当前位置:文档之家› 汽轮机轴系找中心说明

汽轮机轴系找中心说明

汽轮机轴系找中心说明

汽轮机说明书

中国长江动力公司(集团) 文件代号Q3053C-SM 2011年3 月日

产品型号及名称C7.5-3.8/1.0抽汽凝汽式汽轮机文件代号Q3053C-SM 文件名称使用说明书 编制单位汽轮机研究所 编制 校对 审核 会签 标准化审查 批准

目录 1前言--------------------------------- 2 2主要技术数据------------------------- 2 3产品技术性能说明和主要技术条件------- 3 4产品主要结构------------------------- 3 5安装说明----------------------------- 5 6运行和维护--------------------------- 17 7附录:汽轮机用油规范----------------- 25

1前言 C7.5-3.8/1.0型汽轮机系中温中压、单缸、冲动、抽汽凝汽式汽轮机,具有一级工业调整抽汽。额定功率为7500kW,工业抽汽额定压力为 1.0MPa,额定抽汽量为9.5t/h。本汽轮机与发电机、锅炉及其他附属设备成套,安装于企业自备电站或热电厂,同时供热和供电。机组的电负荷和热负荷,可按用户需要分别进行调节。同时,亦允许在纯凝汽工况下,带负荷7500kW长期运行。本机系热电联供机组,具有较高的热效率和经济性。机组结构简单紧凑,布置合理,操作简便,运行安全可靠。 2主要技术数据 2.1 汽轮机型式中温中压、单缸、冲动、抽汽凝汽式 2.2 汽轮机型号C7.5- 3.8/1.0 型 2.3 新蒸汽压力 3.8(2.03.0+-)MPa 2.4 新蒸汽温度390(1020+-)℃ 2.5 额定功率7500kW 最大功率9000kW 2.6 额定转速3000r/min 2.7 额定进汽量46t/h 2.8 最大进汽量50t/h 2.9 额定抽汽参数压力 1.0 MPa 温度272.3℃ 流量9.5 t/h 2.10 最大抽汽量15t/h

汽轮机轴系监测系统

汽轮机轴系监测系统概述 汽轮机轴系监测系统作为热工保护内容的一部分,是实现汽轮机组运行自 动化的机组运行自动化的基础,是保证汽轮机组安全经济运行的必备装置。汽 轮机轴系监视保护项目主要包括:汽轮机振动的监测、转子轴向位移监测、转 速监测、缸胀及胀差监测、偏心监测等。由于各个汽轮机机组的形式、结构以 及组成不尽相同,因而不同形式的汽轮机所配置的监视和保护装置,其项目和 要求也不尽相同。 汽轮机轴系监测(TSI)系统基本参数 (一)、动态运行(振动)参数 1.振幅 振幅是表示机组振动严重程度的一个重要指标,它可以用位移、速度或加 速度表示。根据振幅的监测,可以判断“机器是否平稳运转”。 以前对机组振动的检测,只能测得机壳振幅,虽然机壳振幅能表明某些机 械故障,但由于机械结构、安装、运行条件以及机壳的位置等,转轴与机壳之 间存在着阻抗,所以机壳的振动并不能直接反映转轴的振动情况,因为机壳振 动不足以作为机械保护的合适参数,但是机壳振动通常作为定期监测的参数, 能及早发现叶片共振等高频振动的故障现象。由于接近式传感器能够直接测量 转轴的振动状态,所以能够提供机组振动保护的重要参数,把接近式电涡流传 感器永久的安装在轴承架上,便能随时观测到转轴相对于轴承座的振幅。振动 幅值一般以峰—峰密耳位移值或峰—峰微米位移值表示。一台运行正常的机组的振幅值都是稳定在一个允许的限定值。一般来说,振幅值的任何变化都表明 机械状态有了改变。机组的振幅无论增加或减少,操作和维修人员均应对机组 作进一步调查分析。 2.频率 汽轮发电机组等旋转机械的振动频率(每分钟周期数),一般用机械转速的 倍数来表示,因为机械振动频率多以机械转速的整数倍和分数倍形式出现的。 这是表示振动频率的一种简单的方法,只把振动频率表示为转速的一倍、二倍 或1/2倍等,而不用把振动频率分别表示为每分钟周期数或赫兹。 在汽缸测量中,振幅和频率是可供测量和分析的惟一主要参数,所以频率 分析在汽缸振幅测量中是很重要的。而且某些故障现象确实与一定的频率有关。但是,并不能说频率与故障有一一对应关系,也就是说,一种特定频率的振动

汽轮机找正网友经验

找中心我的见解 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法:1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这

方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬轴试验以确定。而大家都知道,汽轮机轴承属于轻型转子,轴承负荷轻。所以这种情况要特别注意。比如说吧,单缸机组而言,联轴器采用刚性联接。调速汽门假设是4个,下面的为1、2#,上面的为#3、4,进汽方式是1、2、3调门全开为满负荷。这时调速级为下部先进汽,必然会使蒸汽对转轴产生一个向上的压力差从而抬高转子,结果是减轻了前轴承的负荷分配量,从而很容易产生轴承的油膜振荡。所以为了轴承的稳定性,在这里的联轴器采用一定的下张口,从而可以更好地稳定轴承的工作状况。 5、至于谈到扬度的影响,我感觉不到。因为,汽缸、转子均按同样的扬度进行安装的,为了使转子形成一条光滑顺畅曲线,一般前轴承上扬,其上扬的结果是以后轴承处为零或稍负一点。但无论如何,均需将联轴器中心线找正。 6、以上所说,我当然没有必要再谈论中心线的具体数值了。因为各种机组不同,且厂均有标准。只是取标准的方向如何而已。

汽轮机使用说明书

N30-3.43/435型汽轮机使用说明书 1、用途及应用范围 N30-3.43/435型汽轮机系单缸、中温中压、冲动、凝汽式汽轮机。额定功率30MW,与汽轮发电机配套,装于热电站中,可作为电网频率为50HZ地区城市照明和工业动力用电。 其特点是结构简单紧凑、操作方便、安全可靠。汽轮机不能用以拖动变速旋转机械。 2、主要技术数据 2.1 额定功率:30MW 2.1 最大功率:33MW 2.3 转速:3000r/min 2.4 转向:从机头看为顺时针方向 2.5 转子临界转速:1622.97r/min 2.6 蒸汽参数: 压力: 3.43MPa 温度:435℃ 冷却水温:27℃(最高33℃) 排汽压力(额定工况):0.0086MPa 2.7 回热抽汽:4级(分别在3、6、8、11级后) 2.8给水加热:2GJ+1CY+1DJ 2.9 工况: 工 况 项 目进汽量抽汽量排汽量冷却水温电功率汽耗Go Gc Ge Ne t/h t/h t/h ℃kW Kg/kw·h 额定工况131.0 0.0 102.77 27 30007.1 4.366 夏季凝汽工况135.5 0.0 107.98 33 30029.4 4.512 最大凝汽工况145.0 0.0 114.14 27 33055.7 4.387 最大供热工况143.5 20.0 93.51 27 30049.2 4.776 70%额定负荷工况93.0 0.0 73.93 27 21013.9 4.426 50%额定负荷工况69.5 0.0 56.47 27 15009.0 4.631 高加切除工况122.0 0.0 107.8 27 30032.7 4.062 2.10 各段汽封漏汽流量 前汽封后汽封

小汽轮机说明书

TGQ06/7-1型锅炉给水泵汽轮机使用说明书 8QG22·SM·01-2003 北京电力设备总厂 2003.12

目录 一汽轮机概述4二汽轮机技术规范5三汽轮机本体结构7四汽轮机系统14第一节汽水系统14 第二节油系统16第三节调速控制系统19第四节保护装置21五汽轮机安装26六汽轮机运行及维护43第一节调速系统的静态试验43第二节汽轮机超速试验44第三节汽动泵组启动与停机45第四节汽轮机运行中的维护47

一.汽轮机概述 本汽轮机为300MW汽轮发电机组锅炉给水泵驱动汽轮机。每台机组配备两台50%容量的汽轮机驱动给水泵和一台50%容量的电动机驱动给水泵。正常运行时,两台汽动泵投入,一台电动泵作为起动或备用给水泵。 本汽轮机目前可与SULZER的HPTmK200-320-5S型也可与WEIR或KSB相应型号的锅炉给水泵配套。用叠片式挠性联轴器联接,为了满足运行的需要,汽轮机配有两种进汽汽源。正常运行时采用主机中压缸排汽即主机四段抽汽,低负荷或高负荷时采用主蒸汽,低压调节汽门和高压调节汽门由同一个油动机通过提板式配汽机构控制。在给水泵透平的起动过程中,高压蒸汽一直打开到接近40%主机额定负荷。15%主机额定负荷时开始打开低压主汽门前逆止阀,使低压汽进入;在15%~40%主机额定负荷范围内,高压汽与低压汽同时进入;在40%主机额定负荷以上时,全部进入低压汽;在60%主机额定负荷以下时可为单泵运行;在60%主机额定负荷以上时为双泵运行。 在低压主汽门前必须装有一只逆止阀,当高压进汽时防止高压汽串入主汽轮机。当主机四段抽汽压力升高到能顶开逆止阀后,低压汽进入汽轮机,配汽机构自动地逐渐将高压汽切断。该逆止阀应与主机抽汽门联动。 本汽轮机轴封及疏水系统与主机轴封系统、汽水系统相连,汽轮机布置在12.6米运行层,排汽由后汽缸的下缸排汽口通过排汽管道引入主凝汽器,排汽管道上装有一真空碟阀,以便在汽动给水泵停运时,切断本汽轮机与主凝汽器之间的联系,而不影响主凝汽器的真空。 本汽轮机采用数字电液控制系统(MEH),MEH接受4~20mA锅炉给水信号和来自油动机LVDT的位移反馈信号,MEH产生的控制信号作用于电液伺服阀,使电液伺服阀开启或关闭,进而控制油动机的行程,最终实现低压调速汽门和高压调速汽门开度的调节,以控制进入汽轮机的蒸汽量。 本汽轮机的润滑油系统采用两台同容量的交流油泵,一台运行,一台备用,供给汽轮机和主给水泵的润滑用油,另外还有一台直流油泵,在事故情况下供给汽轮机和主给水泵的润滑用油。 为了便于电站系统设计和现场运行,两台50%容量的汽动给水泵组设计成镜面对称布置。高压主汽门,低压主汽门,本体汽水管路和本体油管路分别布置在两台汽轮机的同一侧。 本汽轮机有较宽的连续运行转速范围,除能满足主给水泵提供锅炉的额定给水量外,还留有充分的调节裕度,因而能广泛地为各种运行方式提供最大限度的可能性。 二.汽轮机技术规范 1.汽轮机型号,名称和型式 (1)型号:TGQ06/7-1 (2)名称:300MW汽轮发电机组锅炉给水泵驱动汽轮机 (3)型式:单缸,双汽源,新汽内切换,变转速,变功率,冲动,凝汽式,下排汽2.最大连续功率:6MW

汽轮机轴系振动故障研究汇总

汽轮机轴系振动故障研究 汽轮机轴系振动故障研究汽轮发电机组是电厂中的重要设备,而汽轮发电机组的振动严重威胁着汽轮发电机组的安全运行。机组运行中,轴系振动最常见的后果是导致机组无法升速到工作转速,个别情况下,轴系振动大会造成汽轮发电机组设备损害事故,如动静摩擦等引起大轴弯曲,支持轴承的乌金破碎或严重磨损,甚至转子断裂。例如2001年广东省就有3台大型机组发生高压转子永久弯曲事故。1988年,某电厂600MW引进机组发生高压缸叶片断裂重大事故,直接损失2400万元,此外近几年运行中叶片断裂事故也逐渐增多,如果不即时发现并确切诊断,则很可能造成大面积叶片断裂,而引发大轴弯曲或飞车事故,此类事故不胜枚举,不仅间接直接经济损失巨大,而且更严重的是影响机组的寿命,威胁生命安全。本人根据自己现场工作经验,列出常见的振动原因,及其如何在运行和检修中防范。 第一章机组振动故障诊断 第一节质量不平衡 转子质量不平衡是汽轮发电机组最常见的振动故障,它约占故障总数的80%。随着制造厂加工,装配精度以及电厂检修质量的提高,这类故障的发生率正在逐渐减少,过去国内大型汽轮机厂中只有个别厂家可以对大型汽轮机转子进行高速动平衡,现在几乎全部厂家都可以做。至于发电机转子的高速平衡,各电机厂早已能够进行。现场检修过程中的转子平衡方法也在不断改进。低速动平衡有些电厂已经抛弃了老式的动平衡机,取而代之是使用先进的移动式动平衡机。即便如此质量不平衡目前仍是现场振动的主要故障。 一.转子质量不平衡的一般特征 (1)量值上,工频振幅的绝对值通常在30um以上,相对于通频振幅的比例大于80% (2)工频振幅为主的状况应该是稳定的这包括 1) 各次启机 2) 升降速过程 3) 不同的工况,如负荷,真空,油温,氢压,励磁电流

汽轮机找中心经验

转子中心测量时已经是对汽轮机转子的扬度调整好后进行,通常以汽轮机转子为基准来找发电机转子的中心,这时主要考虑的是圆周值和端面值,圆周值当然是越小越好,我们做的时候一般控制在0.02mm以下,同时还要考虑汽轮机和发电机运行时各转子向上位移的膨胀量,来修正发电机转子是抬高还是要降低,端面值的要求也就可以决定是要求上开口还是要求下开口,我们做一般是保证左右开口为零,上下开口保证在2丝以内,这样在过临界时基本很少有振动增加。同时制造厂的相关资料也可以为我们的测量做出一些参考。 对轮中心做成上张口还是下张口要根据机组的具体形式而定。比如:三支点两转子找中心,一般都做成下张口,具体数值有厂家提供,这是从轴承负荷分配决定的。凝汽机组找中心一般做成上张口,是由于再找中心时凝汽器内有没有充水以及真空形成后后汽缸会下沉等因素决定的。总之,对轮找中心要根据具体情况具体分析,没有固定数值要求,要结合安装使用说明书和机组具体运行状态去做,才能打到满意效果。 在安装中找中心一般是在冷态下,与各机组的情况有关,不能一概而论,小机组转子是双支点轴承支撑,考虑运行中前轴承箱受热膨胀比后轴承箱多一般考虑上开口,此外,冷凝器的连接方式也有关系,有的是弹性连接没有太大的影响,有的是刚性连接,在找中时应灌水。而大机组采用双转子三轴承支撑,为了轴承负荷分配,一般制造厂家均有下开口的要求。关健在于热态运行中轴系要成为一条连续的光滑曲线,不能死搬教条,要根据不同情况进行调整。 我认为联轴器找中心与每台机组的实际情况差别非常大,我简单讲述几点。 1、与联轴器的型式有关,若为半挠性或挠性联轴器,中心无须太过讲究。不过对于汽轮机而言一般没有采用挠性联轴器,而采用半挠性联轴器的都只限于与发电机的联结上。 2、上面有些同志所说的凝汽器的变化之类,也要看凝汽器的支承型式、与后汽缸的联接型式、后汽缸的刚度、后座架的结构型式等。比如有同志说凝汽器灌水后下降之类的,真空之后又如何,这种说法是靠不住脚的。我简单谈一下自己的看法: 1)现在的凝汽器多为弹簧支承,凝汽器与后汽缸为刚性联接。这种型式中需要考虑的是当凝汽器进水后,弹簧支承力变大,从而下沉,但当机组带负荷后凝汽器膨胀,从而基本消除其变形。再加上进水的重量与凝汽器本身的重量轻得不少,而弹簧的刚度很大,所以不至于影响联轴器中心。所以上汽的机组基本上不需要灌水找中心线。 2)真空如何去影响凝汽器的受力呢?当然除了与后汽缸联接采用挠性波纹管联接的结构外,是不会有太大影响的。在这里唯一的影响点就是后汽缸靠台板座落在后座架上的,而汽缸与台板之间要求是接触良好,也就是说之间没有空气存在。而后座架是通过灌浆的方式浇铸在混凝土内的,所以当凝汽器抽真空时,因为这部分面积的影响从而造成了大气自上往下的压力,这种结果当然是产生轴承座可能的向下变形会大点,但此面积很小,不至于影响很大。 3)轴承座受热变形。这样可能会造成轴承位置有所抬高。 4)以上三小点相互作用的结果是相互抵消其对中心线的变化的。也这是设计时认真考虑的。特别对于美国西屋公司的机组及ABB机组这方面的考虑很详细。 3、关于前轴承箱的问题,大家其实知道,现在的支承方式均为中分面支承,比如上汽采用的下猫爪支承是将下猫爪作成下弯至支承位置处于中分面位置,这样的支承情况,对运行中汽轮机联轴器的张口影响基本是不存在的了。而至于轴承箱的温度,一般也就是50度左右,而轴承中分面离地面很很小,而且其它的轴承座也是一样的离地这样高,所以其受热膨胀对中心线的影响不用考虑。 4、轴承的负荷分配。这对于刚性联轴器是非常严肃的话题!这也是采用张口来进行调整的。大家知道三轴承的联轴器都采用下张口的型式,下张口的数值由厂家提供或经由现场负荷抬

汽轮机课程设计说明书..

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

背压汽轮机说明书

前言 本说明书是为帮助操作者按正确的程序操作和维护本汽轮机,进而帮助操作者辩认各零部件,以利于该机达到最佳性能和最长的使用寿命。 注意 1.在装运前后和开车前,应确认所有的螺栓和接头已恰当拧紧。 2.汽轮机运转时,转动部件不得裸露在外,所有联轴节及其它转动部件必须设防护设置以防人员接触发生事故。 3.本机备有手动脱扣(停车)装置,以便在紧急状态下能迅速停车。这个装置必须定期检查和试验。检查和试验的时间由使用者根据情况自行确定。建议对试验结果作好记录。 4.安装电气设备时,一定要检查,并拧紧所有端子接头,线夹,螺母,螺钉等连接元件。这些连接元件在运输中可能会松动,因此,设备在已经运行时及元件有温升后,最好再紧固一次。 5.从事这类工作时,一定要先断开电源。 6.与汽轮机有关人员应完整地阅读本说明书,以利于安全运行。

索引 第一部分:汽轮机………………………………………… 第一章: 概述…………………………………………… 第二章: 结构…………………………………………… 第三章: 运行与操作…………………………………… 第四章: 汽轮机的检修………………………………… 第五章: 主要图纸……………………………………… 第二部分:辅助设备………………………………………

第一部份:汽轮机

第一章:概述 第 1 节: 概述 第 2 节: 汽轮机性能曲线

第1节:概述 业主:辽宁华锦通达化工股份有限公司 设备名称:驱动给水泵用背压汽轮机 汽轮机位号: 汽轮机型号: 5BL-3 卖方服务处:辽宁省锦州市锦州新锦化机械制造有限公司电话:(0416)3593027 传真:(0416)3593127 邮编: 121007 地址:辽宁省锦州经济开发区锦港大街二段18号

防止汽轮机组轴系断裂事故措施实用版

YF-ED-J4418 可按资料类型定义编号 防止汽轮机组轴系断裂事故措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

防止汽轮机组轴系断裂事故措施 实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1、加强机组停机时的保养工作,防止各类 腐蚀的产生。 (1)停机时确保机组和外界蒸汽和疏水系 统可靠隔离。 (2)停机时间较长时,要排净各加热器、 冷却器及凝汽器的汽侧及水侧的积水。 (3)停机时间较长,机组汽缸温度冷却到 接近室温且空气湿度较大时,应对汽轮机通流 部分采用防腐措施。 2、加强对汽水品质的监督,确保汽水品质

应符合要求。 3、严格规范运行操作,杜绝超速和运行不当的发生,防止轴系断裂。 (1)严格按运行规程要求的启停方式和启停曲线执行,减少和降低由于机组启停方法不当产生的过大热应力。 (2)机组运行的主、辅设备的保护装置必须正确投入,在机组启动和停机过程中振动保护必须投入运行。 (3)在机组正常运行过程中,必须有完善的保证振动保护正确动作的措施,确保不发生误动,机组正常运行时轴瓦振动、轴振动应达到有关标准的优良范围,即轴瓦振动≤ 0.025mm,轴振≤0.075mm,并注意监视变化趋势。

汽轮机找中心要点

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位置,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位置,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位置径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

汽轮机安装方案全解资料

目录 一、概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 二、编制依据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 三、施工准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 四、汽轮机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 五、调节保安系统安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 六、发电机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 七、质量保证措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 八、安全文明施工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 九、环境保护措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 十、环境因素、危险辨识评价记录表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 一、概述

1、汽轮机主要技术参数 本汽轮机由洛阳中重发电设备有限责任公司制造,单缸、低压冲动空气冷却式汽轮机发电机,用于中广核青海太阳能热发电技术试验项目汽轮发电机组土建、安装及调试项目,以提供电力供应。 1.1主汽门前蒸汽参数及其允许变化范围: 正常: 2.6MPa/ 375℃ 最高: 2.8MPa/ 380℃ 最低: 2.4MPa/375℃ 1.2汽轮机额定功率:1500KW 1.3汽轮机额定转速:5600r/min 1.4汽轮机临界转速:3359r/min 1.5汽轮机旋转方向:顺气流方向看,汽轮机的转向为顺时针方向。 1.6排汽压力:在额定负荷时:(绝)0.015Mpa 1.7汽机本体主要件重量: 汽轮机全量25.1 t 转子 1.122 t 汽轮机上半重量(即检修时最大起重量): 3.1 t 1.8汽轮机本体外形尺寸(mm): 长×宽×高4451×3770×2715 1.9汽轮机中心高(距运转平台):1050mm。 2、调节系统参数 2.1 汽轮机在稳定负荷及连续运转情况下,转速变化的不均匀度为4.5+0.5%。 2.2 汽轮机调整器调速范围,能将正常运行转速作-4%--6%的改变。 2.3汽轮机突然抛全负荷时,最大升速不超过危急遮断器的动作转速。 2.4调节系统的迟缓率小于0.5% 。 2.5危急遮断器的动作转速6104~6216r/min,危急遮断器动作至主汽门关闭。 2.6汽轮机转子轴向位移小于0.7mm。 2.7润滑系统油压力0.0588~0.0784MPa。 3、汽机结构说明

B25汽轮机说明书

型 25MW背压式汽轮机产品说明书 南京汽轮电机(集团)有限责任公司

目录 1.汽轮机的应用范围及主要技术规范 2.汽轮机结构及系统的一般说明 3.汽轮机的安装说明 4.汽轮机的运行及维护

1、汽轮机的应用规范及主要技术规范 汽轮机的应用范围 本汽轮机为高压、单缸、背压式汽轮机,与锅炉、发电机及其附属设备组成一个成套供热发电设备,用于联片供热或炼油,化工、软纺、造纸等行业的大中开型企业中自备热电站,以提供电力和提高供热系统的经济性。 本汽轮机的设计转速为3000r/min,不能用于拖动不同转速或变速机械。 汽轮机的技术规范: 汽轮机技术规范的补充说明 汽轮机技术规范所列的汽耗是在新蒸汽参数为,535℃时的计算值,允许偏差3%。 绝对压力单位为Mpa(a),表压单位Mpa。 引用标准GB5578-1985“固定式发电机用汽轮机技术条件”。

汽轮机润滑油牌号 汽轮机润滑油推荐使用GBTSA汽轮机油,对本汽轮机一般使用L-TSA46汽轮机油,只有在冷却水温度经常低于15℃时,允许使用L-TSA32汽轮机油。 主要辅机的技术规范 冷油器 汽封加热器 2、汽轮机系统及结构的一般说明 热力系统 主热力系统 从锅炉来的高温新蒸汽,经由新蒸汽管道和电动隔离阀至主汽门,新蒸汽通过主汽门后,以车根导汽管流向四个调节汽阀。蒸汽在调节阀控制下流进汽轮机内各喷嘴膨胀作功。其中部分蒸汽中途被抽出机外作回热抽汽用,其余部分继续膨胀作功后排入背压排汽管。低压除氧给水经高压除氧器,然后经给水泵升压后送入二个高压加热器,最后进入锅炉。高压加热器具有旁路系统,必要时可以不通过任何一个加热器。 各回热抽汽的出口均有抽汽阀。抽汽阀控制水管路系统控制。正常运行时抽汽阀联动装置切断压力水,使操纵座活塞在弹簧作用下处于最高位置,这时抽汽阀全开。当主汽门关闭或甩负荷时,抽汽阀联动装置的电磁铁吸起活塞杆,压力水送入抽汽阀操纵座,使活塞上腔充满水迅速关闭抽汽阀。另外抽汽阀自身均有止回作用。 回热抽汽系统 机组有二道回热抽汽,第一道抽汽送入二号高压加热器。第二道抽汽送入一号高压加热器。汽封系统 机组的汽封系统分前汽封和后汽封。前汽封有五段汽封组成四档汽室;后汽封有四段汽封组成三档汽室。其中前汽封第一档送入抽汽管路,第二档会同后汽封第一档送入高压除氧器,第三档会同后汽封第二档送入低压除氧器,第四档会同后汽封第三档接入汽封加热器。汽封加热器借助抽风机在吸入室内形成一定的真空,使此几档的汽室压力保持在~的真空,造成空气向机内吸抽以防止蒸汽漏出机外漏入前后轴承座使油质破坏。此外并能合理利用汽封抽汽的余热加热补给水。主汽门、调节汽阀之阀杆漏汽和第一档均送往高压除氧器。疏水系统 汽轮机本体及各管道的疏水分别送入疏水膨胀箱。待压力平衡后送入补给水系统。

汽轮机找中心资料

关于对汽轮机检修工作中用表格计算模拟找中心的几个的问题 汽轮发电机组大修时,往往要对其轴系的各个对轮中心作检查和调整(俗称对轮找中心)。在此过程中,一般是先经过大量的手工计算,决定一个调整方案,然后一次次试调、测量,使调整结果逐渐达到对轮中心的偏差容许值,因而耗费大量的时间和人力。而且在找中心的时候需要考虑个个汽封洼窝中心和油封中心,但是在实际的工作,很少有人真正的去计算,只是看个大概的估算值.这样有的时候一次计算的失误可能导致大量工人的重复劳动,以至于延长工期.所以我有个设想就是用电子表格模拟整个找中心过程的数据计算,从而得出最终结果.可以提出几个方案,然后通过计算得出一个最合适和工作量最小的方案.在一般大修中主要用到计算的步骤有:汽轮机的对轮找中心、轴瓦的移动量、洼窝中心调整隔板. 一、表格模拟对轮找中心的表格 既然要用表格模拟计算找中心,那么应该首先把他的计算原理推导出来那么就 以我们厂200WM 的汽轮机轴系为例计算推导找中心的过程. 在对轴系找中心前要对轴系有个假设:轴系是一条直线,所有对轴系的移动都是线性 的.上张口为正,下张口为负.高于标准对轮(每对对轮左边对轮为标准对轮)为正,低于标准对轮为负.假如以高压转子为准依次向后找中心则: 1.首先要消除张口a 1: 若需要预留张口或圆周的那么使,张口的正负号不变,预留上张口为正,下张口为负 ,预留圆周也是高出标准对轮为正,低于标准对轮为负. 200MW轴系图 高压转子 中压转子 低压转子 发电机转子 1瓦假瓦 2瓦 3瓦 4瓦5瓦6瓦7瓦 D 1 D 2 D 3 张口 a 1圆周 b 1 张口 a 2 移动后a 2 '圆周 b 2 b 2' 张口 a 3 移动后a 3'圆周 b 3 b 3'

上汽600MW超临界汽轮机DEH说明书概览

600MW超临界机组DEH系统说明书 1汽轮机概述 超临界600/660MW中间再热凝汽式汽轮机主要技术规范 注意: 上表中的数据为一般数据,仅供参考,具体以项目的热平衡图为准。 由于锅炉采用直流炉,再热器布置在炉膛较高温区,不允许干烧,必须保证最低冷却流量。这就要求在锅炉启动时,必须打开高低压旁路,蒸汽通过高旁进入再热器,再经过低旁进入凝汽器。而引进型汽轮机中压缸在冷态启动时不参与控制,仅全开全关,所以在汽轮机冷态启动时,要求高低旁路关闭,再热调节阀全开,主蒸汽进入汽轮机高压缸做功,经高排逆止门进入再热器,经再热后送入中低压缸,再进入凝汽器。由于汽轮机在启动阶段流量较小,在3000 r/min 时只有3-5%的流量,远远不能满足锅炉再热器最低的冷却流量。因此,在汽轮机启动时,再热调节阀必须参加控制,以便开启高低压旁路,以满足锅炉的要求。所以600MW 超临界汽轮机一般要求采用高中压联合启动(即bypass on)的启动方式。 2高中压联合启动 高中压缸联合启动,即由高压调节汽阀及再热调节阀分别控制高压缸及中

压缸的蒸汽流量,从而控制机组的转速。高中压联合启动的要点在于高压缸及中低压缸的流量分配。启动过程如下: 2.1 盘车(启动前的要求) 2.1.1主蒸汽和再热蒸汽要有56℃以上的过热度。 2.1.2 高压内缸下半第一级金属温度和中压缸第一级持环下半金属温度,大于204 ℃时,汽轮机采用热态启动模式,小于204℃时,汽轮机采用冷态启动模式,启动参数见图“主汽门前启动蒸汽参数”,及“热态起启动的建议”中规定。 冷再热蒸汽压力最高不得超过0.828MPa(a)。 高中压转子金属温度大于204℃,则汽机的启动采用热态启动方式,主蒸汽汽温和热再热汽温至少有56℃的过热度,并且分别比高压缸蒸汽室金属温度、中压缸进口持环金属温度高56℃以上,主蒸汽压力为对应主蒸汽进口温度下的压力。第一级蒸汽温度与高压转子金属温度之差应控制在 56℃之内,热再热汽温与中压缸第一级持环金属温差也应控制在这同样的水平范围。在从主汽阀控制切换到调节阀控制之前,主汽阀进汽温度应大于“TV/GV切换前最小主汽温”曲线的限值(参见“主汽门前启动蒸汽参数”曲线)。 2.1.3 汽轮机的凝汽器压力,应低于汽机制造厂推荐的与再热汽温有关的低压排汽压力限制值,在线运行的允许背压不高于0.0247MPa(a)。 2.1.4 DEH在自动方式。 2.2 启动冲转前(汽机已挂闸) 各汽阀状态: 主汽阀TV 关 高调阀GV 开 再热主汽阀RSV 开 再热调阀IV 关 进汽回路通风阀VVV开(600r/min至3050r/min关) 高排通风阀HEV 开(发电机并网,延迟一分钟关) 高排逆止阀NRV 关(OPC油压建立,靠高排汽流顶开) 高中压疏水阀开(分别在负荷大于10%、20%关高、中压疏水阀) 低排喷水阀关(2600r/min至15%负荷之间,开) 高旁HBP 控制主汽压力在设定值,并控制热再热温度在设定值

1汽轮机说明书讲解

汽轮机说明书 CLN600-24.2/566/566 哈尔滨汽轮机厂有限责任公司

目录 1. 汽轮机概述 (3) 2. 高压主汽调节联合阀 (10) 3.大气阀 (19) 4.再热主汽阀及油控跳闸阀 (21) 5.中压调节阀 (27) 6.连通管 (29) 7.冲动式调节级 (33) 8.反动式高压叶片 (35) 9.反动式中压叶片 (39) 10.反动式低压叶片 (43) 11. 挡油环 (47) 12. 高中压缸调端汽封 (49) 13. 高中压缸电端汽封 (54) 14. 低压外汽封 (59) 15. 平衡环 (61) 16.高中压转子与低压1号转子联轴器 (64) 17.低压1号与低压2号联轴器 (66) 18.低压2号与发电机联轴器 (68) 19.汽封系统 (70) 20.疏水系统 (81) 21.后汽缸喷水系统 (83) 22.滑销系统 (85) 23.保温设计 (87) 24. 螺栓拧紧 (91) 25 轴承和轴承座 (115) 26 盘车装置 (125)

1. 汽轮机概述 1.1概述 1.1.1产品概述 本产品作为国产首台超临界机组,采用与三菱公司联合设计、生产的模式。本机组为超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机,具有较高的效率和安全可靠性。高中压积木块采用三菱公司成熟的设计;低压积木块以哈汽成熟的600MW机组积木块为母型,与三菱公司一起进行改进设计。 1.1.2适用范围 本产品适用于中型电网承担基本负荷,更适用于大型电网中的调峰负荷及基本负荷。本机组寿命在30年以上,该机型适用于北方及南方地区各种冷却水温的条件,在南方夏季水温条件下照常满发600MW。本机凝汽器可以根据不同的水质及用户的要求采用不同的管材,不仅适用于有淡水水源的内陆地区,也适用于海水冷却的沿海地区。本机组的年运行小时数在7800小时以上。 1.2技术规范 汽轮机型式: 超临界、一次中间再热、三 缸四排汽、单轴、凝汽式连续出力600,000KW 转速3000rpm 旋转方向顺时针(从调端看) 主蒸汽压力MPa 24.1Mpa(g) 主蒸汽温度℃566℃ 再热蒸汽温度℃566℃ 回热级数8级 调节控制系统型式DEH 最大允许系统周波摆动HZ 48.5~51.5 空负荷时额定转速波动r/min ±1 噪音水平dB(A)<85

防止汽轮机组轴系断裂事故措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.防止汽轮机组轴系断裂事故措施正式版

防止汽轮机组轴系断裂事故措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 1、加强机组停机时的保养工作,防止各类腐蚀的产生。 (1)停机时确保机组和外界蒸汽和疏水系统可靠隔离。 (2)停机时间较长时,要排净各加热器、冷却器及凝汽器的汽侧及水侧的积水。 (3)停机时间较长,机组汽缸温度冷却到接近室温且空气湿度较大时,应对汽轮机通流部分采用防腐措施。 2、加强对汽水品质的监督,确保汽水品质应符合要求。

3、严格规范运行操作,杜绝超速和运行不当的发生,防止轴系断裂。 (1)严格按运行规程要求的启停方式和启停曲线执行,减少和降低由于机组启停方法不当产生的过大热应力。 (2)机组运行的主、辅设备的保护装置必须正确投入,在机组启动和停机过程中振动保护必须投入运行。 (3)在机组正常运行过程中,必须有完善的保证振动保护正确动作的措施,确保不发生误动,机组正常运行时轴瓦振动、轴振动应达到有关标准的优良范围,即轴瓦振动≤0.025mm,轴振≤0.075mm,并注意监视变化趋势。 (4)做超速试验时,严格按超速试验

汽轮发电机按转子找中心

汽轮发电机转子按联轴器找中心 基础的不均匀沉降直接影响汽轮发电机的轴系中心。 新装机轴瓦的跑合、机组运行过程中轴瓦钨金的少量磨损、检修中轴瓦钨金、垫铁的研刮使转子位置发生变化等原因,都会导致轴系中心的变化。 再者,在机组投入运行的初期,由于残存的制造内应力、运行中产生的热应力和工质压力的作用,各部件可能发生不同程度的变形;因各处基础未完全稳定也会发生少量的下沉,使轴承座汽缸位置发生少许的变化。但随着机组运行时间的延长,内应力逐渐消除,基础也相对的稳定,单纯热应力和工质压力造成部件变形对中心的影响就极其微小。 由于轴承座标高的变化、凝汽器真空度及循环水质量的影响因素,使热态中心与冷态中心会有一定的变化。因此在冷态找中心时要采取预留一定的偏差值。一般由生产厂家给出,但在经过长时间运行后,应对给定值进行调整。 例:有一200MW机组通流部分改造后,按给定值调整轴系中心后,运行中发现低压缸后轴承油温升高,解体检查该瓦有明显磨损迹象。处理:略中心不正的危害:略 一、汽轮机找中心的有关术语 汽轮机中心线:指各转子联成轴系时,轴系中心所形成的一条曲线; 转子中心线:指转子自由地放在轴承上,在自重作用下弯曲时,转子几何中心所形成的一条曲线; 汽缸中心线:指汽缸前后汽封凹窝中心的连线; 轴承中心线:指轴承座挡油圈及轴套孔凹窝的中心连线; 二、汽轮机找中心的目的 1、汽轮机找中心的目的 (1)汽轮机各转子的中心线成为一条连续平滑的曲线。从而在运行中对轴承不致产生周期性交变力,避免产生振动。 (2)使汽轮机转动与静止部分基本保持同心,其中心偏差在允许范围内。

(3)使轴承的负荷分配符合制造厂设计要求。 2、汽轮发电机转子按联轴器找中心的目的 (1)汽轮机发电机各转子的中心线成为一条连续平滑的曲线。从而在运行中对轴承不致产生周期性交变力,避免产生振动。 (2)使轴承的负荷分配符合制造厂设计要求。 三、汽轮机找中心的前提 1、对汽缸一定要找平、找正 汽缸横向水平偏差不大于0.02mm,其纵向水平应根据制造厂设计的转子扬度,调整各轴封凹窝中心的高度。 2、轴承座应找平、找正 轴承座横向水平偏差不大于0.02mm,其纵向水平应测量中分面扬度与轴心线扬度吻合。 3、台板负荷分配正确 汽缸和轴承座就位并找平、找正后,机组的质量应按照制造厂提供的数据分配到各块台板上。 4、对转子要求 四、找中心前的准备 1、检查并消除可能影响对轮找中心的各种因素。 2、准备桥规 3、盘车工具的准备: 4、塞尺测量准备 塞尺片不应超过三片,且应保证力量、位置、方向和深度四个一致。被测位应光滑平整。 5、百分表测量准备 五、中心数据测量 (一)中心数据的测量方法 (二)用百分表测量的方法

相关主题
文本预览
相关文档 最新文档