当前位置:文档之家› 新人教版 垂径定理 教案

新人教版 垂径定理 教案

新人教版  垂径定理   教案
新人教版  垂径定理   教案

D

A

解:AB表示桥拱,AB的圆心为O,半径为R米。

经过圆心O作弦AB的垂线OD,D为垂足,与AB相交于点,根据垂径定理,D是AB的中点,C是AB的中点,CD

是拱高。由题设

AB=37.4,CD=7.2

27.3垂径定理教案

27.3(1) 垂径定理 崇明县三乐学校秦健 一、教学内容分析 学情分析:学生已经知道,在同圆或等圆中,圆心角、圆心角所对的弧和弦及其弦心距这四组量之间有密切的联系。(即“四等定理”)本节利用圆的轴对称性,进一步得到圆的直径与弦及弦所对的弧之间也存在着密切的关联.因为圆是轴对称图形,且任意一条直径所在直线都是它的对称轴,所以课本对于这些量之间关系的讨论,从垂直于弦的直径的性质开始展开,并加以推理证明; 教材分析:垂径定理及其推论揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;在垂径定理得出的过程中,体验了从感性到理性、从具体到抽象思维过程,有助于培养思维的严谨性. 二、教学目标 1、经历垂径定理的探索和证明过程,掌握垂径定理; 2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3、能初步运用垂径定理及推论解决有关数学问题. 三、教学重点及难点 重点:掌握垂径定理的内容并初步学会运用. 难点:垂径定理的探索和证明. 四、教学过程 (一)情景引入 1300 多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(弧的中点到弦的距离,也叫拱形高)为7.2米,求桥拱的半径(精确到0.1米)说明:通过实际问题引入新课激发学生学习兴趣

52D C B A O 1、观察与思考: 圆是怎样的对称图形?对称轴与对称中心分别是什么? (二)学习新课 1、思考 如图,CD 是⊙O 的直径,AB 是⊙O 的弦,且AB ⊥CD ,垂足为 M ,则图中有哪些相等的线段和弧?(半圆除外)为什么? (学生观察,猜想,并得出以下结论) ①CO=DO (同圆的半径相等) ②AM=BM,弧AD=弧BD ,弧AC=弧BC (如何证明?) (学生讨论,并得出推导过程,教师板书) 联结OA 、OB ,则OA=OB. ∵ AB ⊥CD, ∴ AM=BM (等腰三角形三线合一), ∠AOD=∠BOD, ∴ 弧AD=弧BD (同圆中,相等的圆心角所对的弧相等). ∵ ∠AOC=∠BOC, ∴ 弧AC=弧BC. 2、定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧. 结合图形写成符号语言: ∵直径CD ⊥弦AB ,垂足为M ∴ AM=BM ∴ 弧AD=弧BD (同圆中,相等的 圆心角所对的弧相等). 弧AC=弧BC. 3、抢答题:如图:已知⊙O 的半径OC 垂直于弦AB,垂足为点D , AD 长2厘米,弧AB 长5厘米,则AB= 弧 AC= . 4、例题分析 例1、 已知:如图,以点O 为圆心的两个圆中, 大圆的弦AB 交小圆于点C 、D 两点,

九年级数学下册 3.3 垂径定理教案 (新版)北师大版

垂径定理 一、教学目标 1.利用圆的轴对称性研究垂径定理及其逆定理; 2.运用垂径定理及其逆定理解决问题. 二、教学重点和难点 重点:利用圆的轴对称性研究垂径定理及其逆定理. 难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线 三、教学过程 (一)情境引入: 1.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M . (1)该图是轴对称图形吗?如果是,其对称轴是什么? (2)你能图中有哪些等量关系? (3)你能给出几何证明吗?(写出已知、求证并证明) (二)知识探究: 【探究一】通过上面的证明过程,我们可以得到: 1.垂径定理_____________________________________________________ 2.注意: ①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧。 ③定理中的两个条件缺一不可——______________,______________. 3.给出几何语言 如图,已知在⊙O 中,AB 是弦,CD 是直径,如果CD ⊥AB,垂足为E, 那么AE=_______,? AC =______,? BD =________ 4.辨析:判断下列图形,能否使用垂径定理? 1.,作一条平分AB 于点M . (1)下图是轴对称图形吗?如果是,其对称轴是什么? (2)图中有哪些等量关系?说一说你的理由.

2.垂径定理的推论:______________________________________________________________ 3.辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”如果该定理 少了“不是直径”,是否也能成立? 反例: 4.如图,在⊙O 中,AB 是弦(不是直径),CD 是直径, (1)如果AE=BE 那么CD____AB,? AC =____? BD =____ (2)如果? AC =? BC 那么CD____AB ,AE______BE ,? BD =____ (3)如果? AD =? BD 那么CD____AB ,AE_____BE ,? AC =______ (三)典例讲解: 1.例:如图,一条公路的转弯处是一段圆弧(即图中⌒CD ,点0是⌒CD 所在圆的圆心),其中CD =600m ,E 为⌒CD 上的一点,且OE ⊥CD ,垂足为F ,EF =90m. 求 这段弯路的半径. 2.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么? (四)巩固训练: 题组一 1.如图,在⊙O 中,AB 为弦,OC ⊥AB 于C ,若AO=5,OC=3,求弦AB 的长。 2.⊙O 的弦AB 为5cm ,所对的圆心角为120°,求圆心O 到这条弦AB 的距离。 D

《勾股定理》教学案例

《勾股定理》教学案例 《勾股定理》教学案例 教学目标:灵活运用勾股定理及其逆定理解决问题。 教学重点:勾股定理及其逆定理的灵活运用。 教学难点:勾股定理及其逆定理在实际生活中的运用。 教学过程: 教师出示大家易错的解答题第4题:一个长方体木块,长30厘米、宽24厘米、高18厘米,一只蚂蚁在木块表面从A点爬到B点,求这只蚂蚁爬行的最短路线。 同学们在小组内交流,得出如下方案: (1)前、右两面展开,沿展开面的对角线爬行; (2)前、上两面展开,沿展开面的对角线爬行; (3)左、上两面展开,沿展开面的对角线爬行。 这三种方案通过计算对比得出,将前、右两面展开,小蚂蚁走展开面的对角线路线最短。 教师根据自己的教学经验及时进行变式训练:一个圆柱体,底面直径6厘米,高5厘米,蚂蚁沿外表面爬行,从左下角A点爬到相对的右上角B点,求蚂蚁爬行的最短路线。 经同学们思考得到解题方法:将圆柱体的侧面展开得到一个长方形,将此长方形纵切平分,沿平分后矩形的对角线

走路线最短。 为强化学生掌握解题方法王老师又给学生出了这样一道变式题:一个圆柱体,底面直径4厘米,高8厘米,蚂蚁沿外表面从圆柱体左下角A点爬到相对的右上角B点,求蚂蚁爬行的最短路线。 同学们根据刚才的方法很快地求出了答案。 … … 教学探究: 王老师在出这道变式题时,我在想:蚂蚁若从A点沿着侧面的高线和上底面的直径爬到B点,这样走路线是否最短呢?以变式二为例我将两种方法对比计算,得出还是上述方法正确。 但这一想法促使我继续思考,假如圆柱体的地面直径和高变了,结果又怎样呢?我自己设计了一道变式题:一个圆柱体,底面直径5厘米,高2厘米,蚂蚁从圆柱体左下脚A 点爬到相对的右上B点,求蚂蚁爬行的最短路线。通过计算比较得到,蚂蚁蚂蚁沿着侧面的高线和上底面的直径爬,这样走路线是否最短。 引发我深层次地思考探究:在不同的情况下到底选用哪种方法? 课后,为探究这一问题,我编了三道变式题: (1)一个圆柱体,底面直径2厘米,高5厘米,蚂蚁

湘教版九年级数学下册 垂径定理教案

《垂径定理》教案 教学目标 知识与技能 1.理解圆是轴对称图形,由圆的折叠猜想垂径定理,并进行推理验证. 2.理解垂径定理,灵活运用定理进行证明及计算. 过程与方法 在探索圆的对称性以及直径垂直于弦的性质的过程中,培养我们观察,比较,归纳,概括的能力. 情感态度 通过对圆的进一步认识,加深我们对圆的完美性的体会,陶冶美育情操,激发学习热情. 教学重点 垂径定理及运用. 教学难点 用垂径定理解决实际问题. 教学过程 一、情境导入,初步认识 教师出示一张图形纸片,同学们猜想一下: ①圆是轴对称图形吗?如果是,对称轴是什么? ②如图,AB是⊙O的一条弦,直径CD⊥AB于点M,能发现图中有哪些等量关系? (在纸片上对折操作) 【教学说明】 (1)是轴对称图形,对称轴是直线CD. (2)AM=BM,AC BC AD BD ,. == 二、思考探究,获取新知 探究1垂径定理及其推论的证明. 1.由上面学生折纸操作的结论,教师再引导学生用逻辑思维证明这些结论,学生们说出已知、求证,再由小组讨论推理过程. 已知:直径CD,弦AB,且CD⊥AB,垂足为点M. 求证:AM=BM,AC BC AD BD , == 【教学说明】连接OA=OB,又CD⊥AB于点M,由等腰三角形三线合一可知AM=BM,再由⊙O关于直线CD对称,可得AC BC AD BD ,. == 2.得出垂径定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.还可以得出结论(垂径定理推论):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 3.学生讨论写出已知、求证,并说明. 学生回答: 【教学说明】已知:AB为⊙O的弦(AB不过圆心O),CD为⊙O的直径,AB交CD 于点M,MA=MB. 示证:CD⊥AB,AC BC AD BD ,. == 证明:在△OAB中,∵OA=OB,MA=MB,∴CD⊥AB.又CD为⊙O的直径,∴ == ,. AC BC AD BD 4.同学讨论回答,如果条件中,AB为任意一条弦,上面的结论还成立吗? 学生回答: 【教学说明】当AB为⊙O的直径时,直径CD与直径AB一定互相平分,位置关系是相交,不一定垂直. 探究2垂径定理在计算方面的应用. 例1如课本图,弦AB=8cm,CD是圆O的直径,CD⊥AB,垂足为E,DE=2cm,求圆O的直径CD的长. 例2已知⊙O的半径为13cm,弦AB∥CD,AB=10cm,CD=24cm,求AB与CD间的距离. 解:(1)当AB、CD在O点同侧时,如图①所示,过O作OM⊥AB于M,交CD于N,连OA、 OC.∵AB∥CD,∴ON⊥CD于N.在Rt△AOM中,AM=5cm,OM12cm.在 Rt△OCN中,CN=12cm,ON5cm.∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,由(1)可知OM= 12cm,ON=5cm,MN=OM+ ON,∴MN=17cm.∴AB与CD间的距离是7cm或17cm. 【教学说明】1.求直径往往只要能求出半径,即把它放在由半径所构成的直角三角形中去. 2.AB、CD与点O的位置关系没有说明,应分两种情况:AB、CD在O点的同侧和AB、CD 在O点的两侧. 探究3与垂径定理有关的证明. 例3证明:圆的两条平行线所夹的弧相等.已知:如课本图,在圆O中,弦AB与弦CD平行.证明:弧AC等于弧BD.

高中数学_方程的根与函数的零点教学设计学情分析教材分析课后反思

§3.1.1 方程的根与函数的零点 一、导入新课(直接导入) 教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点。 1、先观察下列三个一元二次方程的根与其相应的函数的图象: ①方程2 230x x --=与函数2 23y x x =--; ②方程2 210x x -+=与函数2 21y x x =-+; ③方程2 230x x -+=与函数2 23y x x =-+; 教师引导学生解方程,画函数图象(教师在黑板画出第一个函数图象),并引导学生发现方程的根与函数图象和x 轴交点坐标的关系。 容易知道,①中方程的两个根为121;3x x =-=,函数图象与x 轴有两个交点(-1,0),(3,0), ②中方程的两个实数根为121x x ==,函数图象与x 轴有一个交点(1,0),③中方程无实数根,函数图象与x 轴无交点。 在上面的三个例子中,我们发现: 方程有根,函数图象与x 轴就有交点,并且方程的根与函数图象与x 轴的交点横坐标相等。 2、那这个结论对一般的一元二次方程及其相应的函数也成立吗?(学生同桌之间交流完成下表) 0>V 0=V 0

函数 (2b a -+V ,0) ( 2b a --V ,0) (2b a -,0) 无交点 学生自行验证上述结论,结论成立。 3、这个结论对一般的方程及其相应的函数也成立吗? 函数y=f(x)与x 轴的交点在x 轴上,交点的纵坐标为0,那么,横坐标就是0= f(x)的解,也就是方程f(x)= 0的根。若方程有根,则说明所求的横坐标存在,即函数图象与x 轴的交点存在,且方程的根与函数图象与x 轴的交点横坐标相等。结论依然成立。 二、构建概念 由上述结论可知,函数图象与x 轴的交点可以把函数图象和方程联系起来,这样的点他还有一个特别的名字:零点。那么,怎样用数学语言来描述零点呢? 请看课本第87页的定义: 定义(教师板书):对于函数y=f(x),我们把使f(x)= 0的实数x 叫做函数y=f(x)的零点。 说明:1、零点不是点,而是实数; 2、零点就是方程的根。 我们结合所学的零点一起来描述一下刚刚的结论: 方程f(x)= 0有根 ?函数y=f(x)图象与x 轴有交点 ?函数y=f(x)有零点 三、例题演练 求下列方程的零点 3 2)3()4)(3)(2)(1()2(8 )1(23+-=----=-=x x y x x x x y x y 四、诱导启发 1、通过上面的学习,同学们都有哪些求函数零点的方法呢? (①求相应方程的根,②利用函数图象求交点) 2、若一个函数图象不能直接画出,它相应的方程也不易求根,我们又有什么方法来求得它的零点呢? 请同学们看课本例二。 例2、求函数f (x)=ln 26x x +-的零点的个数。(不易求根,不易画图) 学生会觉得非常困难,激发学生的好奇心和好胜心,并加以引导。 同学们,我们先把这个题目放在一边,来观察函数2 23y x x =--的图象(之前已在黑板上画出)。我们发现2 23y x x =--在区间[-2,1]上有零点,计算f (-2)·f (1)在区间[2,4]上呢?

垂径定理的教案

§24.1.2 《 垂直于弦的直径》教案 教学目标: 1、经历利用圆的轴对称性对垂径定理的探索和证明过程,掌握垂径定理及其推论;并能初步运用垂径定理解决有关的计算和证明问题; 2、在研究过程中,进一步体验“实验——归纳——猜测——证明”的方法; 3、让学生积极投入到圆的轴对称性的研究中,体验到垂径定理是圆的轴对称性质的重要体现。 教学重点:使学生掌握垂径定理及其推论、记住垂径定理的题设和结论。 教学难点:对垂径定理的探索和证明,并能应用垂径定理进行简单计算或证明。 教学过程: 一、复习引入 1、我们已经学习了圆怎样的对称性质?(中心对称和轴对称) 2、圆还有什么对称性质?作为轴对称图形,其对称轴是什么特殊位置?(直径所在的直线) 3、观察并回答: (1)在含有一条直径AB 的圆上再增加一条直径CD ,两条直径的位置关系? (相交,而且两条直径始终是互相平分的) (2)把直径AB 向下平移,变成非直径的弦,弦AB 是否一定被直径CD 平分? 二、新课 (一)猜想,证明,形成垂径定理 1、猜想:弦AB 在怎样情况下会被直径CD 平分?(当C D ⊥AB 时)(用课件观察翻折验证) 2、得出猜想:在圆⊙O 中,CD 是直径,AB 是弦,当C D ⊥AB 时,弦AB 会被直径CD 平分。

3、提问:如何证明该命题是真命题?根据命题,写出已知、求证: 如图,已知CD是⊙O的直径,AB是⊙O的弦,且AB⊥CD,垂足为M。 求证:AE=BE。 4、思考:直径CD两侧相邻的两条弧是否也相等?如何证明?(参照数本P81) 5、我们给这条特殊的直径命名——垂直于弦的直径。并给出垂径定理:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,且平分这条弦所对的弧。 (二)分析垂径定理的条件和结论以及探讨垂径定理的推论 1、引导学生说出定理的几何语言表达形式 ① CD是直径、AB是弦 ① AE=BE ②C D⊥② 2、利用反例、变式图形对定理进一步引申,揭示定理的本质属性,以加深学生对定理的本质了解。 例1 看下列图形,是否能直接使用垂径定理? 3、引申定理:定理中的垂径可以是直径、半径、弦心距等过圆心的直线或线段。从而得到垂径定理的变式: ①经过圆心得到(结论)①平分弦 一条直线具有(条件): AC=BC AD=BD

勾股定理教学案例

《勾股定理》教学案例 鱼窝头中学初三级何辉琼 一、教材分析 (一)教材的地位与作用 勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。 它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 基于以上分析和数学课程标准的要求,制定了本节课的教学目标。 知识与技能: 1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。 2、了解勾股定理的内容。 3、能利用已知两边求直角三角形另一边的长。 数学思考: 在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。 解决问题: 1、通过拼图活动,体验数学思维的严谨性,发展形象思维。 2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。 情感与态度: 1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的 研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。 2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养 合作意识和探索精神。 (三)教学重、难点 重点:探索和证明勾股定理 难点:用拼图方法证明勾股定理 二、学情分析 学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在

的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。 三、教学策略 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。 四、教学程序 地面图18.1-1

垂径定理学案、教学设计

24.1.2垂直于弦的直径导学案 广水市实验中学张运才 【学习目标】 1.理解圆的轴对称性. 2.理解垂径定理及其推论,并能应用它们解决有关弦的计算和证明问题. 【学习重点】垂直于弦的直径的性质、推论以及证明. 【学习难点】利用垂直于弦的直径的性质解决实际问题. 【学习过程】 【我能行】学生自学课本P80---P81,按照提示思考下面问题: (一)情景导入:观看赵州桥视频。聪明的同学们,你能求出赵州桥桥拱所在圆的半径吗? (二)自主探究:先自主探究,后小组交流。 探究一:把一个圆沿着它的任意一条直径所在的直线对折,重复几次,你发现了什么?由此你能得出什么结论? 我发现: (1)把圆纸片沿着它的任意一条直径所在的直线对折叠时,两个半圆. (2)上面的实验说明:圆是____ __,对称轴是经过圆心的每一条____ ___.圆有条对称轴. 探究二:请同学们按下面的步骤做一做: 第一步,把一个⊙O对折,使圆的两半部分重合,得到一条折痕CD; 第二步,在⊙O上任取一点A,过点A作CD折痕的垂线,再沿垂线折叠,得到新的折痕,其中点E 是两条折痕的交点,即垂足; 第三步,将纸打开,新的折痕与圆交于另一点B,画出折痕AB、CD.观察你所折纸片:(1)在上述的操作过程中,由圆的轴对称性你能得到哪些相等的线段和相等的弧? (2)你能用一句话概括上述结论吗? (3)请作出图形并用符号语言表述这个结论. 练习:如下图,哪些能使用垂径定理?为什么? 【交流学】先独立完成,后小组交流。 1.垂径定理结构:条件:①直径CD过圆心O②CD⊥AB结论:③AE=BE ④弧AC= 弧BC ⑤弧AD=弧BD.如果交换定理的题设和结论的部分语句,如①③作为题设,②④⑤作为结论,命题成立吗?例如在⊙O中,CD是直径,AB是的弦,CD与AB交于点E.如果AE=BE,那么CD与AB垂直吗?注意分情况讨论: (1)若AB是⊙O的直径,CD与AB垂直吗?为什么? (2)若AB不是⊙O的直径,CD与AB垂直吗?为什么? 思考:你能用一句话概括上述结论吗? 推论: 如果交换定理的题设和结论的部分语句,会有一些什么样的新结论呢?它们成立吗? 发现:

《勾股定理》教学设计方案#(精选.)

教学设计(《勾股定理》为主题) 班级:2015级3班学号:2015060336 姓名:吴玲性别:女 序言:勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。 勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

教学活动1 活动一:故事场景→发现新知 毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角 形的三边之间的某种数量关系。 地面 同学们,请你也来观察下图中的地面,看看能发现些什么? 提问:1)上图中的等腰直角三角形有什么特点? 2)等腰直角三角形是特殊的直角三角形,一般的的直 角三角形是否也满足这种特点? 引导学生分析情景、提出问题: 你是怎样观察这个砖铺的现场的? (从基本砖铺材料、图形单元、位置形态进行观察:铺设材料是 正方形砖块,其中丰富的图案都是由等腰Rt△色块作为基本单元 构成。) A B 由于对角线的作用,通过进一步的观察或者手工拼图可以发现用等腰直角三角形拼正方形的基本方法(充分展示出了等腰直 角三角形与正方形的结构关系)。

3)在课堂上开展分组活动,让学生亲手操作:对正方形进行 剪切、拼贴然后再将它们关联(由正方形的边长关系到等腰直角 三角形)起来从而实现真正意义上的发现----合围(以等腰直角三 角形的三边为边) 教学活动2 活动二、深入探究→网络信息 等腰Rt△有上述性质其它的Rt△是否也具有这个性质呢? 网格 提问: (1)你是如何计算那个建立在Rt△斜边上的正方形面积的? 怎样探索“其它”的Rt△的三边关系呢? 目标体验:有区别的看待直角三角形(从地板上的等腰直角三角 形出发,构建“其它”直角三角形并且在它的三边建立正方形以 突出便利于探究性学习的网格图形)。 (2)要求学生画一个两直角边分别为2,3的直角三角形,并以它的三边为边长(根据定义法辅用以直尺)建立正方形。 (3)计算各正方形面积并验证这个Rt△的三边存在的关 系。

九年级数学下册第3章圆3.3垂径定理教案

3.3垂径定理;; 一、教学目标;; 1.通过手脑结合,充分掌握圆的轴对称性. 2.运用探索、推理,充分把握圆中的垂径定理及其逆定理. 3.拓展思维,与实践相结合,运用垂径定理及其逆定理进行有关的计算和证明. 二、课时安排 1课时 三、教学重点 运用探索、推理,充分把握圆中的垂径定理及其逆定理. 四、教学难点 运用垂径定理及其逆定理进行有关的计算和证明. 五、教学过程 (一)导入新课 引导学生说出点与圆的位置关系: (二)讲授新课 活动内容1: 探究1:圆的相关概念——弧、弦、直径 1.圆上任意两点间的部分叫做圆弧,简称弧. 2.连接圆上任意两点的线段叫做弦. 3.经过圆心的弦叫做直径 探究2: AB是⊙O的一条弦.作直径CD,使CD⊥AB,垂足为M. 你能发现图中有哪些等量关系?与同伴说说你的想法和理由.

小明发现图中有: 理由: 连接OA,OB,则OA=OB. 在Rt△OAM和Rt△OBM中, ∵OA=OB,OM=OM, ∴Rt△OAM≌Rt△OBM. ∴AM=BM. ∴点A和点B关于CD对称. ∵⊙O关于直径CD对称, ∴当圆沿着直径CD对折时,点A与点B重合, 和重合和重合 AC BC,AD BD. ∴== AC BC,AD BD. 活动2:探究归纳 定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.

(三)重难点精讲 例1.如图,在⊙O 中,CD 是直径,AB 是弦,且CD⊥AB,已知CD = 20,CM = 4,求 AB. 证明:连接OA , ∵ CD = 20,∴ AO = CO = 10. ∴ OM = OC – CM = 10 – 4 = 6. 在⊙O 中,直径CD ⊥AB , ∴ AB =2AM , △OMA 是直角三角形. 在Rt △OMA 中,AO = 10,OM = 6, 根据勾股定理,得:2 22AO OM AM =+, AM 8===, ∴ AB = 2AM = 2 × 8 = 16. 例2.如图,两个圆都以点O 为圆心,小圆的弦CD 与大圆的弦AB 在同一条直线上.你认为AC 与BD 的大小有什么关系?为什么?

《勾股定理》教学案例

教学案例13 勾股定理(第一课时) 一、教材分析 (一)教材的地位和作用 “勾股定理”是人教版《数学》八年级下册第十八章第一节内容,分三课时完成。本节说课为第一课时,主要讲解勾股定理的探索证明以及简单应用。 勾股定理是几何中几个重要的定理之一,它揭示了直角三角形三边之间的一种美妙的数量关系,将数与形密切联系起来,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础,因此这节课在知识体系中有着承上启下的作用。 本课时内容有学习勾股定理的发现、证明及简单应用。勾股定理的发现主要让学生亲自动手,在实践中观察、分析、发现、猜想得出直角三角形三边之间的数量关系,再对a2+b2=c2的直角三角三边之间的数量关系,再对a2、b2、c2的结构特点与几何中正方形的面积公式产生联想,确定以面积来证明猜想的基本思想。 (二)学情分析 (1)学生的认知基础:八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法,但是学生对用割补法和面积法证明几何命题还存在障碍,不能快速有效地将数与形有机结合起来。 (2)学生年龄心理特点:八年级的学生在心理与生理方面已经较为成熟,对待事物的看法有一定的个性见解,探究欲强。 二、教学任务 (一)教学目标 【知识与技能目标】 理解并掌握勾股定理的内容和证明,能够简单的运用勾股定理。 【过程与方法目标】 在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的数学思想。

【情感态度与价值观目标】 通过对勾股定理历史的了解,感受数学文化,培养学生的民族自豪感,激发学习兴趣,在探究活动中,培养学生的合作交流意识和探索精神。 (二)教学重点、难点 【教学重点】探索发现并验证勾股定理。 【教学难点】用面积法和拼图法证明勾股定理。 三、教法与学法分析 (一)教法分析 好的课堂结构不是那种“填鸭式、膨胀式”的结构,而应该是留有很大余地的可塑性结构,充分调动学生学习的积极性和主动性。贯彻“以学生为主体,教师为主导”的教学原则,培养学生自主学习的能力和创新意识。根据教学内容的特点和学生的实际情况,本节课采用“自主探究”式的教学方法。 (二)学法分析 我国古代《学记》说,教师应做到“道而弗牵,强而弗抑,开而弗达”。意思是:引导学生而不牵着学生走,激励他们而不强加逼迫,启发他们独立思考,而不直接把结论告诉学生。在学习定理时,先设计好观察、实验用的图形。通过自己观察、实践探究出的新知识,进一步亲自动手尝试,对图形割、补、拼、凑,从而达到面积割补法的证明思想,从而让学生得到学习成功的体验。同时,在定理证明的探究过程中,以充满启发性的问题引路,并渗透“数形”结合的思想。 (三)、教学策略 【教法】引导探索法 【学法】自主探索合作交流 【教学手段】多媒体辅助教学 【学具准备】剪刀四个全等直角三角形 正是基于上述的指导,因此设计了以下的教学过程。 四、教学过程

垂径定理教学设计

垂径定理(第一课时)教学设计 兰甲明 【教学内容】§7.3垂径定理(初三《几何》课本P 76~P 78) 【教学目标】 1.知识目标:①通过观察实验,使学生理解圆的轴对称性; ②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题; ③掌握辅助线的作法——过圆心作一条与弦垂直的线段。 2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力; ②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。 3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透; ②激发学生探究、发现数学问题的兴趣和欲望。 【教学重点】垂径定理及其应用。 【教学难点】垂径定理的证明。 【教学方法】探究发现法。 【教具准备】自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。 【教学设计】 一、实例导入,激疑引趣 1.实例:同学们都学过《中国石拱桥》这篇课文(初二语文第三册第一课·茅以 升),其中介绍了我国隋代工匠李春建造的赵州桥 (如图)。因它位于现在的历史文化名城河北省赵 县(古称赵州)而得名,是世界上现存最早、保存 最好的巨大石拱桥,距今已有1400多年历史,被 誉为“华北四宝之一”,它的结构是当时世界桥梁 界的首创,这充分显示了我国古代劳动人民的创造智慧。 2.导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37.4 米,拱高(弧的中点到弦AB 的距离, 也叫弓高)为7.2米。请问:桥拱的 半径(即AB 所在圆的半径)是多少? 通过本节课的学习,我们将能很容易解决这一问题。 (图1) ⌒

二、尝试诱导,发现定理 1.复习过渡: ①如图2(a),弦AB 将⊙O 分成几部分?各部分的名称是什么? ②如图2(b),将弦AB 变成直径,⊙O 被分成的两部分各叫什么? ③在图2(b)中,若将⊙O 沿直径AB 对折,两部分是否重合? (a) (b) (a) (b) (c) (图2) (图3) 2.实验验证: 让学生将准备好的一张圆形纸片沿任一直径对折,观察两部分是否重合;教师用电脑演示重叠的过程。从而得到圆的一条基本性质—— 圆是轴对称图形,过圆心的任意一条直线(或直径所在的直线)都是它的对称轴。 3.运动变换: ①如图3(a),AB 、CD 是⊙O 的两条直径,图中有哪些相等的线段和相等的弧? ②如图3(b),当AB ⊥CD 时,图中又有哪些相等的线段和相等的弧? ③如图3(c),当AB 向下平移,变成非直径的弦时,图中还有哪些相等的线段和相等的弧?此外,还有其他的相等关系吗? 4.提出猜想:根据以上的研究和图3(c),我们可以大胆提出这样的猜想—— (板书) ?????===????⊥BD AD BC AC BD AE CD E AB,CD O 垂足为弦的直径是圆 5.验证猜想:教师用电脑课件演示图3(c)中沿直径CD 对折,这条特殊直径两侧的图形能够完全重合,并给这条特殊的直径命名为——垂直于弦的直径。 三、引导探究,证明定理 1.引导证明: 猜想是否正确,还有待于证明。引导学生从以下两方面寻找证明思路。 ①证明“AE=BE ”,可通过连结OA 、OB 来实现,利用等腰三角形性质证明。 ②证明“弧相等”,就是要证明它们“能够完全重合”,可利用圆的对称性证明。 B B B ⌒ ⌒ ⌒ ⌒

勾股定理学案

课题:18.1勾股定理(第1课时) 一、学习目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点:勾股定理的内容及证明。 难点:勾股定理的证明。 三、学习准备: 预习课本P22———24页 四、课堂阅读 1. 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地 球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 2.让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即_______________,那么就有 ________________ 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例1(补充)已知:在△ABC 中,∠C=90°, ∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 ________________________ ______________ ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷ 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 A B b b

垂径定理教学设计

《24.1.2 垂径定理》教学设计柳城县寨隆镇中学覃光洋

学 案 导 案 (教学流程) 设计意图 2.你能发现图中有哪些相等的线段和弧?为什么? 相等的线段: . 相等的弧: = ; = . 3.你能用一句话概括这些结论吗? 垂径定理:垂直于弦的直径 弦,并且 的两条弧. 4.你能用几何方法证明这些结论吗? 5.你能用符号语言表达这个结论吗? 如图2 CD 是直径(或CD 经过圆心),且CD AB ⊥ ∴ = ; = ; = (三)探究垂径定理的推论 如上图,若直径CD 平分弦AB 则 1.直径CD 是否垂直且平分弦所对的两条弧?如何证 明? 2.你能用一句话总结这个结论吗?(即推论:平分弦的直径也垂直于弦,并且平分弦所对的两条弧) ③如果弦AB 是直径,以上结论还成立吗? 推论: _______________________________________________________________________. 符号语言:∵CD 是⊙O 的直径 又∵AE=BE ∴CD AB ⊥ = ; = . (四)探究:用垂径定理解决问题 已知:⊙O 的直径为10cm ,圆心O 到AB 的距离为3cm , 求弦AB 的长 归纳:圆中常用辅助线---作弦心距,构造Rt △.弦的一半(2 a )、弦心距(d)、半径(r )三个量的数量关系为 . 教师出示问题 学生小组讨论,发现垂径定理的证明方法,并由学生代表发言。 学生尝试将文字转变为符号语言,用几何符号表达定理的逻辑关系。教师更正。 教师提出问题,引导学生进行思考和讨论。 学生尝试得出垂径定理和推论,教师规 范并板书。 教师提醒学生此中的弦一定不能是直径。 学生先独立完成,再小组交流讨论,让一名学生展示。 教师讲评,引导学生联系弦、半径、弦心距等因素,从而构成直角三角形,利用 勾股定理解决问题。 培养学生的观察能力,概括能力,分析能力, 从而调动学生学习积极性,使学生主动的获得知识。 让学生进一步熟悉垂径定理的条件与结论,并为探索垂径定理的推论打基础。 让学生亲自探索出各条推论,以使学生以后在应用中可明明白白的应用。 巩固并熟练垂径定理的使用方法。 总结规律,培养学生的归纳总结能力。 C A B D E O C A B D E O (图2) (图1)

直线与圆锥曲线位置关系之韦达定理的使用

直线与圆锥曲线位置关系之韦达定理的使用 【例1】已知椭圆22+197x y =的长轴两端点为双曲线E 的焦点,且双曲线E 的离心率为32 . (1)求双曲线E 的标准方程; (2)若斜率为1的直线l 交双曲线E 于,A B 两点,线段AB 的中点的横坐标为线l 的方程. 【例2】已知双曲线C : 22 221x y a b -=(0,0a b >>4. (1)求双曲线的标准方程; (2)过点()0,1,倾斜角为045的直线l 与双曲线C 相交于,A B 两点, O 为坐标原点,求

【例3】已知椭圆C:()22 2210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为; 圆M :2220x y Dx +--=过椭圆C 的三个顶点.过点2F 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (Ⅰ)求椭圆的标准方程; ,使得AP AQ 为定值;并求出该定点的坐标 . 【例4】的椭圆C 的一个焦点坐标为() . (1)求椭圆C 的标准方程; (2)过点() 0,2P 的直线l 与轨迹C 交于不同的两点E F 、,求PE PF ?的取值范围.

【例5】已知抛物线2:2C y x =和直线:1l y kx =+, O 为坐标原点. (1)求证: l 与C 必有两交点; OA 和OB 斜率之和为1,求k 的值. 【例6】已知椭圆C : 22221(0,0)x y a b a b +=>>,右焦点为,0). (1)求椭圆C 的方程; ,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为)

【例7】已知椭圆()22 22:10x y C a b a b +=>> ,且椭圆上任意一点到左焦点的最大距离为1 1. (1)求椭圆的方程; (2)过点10,3S ??- ??? 的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的

勾股定理案例分析

勾股定理案例分析 我仅从四个方面,借助教学案例分析的形式,向老师们汇报一下我个人数学教学的体会,这四个方面是: 1.在多样化学习活动中实现三维目标的整合; 2.课堂教学过程中的预设和生成的动态调整; 3.对数学习题课的思考; 4.对课堂提问的思考。 首先,结合《勾股定理》一课的教学为例,谈谈如何在多样化学习活动中实现三维目标的整合 案例1:《勾股定理》一课的课堂教学 第一个环节:探索勾股定理的教学 师(出示4幅图形和表格):观察、计算各图中正方形A、B、C的面积,完成表格,你有什么发现? 生:从表中可以看出A、B两个正方形的面积之和等于正方形C 的面积。并且,从图中可以看出正方形A、B的边就是直角三角形的两条直角边,正方形C的边就是直角三角形的斜边,根据上面的结

果,可以得出结论:直角三角形的两条直角边的平方和等于斜边的平方。 这里,教师设计问题情境,让学生探索发现“数”与“形”的密切关联,形成猜想,主动探索结论,训练了学生的归纳推理的能力,数形结合的思想自然得到运用和渗透,“面积法”也为后面定理的证明做好了铺垫,双基教学寓于学习情境之中。 第二个环节:证明勾股定理的教学 教师给各小组奋发制作好的直角三角形和正方形纸片,先分组拼图探究,在交流、展示,让学生在实践探究活动中形成新的能力(试图发现拼图和证明的规律:同一个图形面积用不同的方法表示)。 学生展示略 通过小组探究、展示证明方法,让学生把已有的面积计算知识与要证明的代数式联系起来,并试图通过几何意义的理解构造图形,让学生在探求证明方法的过程中深刻理解数学思想方法,提升创新思维能力。 第三个环节:运用勾股定理的教学 师(出示右图):右图是由两个正方形 组成的图形,能否剪拼为一个面积不变的新 的正方形,若能,看谁剪的次数最少。 生(出示右图):可以剪拼成一个面积 不变的新的正方形,设原来的两个正方形的 边长分别是a、b,那么它们的面积和就是

解析几何中的算法与算理

解析几何中的算法与算理——一堂研究课的听课观察记录与感悟 2.分析:求直线AB的方程,关键是确定求直线AB的斜率;而k AB可以由点A(或点B)的位置的确定而确定——引入点参;k AB也可以由直线P A(或直线PB)、直线AB的位置的确定而确定——引入k参、写方程;…… 用思维导图表达研究过程的思路、方法,使思维“视觉化”,进而帮助学生捋顺思路:结论:

3.板书计划: 4.学生展示、观摩、小组交流、评价: 学生甲的思路(1—1)的解法:由题意 F (1,0).因为直线AB 不经过点P ,故直线AB 的斜 率必存在. 可设AB :y =k (x -1) 由? ??=+-=1243)1(2 2y x x k y 消去y ,整理得 1248)34(2 222=-+-+k x k x k 设点)()(2211,,,y x B y x A . 由根与系数的关系,得??? ?? ? ??? +-= ?+=+>?34124348022212 221k k x x k k x x 由k P A +k PB =0得 01 23 1232211=--+-- x y x y , 所以, 01 23 )1(123)1(2211=---+-- -x x k x x k , 所以,0)2(2 3 )1)(1(22121=-+- --x x x x k

即0)2(2 3 ]1)([2212121=-+- ++-x x x x x x k 消去x 1和x 2,得)23 48(23)134834124( 222 2222-+=++-+-k k k k k k k 化简,得2 1 12= ?=k k . 所以,所求的直线AB 的方程为:.012)1(2 1 =--?-= y x x y 师问:本题消去x ,行吗?消去哪个更好? 于是,引导学生继续探究: 思路(1—2)的解法:将算法“局部优化”为:由k P A +k PB =0得 01 23 1232211=--+-- x y x y , 由?? ?=+-=12 43)1(2 2 y x x k y 消去x ,得 096)34(1243 2222222 =-++?=++k ky y k k y k k y )( 设点)()(2211,,,y x B y x A . 由根与系数的关系,得??? ? ? ? ??? +-=?+=+>?34934602 2212 21k k y y k k y y 由k P A +k PB =0得 01 231232211=--+-- x y x y , 所以,)(2320123 12321212211y y y y y k y y k y +=??=-+- , 故2 1 34623349222 2=?+?=+-?k k k k k . 所以,所求的直线AB 的方程为:.012)1(2 1 =--?-= y x x y 学生丁的思路(1—3)的解法:由题意,直线AB 的斜率必存在且不等于0.

相关主题
文本预览
相关文档 最新文档