当前位置:文档之家› Lecture4

Lecture4

Lecture4
Lecture4

III.Dynamic Programming:Method and Applications Now we work with models where agents live forever(in?nite planning horizon). An example:in?nitely-lived representative household

max

t=0

βt u(c t)

s.t.c t+k t+1=y t=kα

t

?t,k0given

Dynamic Programming(DP)is useful to solve this sort of“recursive problem”.

De?ne a periodic return function:r t(x t,u t).

?r t(?)is concave

?x t:vector of state variables

–state variables characterize the economic system’s current position

–state variables are out of the control of an agent(cannot change in period t)–state variables can be exogenous variables or endogenous variables

–state variables usually include information variables that help predict the future

?u t:vector of control variables(choice variables)

–control variables are under control of an agent(can change in period t)

De?ne a transition function:g t(x t,u t).

?a transition function maps the state of the model today into the state tomorrow ?assume{(x t+1,x t):x t+1≤g t(x t,u t),u t∈R k}is convex and compact

General recursive problem is:

max

{u t}∞

t=0

t=0

r t(x t,u t)

s.t.x0given

x1=g0(x0,u0)

x2=g1(x1,u1)

..

.

Recursive:past x t’s and past u t’s have no direct e?ect on current and future returns (the only e?ect of past x t’s and past u t’s is through x t).

Two further specializations:

?transition function is time invariant:

g t(x t,u t)=g(x t,u t)

for example,

c t+k t+1=kα

t ?k t+1=kα

t

?c t=g(k t,c t)

?periodic return function has the form:

r t(x t,u t)=βt r(x t,u t)0<β<1

for example,

U=

t=0

βt ln c t

DP amounts to?nding a policy function h(x t)mapping x t into u t,such that the sequence {u t}∞

t=0

generated by iterating the two functions

u t=h(x t)(policy function)

x t+1=g(x t,u t)(transition function)

starting from the initial condition x0solves the problem(problem1)

max

{u t}∞

t=0

t=0

βt r(x t,u t)

s.t.x0given

x t+1=g(x t,u t)?t

A solution in the form of u t=h(x t)and x t+1=g(x t,u t)is said to be recursive. Example of a recursive problem:

max

{c t}∞

t=0

t=0

βt ln c t

s.t.k0given

k t+1=kα

t

?c t

The Value Function V(x)gives the optimal value of the recursive problem:

V(x0)=max

{u t}∞

t=0

t=0

βt r(x t,u t)

where the maximization is subject to x0given and x t+1=g(x t,u t).

If we knew V(?),then we could calculate the policy function h(?)by solving the

following problem(problem2)for all possible values of the state variables(i.e.for each x∈X):

max

u

{r(x,u)+βV(?x)}

s.t.x given,?x=g(x,u)

We started with problem1which involves solving for an in?nite sequence of control

variables{u t}∞

t=0

.Now our task has become to solve problem2.Problem2involves solving for the functions V(x)and h(x)that solve a continuum of maximization problems (one for each value of x∈X).

Our task has become jointly to solve for V(x),h(x).The(still)unknown value function V(x)and policy function h(x)are linked by the Bellman Equation(BE)

V(x)=max

u

{r(x,u)+βV(?x)}(BE1)

s.t.x given,?x=g(x,u)

or

V(x)=max

u

{r(x,u)+βV[g(x,u)]}(BE2)

s.t.x given

The maximizer of the RHS of(BE2)is a policy function u=h(x)that satis?es

V(x)=r[x,h(x)]+βV{g[x,h(x)]}.

Solving the Bellman Equation:

Under the assumptions we make on the return function r(?)and the set{(x t+1,x t): x t+1≤g t(x t,u t),u t∈R k},it turns out that

1.The functional equation(BE1)has a unique strictly concave solution.

2.This solution is approached in the limit as j→∞by iterations on

V j+1=max

u

{r(x,u)+βV j(?x)}

s.t.x given,?x=g(x,u)

starting from any bounded continuous initial V0.

3.There is a unique and time invariant optimal policy of the form u t=h(x t),where h(?)is chosen to maximize the RHS of BE1.

4.O?corners,the limiting value function V is di?erentiable with

V (x)=?r

?x

[x,h(x)]+β

?g

?x

[x,h(x)]V {g[x,h(x)]}.

This is a version of a formula of Benveniste and Scheinkman(1979)for the derivative of the optimal value function(or envelope condition).(See sections4.1and4.2of Stokey and Lucas(with Prescott)(1989)for the proof.)

We often encounter settings in which the transition law can be formulated so that the state x does not appear in it,so that?g

?x

=0,which makes the above equation become

V (x)=?r

?x

[x,h(x)].

For example,consider the following problem:

max

t

ln(C t)

s.t.A t+1=R(A t?C t)

In this original problem,A t is state variable,C t and A t+1are control variables,and

A t+1=R(A t?C t)=g(A t,C t)is the transition law.

If we de?ne a new control variable S t=A t?C t,then the transition law becomes

A t+1=RS t=g(S t)and?g t

t

=0.

Four ways to solve a DP problem:

1.Value function iteration.

2.Guess and verify a solution for the policy function.

3.Guess and verify a solution for the value function.

4.Policy function iteration(Howard’s improvement algorithm).

An Example:optimal growth model(Cass-Koopmans)

Planner chooses the sequence{c t,k t+1}∞

t=0

to maximize

t=0

βt ln c t

s.t.k0given,c t+k t+1=Akα

t

?Method1:value function iteration

Bellman Equation(BE):

V(k)=max

c,?k

{ln c+βV(?k)}

s.t.k given,?k=Akα?c

?Start with V0=0.

?First iteration:solve

V1(k)=max

c,?k

{ln c+βV0(?k)}

s.t.c+?k=Akα

Trivial solution is c=Akαand?k=0.

Accordingly:V1(k)=ln Akα=ln A+αln k.

?Second iteration:solve

V2(k)=max

c,?k

{ln c+βV1(?k)}

=max

?k

{ln(Akα??k)+β[ln A+αln?k]} FOC for the problem on the right-hand-side(RHS)of BE:

?1 Akα??k +

βα

?k

=0??k=

αβ

1+αβ

Akα

?c=Akα??k=

1

1+αβ

Akα

Using the solutions for c and?k in the BE,we?nd

V2(k)=ln

A

1+αβ

+βln A+αβln

αβA

1+αβ

+α(1+αβ)ln k

=constant+α(1+αβ)ln k

?Third iteration:solve

V3(k)=max

?k

{ln(Akα??k)+β[cst+α(1+αβ)ln?k]}

??k=

αβ+(αβ)2

1+αβ+(αβ)2

Akα,c=

1

1+αβ+(αβ)2

Akα

(1)c=Akα?k=0

(2)c=1

1+αβAkα?k=αβ

1+αβ

Akα

(3)c=1

1+αβ+(αβ)2Akα?k=αβ+(αβ)2

1+αβ+(αβ)2

Akα

(∞)c=1

(1

1?αβ)

Akα=(1?αβ)Akα?k=αβAkα

Value function:

V(k)=

1

1?β

ln[A(1?αβ)]+

αβ

1?αβ

ln(Aαβ)

+

α

1?αβ

ln k.

?Method2:guess and verify a solution for the policy function ?Bellman Equation:

V(k)=max

?k

ln(Akα??k)+βV(?k)

?Guess?k=γAkαwhereγis an undetermined coe?cient.

?FONC:

1

Akα??k

=βV (?k)

?Find V (?k)using Benveniste and Scheinkman/Envelope Condition:

V (k)=αAkα?1

Akα??k

=

αAkα?1

Akα?γAkα

=

αAkα?1

(1?γ)Akα

V (k)=

α

(1?γ)k

?V (?k)=

α

(1?γ)?k

?FONC and Envelope Condition yield the Euler Equation:

1

Akα??k =β

α

(1?γ)?k

Using the guess again

1

Akα?γAkα=β

α

(1?γ)γAkα

1

(1?γ)Akα=

αβ

(1?γ)γAkα

?γ=αβ

?Policy functions:

?k=αβAkα,c=(1?αβ)Akα.

?Method3:guess and verify a solution for the value function

V(k)=max

?k

{ln(Akα??k)+βV(?k)}

?Guess V(k)=E+F ln k where E and F are undetermined coe?cients.

?First Step:Use the guess in BE and solve for a“preliminary”policy function. Bellman Equation is

E+F ln k=max

?k

{ln(Akα??k)+βE+βF ln(?k)}

Maximization problem on the RHS yields the preliminary policy function:

?k=βF

1+βF

Akα

?Second Step:Use solution for?k in BE and solve for the undetermined coe?cients

E+F ln k=ln

1?

βF

1+βF

Akα

+βE+βF ln

βF

1+βF

Akα

E+F ln k=ln

A

1+βF

+αln k+βE+βF ln

βF A

1+βF

+αβF ln k

Grouping terms:

E+F ln k=

ln

A

1+βF

+βE+βF ln

βF A

1+βF

+[α+αβF]ln k

For this equation to hold for any ln k,it must be that

E≡ln

A

1+βF

+βE+βF ln

βF A

1+βF

(1)

F≡α+αβF(2)

Restriction(2)implies

F=

α

1?αβ

(3)

Using result(3)in restriction(1)implies

E=

1

1?β

ln(A(1?αβ))+

αβ

1?αβ

ln(αβA)

Result(3)implies the policy functions:

?k=βF

1+βF

Akα??k=αβAkα,c=(1?αβ)Akα.

应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测 得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分布, 试在显著水平下确定这批元件是否合格。 解:

{}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从一 批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比, X 较μ大20(2/cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提 高 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 某批矿砂的五个样品中镍含量经测定为(%): 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为

假设检验习题答案

假设检验习题答案

1 1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。 解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。采用 t 分布的检验统计量n x t /0 σμ-=。查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为 2.131和 2.947。334.116/60800 820=-=t 。因为t <2.131<2.947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批

2 量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)? 解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布的检验统计量n x z /0 σμ-=。查出α=0.01水平下的反查正态概率表得到临界值 2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。计算统计量值3100/5001000010150=-=z 。因为z=3>2.34(>2.32), 所以拒绝原假设,无故障时间有显著增

3 加。 3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量16371600 1.25 1.96/150/26 x Z n μσ--===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工

假设检验的类型

假设检验的类型 ——方差分析& 检验2

目录 一、方差分析 1.原理 2.步骤 3.实例 二、检验 1.原理 2.实例2

1.原理 (1)应用背景 在许多实际问题的统计分析中,我们不仅要讨论两个总体均值相等的假设检验问题,而且还要讨论两个以上总体的均值是否相等的假设检验问题,在这种情况下,我们就选择方差分析的方法来检验这些样本的平均数差异的显著程度。 (2)应用条件(运用方差分析方法需要满足的假定) ①观察对象来自所研究因素的各个水平之下的独立随机抽样;②每个水平下的样本都取自正态分布的总体;③各个总体有相同的方差。2 独立性正态性 方差齐性

1.原理 (3)基本原理 假定容量为n的k个样本取自同一总体。用k个样本的方差估计总体的方差;用全体k个样本的所有元素作为一个样本(样本和),并依此估算总体的方差,如果“原假设”成立,这两个估计值应该十分接近,如果这两个估计值相差很大,这k个样本就不可能都取自同一个总体。 因为方差分析用两个方差的估计值的比F作单侧检验,所以这种方法又称F 检验。检验用F分布进行。

2.步骤 (1)建立方差分析的数学模型; (2)确定各个总体是否服从正态分布,且具有相等的方差; (3)建立检验用的原假设和备择假设,给出显著水平; (4)计算总体方差的估计值和统计量F ; (5)根据F 做出判断。2

3.实例 1)研究目的 为了研究学生学习数学的成绩是否受教师教学水平的影响,现将一个数学提高班的学生分成三个小班,分别由甲、乙、丙三位教师任教。三个班各随机抽取五个学生的最终成绩见表。假定三个学生的最终成绩服从正态分布,试问三个班学生的最终成绩是否存在显著的差异?如果有差异,应推举哪位教师担任此班教学使教学效果最好(α=0.05)?

假设检验在产品质量检验中的应用

《数理统计》课程设计 题目假设检验在产品质量检验中的作用 姓名刘代思刘欢欧春平 学号11001020120 11001020121 11001020123 成绩 指导教师 答辩评语: 日期:2012-6-27

假设检验在产品质量检验中的应用 摘要:生产的目的是提供满足人们需要的产品,任何一种产品具有满足人们的目中需要,才会被顾客接受,这种接受与满足的程度就是质量问题。随着ISO 9000质量管理体系的全面贯彻,企业的质量意识普遍增强。作为现代化的统计技术,假设检验在企业质量控制的各个环节有着广泛的应用。本文采用假设检验的方法,运用Excel软件,对产品质量判断做了实证分析并对相关产品的质量做出了合理的结论,为管理者控制产品质量及进行决策提供了一定的依据。 关键词:假设检验;正态总体;t检验;F检验;;Excel;质量管理 一、假设检验原理 假设检验是利用样本的实际资料,事先对总体参数或分布形式作出某种假设,然后利用样本信息判断原假设是否成立一种统计方法,它分为参数检验和非参数检验,是推断统计中最普遍、最重要的统计方法。其目的在于判断原假设的总体与样本所取自的总体是否发生显著差异,首先对所研究的命题提出无显著性差异的假设,然后通过一定方法检验假设是否成立,从而得出研究结论。小概率事件和反证法是假设检验的核心,小概率事件原理就是如果一个事件发生的可能性很小,那么它在一次试验中发生的可能性也很小,当概率小于一个规定的界限时就认为它不可能发生。反证法就是,先提出假设,进而按照适当的统计方法确定假设成立的可能性,如果可能性小就拒绝原假设。二者结合就形成了假设检验的基本思想,即抽取样本资料进行检验统计量的计算,然后按照接受假设是否出现小概率事件来决定是否接受原假设。 二、假设检验的基本步骤 1、提出原假设和备择假设 首先对研究的命题提出假设,称为原假设,记为H0,原假设总是假定总体没有显著性差异,所有差异都是由随机原因引起的;其次提出备择假设,记为H1,如果原假设被拒绝就等于接受被择假设,所以原假设与备择假设相互对立。 2、选择统计量,给出拒绝域形式 在具体应用中,选择检验统计量是关键,在不同的情况下要选择合适的统计量。例如在检验正态分布均值u时,当标准差已知时,就应当选用U

(完整版)假设检验习题及答案

第三章 假设检验 3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。已知这种元件寿命服从标准差 100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。 {}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为 010110 2: 3.25 H :t 3.252, S=0.0117, n=5 0.3419 H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.99512 0 V=t>t (1)0.01,(4) 4.6041, 3.25n t t t H ααα- ??-?? ?? ==<∴Q 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S == 2N(,),μσ设总体为正态分布试在水平5%检验假设: 0101() H :0.5% H :0.5%() H :0.04% H :0.0.4% i ii μμσσ≥<≥< {}0.95()0.452% S=0.035%-4.1143 (1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。取检验统计量为X 本题中,代入上式得: 0.452%-0.5% 拒绝域为: V=t >t 本题中,0 1 4.1143H <=∴t 拒绝 {}2 2 2 002 2 2212210.95 2()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919 ii n n αα μχσσχχχχ χ χ--= ==*==>--==Q 2 构造统计量:未知,可选择统计量本题中,代入上式得: () () 否定域为: 本题中, 210 (1)n H αχ-<-∴接受 3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:

假设检验的基本步骤

假设检验的基本步骤 (三)假设检验的基本步骤 统计推断 1.建立假设检验,确定检验水准 H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义 2.选定检验方法,计算检验统计量 选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a ,拒绝H0,接受H1 P> a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异 假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论) u检验适用条件 t检验适用条件 t检验和u检验 1.样本均数与总体均数比较 2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较 (1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验 (五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误 拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误; 接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。 两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项 (1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对 (5)单侧与双侧检验的选择 四.分类变量资料的统计描述

假设检验习题答案

1假设某产品的重量服从正态分布,现在从一批产品中随机抽取 16件,测得平 均重量为820克,标准差为60克,试以显着性水平 >0.01与>0.05,分别检验这批 产品的平均重量是否是 800克 解:假设检验为H 0 : % =800,比: 丄0沁00 (产品重量应该使用双侧 检验)。米 以在两个水平下都接受原假设。 2?某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩 电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此 判断该彩电无故障时间有显着增加(>0.01) ? 解:假设检验为H 。: J =10000,比7。.10000 (使用寿命有无显着增加,应该 使用右侧检验)。n=100可近似采用正态分布的检验统计量 水平下的反查正态概率表得到临界值 2.32到2.34之间(因为表中给出的是双侧检验 的 接受域临界值,因此本题的单侧检验显着性水平应先乘以 2,再查到对应的临界值) 计算统计量值z 」 0150 _10000 =3。因为z=3>2.34(>2.32),所以拒绝原假设,无故 500 M/100 障时间有显着增加。 3. 设某产品的指标服从正态分布,它的标准差 (T 已知为150,今抽了一个容量为 26的样本,计算得平均值为1637。问在5%的显着水平下,能否认为这批产品的指标 的期望值卩为1600? 解 : H 0*=1600, H 1 -1600, 标 准 差 (T 已 知 , 当 — 0.05, n =26 , Z 1 _ :?/ 2 - Z 0.975 - 1.96 即,以95%勺把握认为这批产品的指标的期望值 卩为1600. 4. 某电器零件的平均电阻一直保持在 2.64 Q,改变加工工艺后,测得100个零件 的平均电阻为2.62 Q ,如改变工艺前后电阻的标准差保持在 O.06Q ,问新工艺对此零 件的电阻有无显着影响(a =0.05)? 解 : H 0:?二=2.64,已:?'2.64, 已知 标准差 c =0.06, 当 用t 分布的检验统计量 查出〉=0.05和0.01两个水平下的临界值 (df= n-1=15)为 2.131 和 2.947。t 820 一 800 60 / J6 二 1. 334 因为 t <2.131<2.947,所 查出〉=0.01 由 检 验 统 计 量 X-卩 hj~n 1637-1600 150/ , 26 = 1.25 <1.96,接受 H 0」=1600,

假设检验中两种类型错误的关系

假设检验中两种类型错误之间的关系 (一) α与β是在两个前提下的概率。α是拒绝H0时犯错误的概率(这时前提是“H0为真”);β是接受H0时犯错误的概率(这时“H0为假”是前提),所以α+β不一定等于1。结合图7—2分析如下: 图7-2 α与β的关系示意图 如果H0:μ1=μ0为真,关于与μ0的差异就要在图7—2中左边的正态分布中讨论。对于某一显著性水平α其临界点为。(将两端各α/2放在同一端)。 右边表示H0的拒绝区,面积比率为α;左边表示H0的接受区,面积比率为1-α。在“H0为真”的前提下随机得到的落到拒绝区时我们拒绝H0是犯了错误的。由于落到拒绝区的概率为α,因此拒绝“H0为真”时所犯错误(I型)的概率等于α。而落到H0的接受区时,由于前提仍是“H0为真”,因此接受H0是正确决定,落在接受区的概率为1-α,那么正确接受H0的概率就等于1-α。如α=0.05则1-α=0.95,这0.05和0.95均为“H0为真”这一前提下的两个概率,一个指犯错误的可能性,一个指正确决定的可能性,这二者之和当然为1。但讨论β错误时前提就改变了,要在“H0为假”这一前提下讨论。对于H0是真是假我们事先并不能确定,如果H0为假、等价于H l为真,这时需要在图7—2中右边的正态分布中讨论·(H1:μ1>μ0),它与在“H0为真”的前提下所讨论的相似,落在临界点左边时要拒绝H l (即接受H0),而前提H l为真,因而犯了错误,这就是II型错误,其概率为β。很显然,当α=0.05时,β不一定等于0.95。

(二)在其他条件不变的情况下,α与β不可能同时减小或增大。这一点从图7—2也可以清楚看到。当临界点向右移时,α减小,但此时β一定增大;反之向左移则α增大β减小。一般在差异检验中主要关心的是能否有充分理由拒绝H0,从而证实H l,所以在统计中规定得较严。至于β往往就不予重视了,其实许多情况需要在规定的同时尽量减小β。这种场合最直接的方法是增大样本容量。因为样本平均数分布的标准差为,当n增大时样本平均数分布将变得陡峭,在α和其他条件不变时β会减小(见图7—3)。 (三)在图7—2中H l为真时的分布下讨论β错误已指出落到临界点左边时拒绝H l所犯错误的概率为β。那么落在临界点右边时接受H l则为正确决定,其概率等于1一β。换言之,当H l为真,即μ1与μ0确实有差异时(图7—2中,μ1与μ0的距离即表示μ1与μ0的真实差异),能以(1—β)的概率接受之。 图7-3 不同标准差影响β大小示意图 如图7—2所示,当α以及其他条件不变时,减小μ1与μ0的距离势必引起β增大、(1一β)减小,也就是说,其他条件不变,μ1与μ0真实差异很小时,正确

假设检验练习题-答案

假设检验练习题 1. 简单回答下列问题: 1)假设检验的基本步骤? 答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论) 有三类假设 第二步选择检验统计量给出拒绝域的形式。 根据原假设的参数检验统计量: 对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A 拒绝域的形式由备择假设的形式决定 H1:W为双边 H1:W为单边 H1:W为单边 第三步:给出假设检验的显著水平 第四步给出零界值C,确定拒绝域W 有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。例如:对于=0.05有 的双边W为 的右单边W为 的右单边W为 第五步根据样本观测值,计算和判断 计算统计量Z 、t 、当检验统计量的值落在W时能拒绝,否则接受 (计算P值227页p值由统计软件直接得出时拒绝,否则接受

计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受) 2)假设检验的两类错误及其发生的概率? 答:第一类错误:当为真时拒绝,发生的概率为 第二类错误:当为假时,接受发生的概率为 3)假设检验结果判定的3种方式? 答:1.计算统计量Z 、t 、当检验统计量的值落在W时能拒绝,否则接受 2.计算P值227页p值由统计软件直接得出时拒绝,否则接受 3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受 4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么? 答:连续型(测量的数据):单样本t检验-----比较目标均值 双样本t检验-----比较两个均值 方差分析-----比较两个以上均值 等方差检验-----比较多个方差 离散型(区分或数的数据):卡方检验-----比较离散数 2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。 答:典型的Z检验 1. 提出原假设和备择假设 :平均值等于1600 :平均值不等于1600 2. 检验统计量为Z,拒绝域为双边

第5章 统计假设检验练习题及答案

实验报告——第5章统计假设检验 姓名杨秀娟班级人力10001学号 【实验1】 某外企对员工英语水平进行调查,开发部门总结该部门员工英语水平很高,如果按照英语六级考试标准考核,一般平均分为75分。现从开发部门雇员中随机选出11人参加考试,得分如下:80,81,72,60,78,65,56,79,77,87,76 ^ 请问该开发部门的英语水平是否真的很高(即高于75分,且差异显著) 【解】 (1)数据和变量说明 本题所用数据是:外企英语六级考试成绩样本 该文件为11个样本,1个变量,如变量视图 (2)操作方法 (3)结果报告

, 上图为单样本t检验表,第一行注明了用于比较的已知的总体均数为75,下面从左到右依次为t值(t)、自由度(df)、P值(Sig)、两均数的差值、差值的95%可信区间。 由上表可知,t= , P=, P>,接受Ho,与平均成绩75相等,无显著差异,因此,该开发部门的英语水平不是真的很高。 【实验2】 以下是对某产品促销团队进行培训前后的销售业绩数据,试分析该培训是否产生了显著效果。 表5-20 培训前后销售业绩数据 56789 序号123' 4 7488827185 培训前677074~ 97 7687867895 培训后786778{ 98 【解】 (1)数据和变量说明 本文件有2个变量,9个数据 (2)操作方法 *

(3)结果报告 由上表可知,P=, P<,不接受无效假设,有显著差异,所以该培训产生了显著效果。 【实验3】 饲养队制定了两种喂养方案喂猪,希望通过试验了解一下不同喂养方案的喂养效果。

方案一:用一只猪喂不同的饲料所测得的体内钙留存量数据如下: 表 5-21 方案一喂养数据 序号! 1 23456789 饲料1" 饲料2/ 方案二:甲队有11只猪喂饲料1,乙队有9只猪喂饲料2,所得的钙留存量数据如下: ; 表5-22方案二喂养数据 序号12345678· 9 1011甲队饲料1; 乙队饲料2\ 请选用恰当方法对上述两种方案所获得的数据进行分析,研究不同饲料是否使小猪体内钙留存量有显著不同。 【解】 方案一 (1)《 (2)数据和变量说明 答:9个数据,2个变量 (3)操作方法

假设检验习题答案

1.假设某产品得重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0、01与α=0、05,分别检验这批产品得平均重量就是否就是800克。 解:假设检验为 (产品重量应该使用双侧检验)。采用t分布得检验统计量。查出=0、05与0、01两个水平下得临界值(df=n-1=15)为2、131与2、947。。因为<2、131<2、947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0、01)? 解:假设检验为 (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布得检验统计量。查出=0、01水平下得反查正态概率表得到临界值2、32到2、34之间(因为表中给出得就是双侧检验得接受域临界值,因此本题得单侧检验显著性水平应先乘以2,再查到对应得临界值)。计算统计量值。因为z=3>2、34(>2、32),所以拒绝原假设,无故障时间有显著增加。 3、设某产品得指标服从正态分布,它得标准差σ已知为150,今抽了一个容量为26得样本,计算得平均值为1637。问在5%得显著水平下,能否认为这批产品得指标得期望值μ为1600? 解: 标准差σ已知,当,由检验统计量,接受, 即,以95%得把握认为这批产品得指标得期望值μ为1600、 4、某电器零件得平均电阻一直保持在2、64Ω,改变加工工艺后,测得100个零件得平均电阻为2、62Ω,如改变工艺前后电阻得标准差保持在O、06Ω,问新工艺对此零件得电阻有无显著影响(α=0、05)? 解:已知标准差σ=0、06, 当 由检验统计量,接受, 即, 以95%得把握认为新工艺对此零件得电阻有显著影响、 5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,792,612,407,506、假定重量服从正态分布,试问以95%得显著性检验机器工作就是否正常? 解:,总体标准差σ未知,经计算得到=502, =148、9519,取,由检验统计量 ,<2、2622,接受 即, 以95%得把握认为机器工作就是正常得、

习题假设检验答案

习题八 假设检验 一、填空题 1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量t X 2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。要检验假设0μμ=应用 U 检验法,检验的统计量是 U =0H 成立时 该统计量服从N (0,1) 。 3.要使犯两类错误的概率同时减小,只有 增加样本容量 ; 4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。 (1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为 X Y U =0H 成立时该统计量服从 N (0,1) 。 (2)若 X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为 T = ;当0H 成立时该统计量服从 (2)t m n +- 。 5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 22 00:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-= ;当0H 成 立时,该统计量服从 2(1)n χ- 。 6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。要检验假设220:X Y H σσ=,应用 F 检验法,检 验的统计量为 22X Y S F S = 。 7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验 假设22 220010:;:;H H σσσσ=≠的拒绝域为 2 22(1)n αχχ≥-或222(1)n αχχ≤- ; 8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为 X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下, 检验假设0010:;:H H μμμμ≥<的统计量为 X U = ,拒绝域为 {}U u α≤- 。 当2σ未知时,在显著性水平α下,检验假设0010:;:H H μμμμ≤>

假设检验应用条件归纳总结

第三节u检验和t检验 u检验和t检验可用于样本均数与总体均数的比较以及两样本均数的比较。理论上要求样本来自正态分布总体。但在实用时,只要样本例数n较大,或n小但总体标准差σ已知时,就可应用u检验;n小且总体标准差σ未知时,可应用t检验,但要求样本来自正态分布总体。两样本均数比较时还要求两总体方差相等。 一、样本均数与总体均数比较 比较的目的是推断样本所代表的未知总体均数μ与已知总体均数μ0有无差别。通常把理论值、标准值或经大量调查所得的稳定值作为μ0.根据样本例数n大小和总体标准差σ是否 已知选用u检验或t 检验。 (一)u检验用于σ已知或σ未知但n足够大[用样本标准差s作为σ的估计值,代入式 (19.6)]时。 以算得的统计量u,按表19-3所示关系作判断。 表19-3 u值、P值与统计结论 例19.3根据大量调查,已知健康成年男子脉搏均数为72次/分,标准差为6.0次/分。某医生在山区随机抽查25名健康成年男子,求得其脉搏均数为74.2次/分,能否据此认为山区 成年男子的脉搏高于一般? 据题意,可把大量调查所得的均数72次/分与标准差6.0次/分看作为总体均数μ0和总体标准差σ,样本均数x为74.2次/分,样本例数n为25. H0:μ=μ0 H1:μ>μ0 α=0.05(单侧检验)

算得的统计量u=1.833>1.645,P<0.05,按α=0.05检验水准拒绝H0,可认为该山区健康成年男子的脉搏高于一般。 (二)t检验用于σ未知且n较小时。 以算得的统计量t,按表19-4所示关系作判断。 表19-4 |t|值、P值与统计结论 例19.4 若例19.3中总体标准差σ未知,但样本标准差已求出,s=6.5次/分,余数据同例 19.3. 据题意,与例19.3不同之处在于σ未知,可用t检验。 H0:μ=μ0 H1:μ>μ0 α=0.05(单侧检验) 本例自由度v=25-1=24,查t界值表(单侧)(附表19-1)得t0.05(24)=1.711.算得的统计量t=1.692<1.711,P>0.05,按α=0.05检验水准不拒绝H0,尚不能认为该山区成年男子的脉搏高于一般。 二、配对资料的比较 在医学研究中,常用配对设计。配对设计主要有四种情况:①同一受试对象处理前后的数据;②同一受试对象两个部位的数据;③同一样品用两种方法(仪器等)检验的结果;④

MBA参数估计、假设检验参考答案

1.某公司雇用2 000名推销员,并希望估计其平均每年的乘车里程。从过去的经验可知,通常每位推销员行程的标准差为5 000公里。随机选取的25辆汽车样本的均值为14 000公里。 1)求出总体均值μ所需要的估计量;14 000 2)确定总体均值μ95%的置信区间;(14000±1.96*5000/5)。虽是小样本,但“从过去的经验可知,通常每位推销员行程的标准差为5 000公里”这句话,表明总体服从正太分布且标准差已知,所以用最基本的公式。 3)公司经理们认为均值介于13 000到15 000公里之间,那么该估计的置信度是多少? 对应的Z在-1-+1之间,所以置信度为68.26%。 这里要注意的是应用均值的分布。 4)如果在3)的估计中希望有95%的置信水平,那么所要求的样本容量是多少。 96=1.962*50002/10002 2.生产隐形眼镜的某公司生产一种新的型号,据说其寿命比旧型号的寿命长。请6个人对该新型眼镜做实验,得出平均寿命为4.6年,标准差为0.49年。构造该新型眼镜的平均寿命90%的置信区间。 小样本且总体标准差未知,用t公式。 4.6±2.015*0.49/2.45 3.假设某厂家生产的可充电的电池式螺丝刀的使用寿命近似于正态分布。对15个螺丝刀进行测试,并发现其平均寿命为8 900小时,样本标准差为500小时。 1)构造总体均值置信水平为95%的区间估计;8900±2.145*500/3.87 2)构造总体均值置信水平为90%的区间估计;8900±1.761*500/3.87 4.电话咨询服务部门在每次通话结束时都要记录下通话的时间。从一个由16个记录组成的简单随机样本得出一次通话的平均时间为1.6分钟。试求总体平均值的置信度为90%的置信区间。已知总体服从标准差为0.7分钟的正态分布。 1.6±1.645*0.7/4 5.某仓库中有200箱食品,每箱食品均装100个。今随机抽取20箱进行检查,其每箱食品变质个数如下:20 17 32 24 23 18 16 12 3 9 6 2 6 12 20 20 0 1 2 3 试求食品变质的成数(即比例)和总的食品变质个数的置信度为95%的置信区间。 P=246/100*20=12.3% 食品变质的成数置信度为95%的置信区间:12.3%±1.96*0.734% 总的食品变质个数的置信度为95%的置信区间:200*100(12.3%±1.96*0.734%) 6.一项Roper Starch调查向18-29岁的雇员询问他们对于更好的健康保险和加薪两种选择,更喜欢哪一个(USA Today,September5,2000)。如果在500名雇员中有340人愿意选择更好的健康保险的话,回答下列问题: (1)18-29岁的雇员中愿意选择更好健康保险的雇员所占比例的点估计是多少?p=340/500 (2)总体比例的95%置信区间。p±1.96*2.1%

假设检验的基本步骤

假设检验的基本步骤

————————————————————————————————作者:————————————————————————————————日期:

假设检验的基本步骤 (三)假设检验的基本步骤 统计推断 1.建立假设检验,确定检验水准 H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义 2.选定检验方法,计算检验统计量 选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a,拒绝H0,接受H1 P>a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异 假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论) u检验适用条件 t检验适用条件 t检验和u检验 1.样本均数与总体均数比较 2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较 (1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验 (五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误 拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误; 接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。 两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项 (1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对 (5)单侧与双侧检验的选择 四.分类变量资料的统计描述

概率与数理统计第8章假设检验习题及答案

第8章 假设检验 一、填空题 1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设 00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。 2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。 3、设总体),(N ~ X 2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0 --<-n t n S X αμ,其中显著性水平为α。 4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记 ∑==n 1 i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- . 二、计算题 1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常? 解:设重量),(~2σμN X 05.016==αn 4252==S X (1)检验假设250:0=μH 250:1≠μH , 因为2σ未知,在0H 成立下,)15(~/250t n S X T -= 拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t 由样本值算得1315.22<=T ,故接受0H (2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量 2 02 2)1(σS n x -= 在0H 成立条件下,2 x 服从)15(2x 分布,

比率p的假设检验知识讲解

比率p的假设检验

比率P的假设检验及其应用

比率P的假设检验及其应用 摘要:假设检验是统计推断的另一项重要内容,它与参数估计类似,但角度不同。参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设值,然后利用样本信息判断这一假设是否成立。本文将主要介绍总体比率的假设检验的原理和方法,以及其在各种生活实例中的应用,从而更深的了解假设检验在各种统计方法中的重要作用。 关键词:假设检验;总体比率;检验统计量;拒绝域

Hypothesis Testing and Its Application of Ratio P Abstract:Hypothesis testing is another important content to statistical inference, and it is similar to parameter estimation, but the Angle is different. Parameter estimation is use sample information to infer an unknown population parameter, and the hypothesis testing is a hypothesis is proposed first in the overall parameters, and then using the sample information to determine whether the hypothesis is established. This article mainly introduces the overall rate of the principle and method of hypothesis testing, and its application in all kinds of living examples, thus deeper understanding of the hypothesis testing plays an important part in all kinds of statistical methods. Key words:hypothesis testing;the overall rate;test statistics;rejection region

假设检验练习题 答案

假设检验练习题 1、简单回答下列问题: 1)假设检验的基本步骤? 答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般就是相等、无差别的结论,备择假设H1,与H0对立的命题,一般就是不相等,有差别的结论) 有三类假设 第二步选择检验统计量给出拒绝域的形式。 根据原假设的参数检验统计量: 对于给定的显著水平样本空间可分为两部分: 拒绝域W 非拒绝域A 拒绝域的形式由备择假设的形式决定 H1:W为双边 H1:W为单边 H1:W为单边 第三步:给出假设检验的显著水平 第四步给出零界值C,确定拒绝域W 有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。例如:对于=0、05有 的双边W为 的右单边W为 的右单边W为 第五步根据样本观测值,计算与判断 计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝, 否则接受 (计算P值227页p值由统计软件直接得出时拒绝,否则接受 计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)

2)假设检验的两类错误及其发生的概率? 答:第一类错误:当为真时拒绝,发生的概率为 第二类错误:当为假时,接受发生的概率为 3)假设检验结果判定的3种方式? 答:1、计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝, 否则接受 2、计算P值227页p值由统计软件直接得出时拒绝,否则接受 3、计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受 4)在六西格玛A阶段常用的假设检验有那几种?应用的对象就是什么? 答:连续型(测量的数据): 单样本t检验-----比较目标均值 双样本t检验-----比较两个均值 方差分析-----比较两个以上均值 等方差检验-----比较多个方差 离散型(区分或数的数据): 卡方检验-----比较离散数 2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。 答:典型的Z检验 1、提出原假设与备择假设 :平均值等于1600 :平均值不等于1600 2、检验统计量为Z,拒绝域为双边 ~~N(0,1)

假设检验及其应用

黑龙江八一农垦大学《概率论与数理统计》课程论文 论文题目: 学生: 授课教师:范雪飞 院系专业: 摘要

在数理统计的学习中,假设检验是一个十分重要的内容,包含有参数检验和非参数检验二大类。假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。假设检验在经济和社会生活各个领域得到了极为广泛的应用。本文主要阐述假设检验的基本思想,一般步骤,应用和几种常见的检验方法: U检验、T检验、比例检验、卡方检验等。 关键词:假设检验、检验方法、数理统计。 前言 假设检验是抽象推断的一项重要内容。它是根据原资料作出一个总结指标是否等

于某一数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或估计分布与实际分布)是否存在差异,是否应该接受原假设选择的一种检验方法。 第一章 假设检验的基本思想及原理 1.1 假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件(P <0.01或P <0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设HO ),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设不成立 1.2 假设检验的原理:一般地说,对总体某项或总体某几项作出假设,然后对样本假设做出接受或拒绝的判断,这种方法称为假设检验。 它的特点是: A .先假设总体某项假设成立,计算其会使什么样的结果产生。若导致不合理的现象产生,则不能拒绝原假设,从而接受按假设。 B .它不同于一般地反证法。所谓不合理现象产生,并非指形式逻辑上的绝对矛盾,而是基于小概率原理,概率很小的事件在一次实验中几乎不会发生,若发生了,就是不合理的。 第二章 假设检验的一般步骤 2.1 建立假设。在假设检验中,常把一个被检验的假设称为原假设,用0H 表示,通常将不应轻易加以否定的假设作为原假设。当0H 被拒绝时而接受的假设称为备用假设,用1H 表示,它们常常成对出现。 2.2.1 选择检验统计量T ,给出拒绝域形式,并在H 0成立的条件下,决定T 的分布。由样本对原假计量。使原假设被拒绝的样本观测值所在的区域称为拒绝域,一般它是样本空间的一个子集,并用W 表示。当拒绝域确定了,检验的判断准则跟着也就定了: ● 如果(x 1,…x n )W ∈,则认为0H 不成立; ● 如果(x 1,…x n )∈非W ,认为0H 成立; 一般将非W 称为接收域。由此可见,一个拒绝域W 可唯一确定一个检验法则,反之,一个检验法则也唯一确定一个拒绝域。 2.2.2选择显著性水平。检验的结果与真实情况可能吻合也可能不吻合,因此,检验是可能犯错误的。检验可能犯的错误有两类:其一是0H 为真但由于随机性使样本观测值落在拒绝域中,从而拒绝原假设,这种错误称为第一类错误,其发生的概率称为犯

相关主题
文本预览
相关文档 最新文档