动惯量为 4121212 2112 12121R R R R m J πσπσ=??== 空心园盘转动惯量为 )(2 1)() (21)(2122214 142212 2414212R R m R R R R m R R J J J +=--=-=-=πππσ (3) 若为完整的园盘,转动惯量为 220221 mR R m J =??= 半园盘转动惯量为整个园盘的一半,即 202 1 21mR J J == 注:只有个别同学做错了! 5.5如图5-31所示,一边长为l 的正方形,四个顶点各有一质量为m 的质点,可绕过一顶点且与正方形垂直的水平轴O 在铅垂面内自由转动,求如图状态(正方形有两个边沿着水平方向有两个边沿着铅垂方向)时正方形的角加速度。 O 题5.5图 图5-31 解:正方形的转动惯量 2224)2(2ml l m ml J =+?= 正方形受到的重力矩 mgl m 2= 由转动定律 M =J 得到转动角加速度 l g ml mgl J M 2422=== α 注:此题做得很好! 5.6如图5-32所示,一长度为l ,质量为m 的匀质细杆可绕距其一端l /3的水平轴自由

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?- 20 (2) (31) s g u ∴= - 把式(2)代入式(1)得, () 22 2 20 0.198 3u v v = + 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取

如图所示的自然坐标系,由牛顿定律得 2 2 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-= 由,,1ds rd rd v dt dt dt v αα = ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g r r v mg mg r mg α αα αωααα α=-===+==-=-? ?得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向 2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放 一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止, 求斜面的加速度a 应满足的条件。 解:如图所示

大学物理第二章质点动力学习题答案

大学物理第二章质点动 力学习题答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

习题二 2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。 [解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律t v m ma f d d == 即t v m kv d d ==- 所以t m k v v d d -= 对等式两边积分??-=t v v t m k v v 0 d d 0 得t m k v v -=0ln 因此t m k e v v -=0 (2)由牛顿第二定律x v mv t x x v m t v m ma f d d d d d d d d ==== 即x v mv kv d d =- 所以v x m k d d =- 对上式两边积分??=- 000d d v s v x m k 得到0v s m k -=- 即k mv s 0= 2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水

的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分? ? =--t v m t kv F mg v 00 d d 得m kt F mg kv F mg -=---ln 即??? ? ??--= -m kt e k F mg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时2 T kv mg = 即k mg v = T 有牛顿第二定律t v m kv mg d d 2=- 整理得 m t kv mg v d d 2=-

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

大学物理-力学电磁学公式总结

大学物理-力学电磁学公式总结

力学复习 质 点力学 刚体力学 模型: 质点 刚体 运 动 方 程 ) (t r r )(t )()()(t z z t y y t x x 轨迹方程:消去运动方程中的参数t 速度: k v j v i v v dt r d v z y x ? 角 速度:dt d dt ds v v v v dt dz v dt dy v dt dx v z y x z y x 2 22,, 加速度: k a j a i a n a a dt v d a z y x n ?? 角加速度: 2 2dt d dt d

2 22222 2 ,,,n z y x n z z y y x x a a a a a a r r v a r dt dv a dt dv a dt dv a dt dv a 匀加速直线运动 as v v at t v s at v v 2212 022 00 匀 角加速转动 ) (22 102022 00 t t t 质 点 的 惯性— — 质 量 m 刚体的惯性——转动惯量量J dm r J 2 平行轴定理 2 md J J c 垂直轴定理 y x z J J J 几个常用的J 改变质点运 动的原因 : F 改变刚体转动的原因:F r M 牛 顿 第二定 律 a m dt p d F

转动定理 J dt dL M 质 点 动量 v m p 角动量 J L 质点系统动量 c i i v m P )( 动量定理 1 22 1 p p dt F p d dt F t t 角动量定理 1 2 21 L L Mdt t t 动量守恒条件:所受合外力<<内力 角动量守恒条件:所受合外力矩<<内力矩 功: 21 r d F A r d F dA 功: 21 Md A Md dA 功 率:v F N 功率: M N 动能定 理: 看 课合力E E A 动能定理:看 课合力矩 E E A 动 能 : 22 1mv E k 动能: 22 1 J E k 保守力的功 2 1p p p E E E A 重 力 势 能 :mgh E p 重力势能:c p mgh E 弹性势能:22 1kx E p

大学物理复习题答案(力学)

大学物理力学复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.下列运动中,加速度a 保持不变的是 ( D ) A .单摆的摆动 B .匀速率圆周运动 C .行星的椭圆轨道运动 D .抛体运动。 2.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( D ) A .匀加速直线运动,加速度沿x 轴正方向 B .匀加速直线运动,加速度沿x 轴负方向 C .变加速直线运动,加速度沿x 轴正方向 D .变加速直线运动,加速度沿x 轴负方向 3. 某物体作一维运动, 其运动规律为 dv kv t dt =-2, 式中k 为常数. 当t =0时, 初速为v 0,则该物体速度与时间的关系为 ( D ) A .v kt v =+2012 B .kt v v =-+2011 2 C . kt v v =-+201112 D .kt v v =+20 1112 4.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) ( C ) A .dv dt B .v R 2 C .dv v dt R -??????+?? ? ? ???????? 12 242 D . dv v dt R +2 5、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度,对下列 表达式:(1) a dt dv =;(2) v dt dr =;(3) v dt ds =;(4) t a dt v d = ,下列判断正确的是 ( D ) A 、只有(1)(4)是对的; B 、只有(2)(4)是对的; C 、只有(2)是对的; D 、只有(3)是对的。

相关主题
文本预览
相关文档 最新文档