当前位置:文档之家› 拉格朗日乘子法和KKT条件的定义及选取原因

拉格朗日乘子法和KKT条件的定义及选取原因

拉格朗日乘子法和KKT条件的定义及选取原因

拉格朗日乘子法和KKT条件的定义及选取原因

拉格朗日乘子法无疑是最优化理论中最重要的一个方法。但是现在网上并没有很好的完整介绍整个方法的文章。所以小编整理了如下文章,希望能博得大家一赞。在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。

KKT条件是拉格朗日乘子法的泛化。之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么要这样去求取最优值呢?本文将首先把什么是拉格朗日乘子法(Lagrange Multiplier) 和KKT条件叙述一下;然后开始分别谈谈为什么要这样求最优值。

一. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件通常我们需要求解的最优化问题有如下几类

:(i) 无约束优化问题,可以写为:min f(x); (ii) 有等式约束的优化问题,可以写为:min f(x), s.t. h_i(x) = 0; i =1, ..., n (iii) 有不等式约束的优化问题,可以写为:min f(x), s.t. g_i(x) 合成为一个式子L(a, x) = f(x) + a*h(x), 这里把a和h(x)视为向量形式,a是横向量,h(x)为列向量,之所以这么写,完全是因为csdn很难写数学公式,只能将就了.....。然后求取最优值,可以通过对L(a,x)对各个参数求导取零,联立等式进行求取,这个在高等数学里面有讲,但是没有讲为什么这么做就可以,在后面,将简要介绍其思想。(b) KKT条件对于含有不等式约束的优化问题,如何求取最优值呢?常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + a*g(x)+b*h(x),KKT条件是说最优值必须满足以下条件:

1. L(a, b, x)对x求导为零;

2. h(x) =0;

3. a*g(x) = 0;求取这三个等式之后就能得到候选最优值。其中第三个式子非常有趣,因为g(x)=0,我们可以把f(x)写为:max_{a,b} L(a,b,x),为什么呢?因为h(x)=0, g(x)<=0,现在是取L(a,b,x)的最大值,a*g(x)是<=0,所以L(a,b,x)

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+, 转步骤2.

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

增广拉格朗日乘子法及其在约束优化问题的应用

毕业论文 题目增广拉格朗日乘数法及在 其在约束优化问题的应用学院数学科学学院 专业信息与计算科学 班级计算1001班 学生高亚茹 学号20100921032 指导教师邢顺来 二〇一四年五月二十五日

摘要 增广拉格朗日乘子法作为求解约束优化问题的一种重要方法,近年来研究增广拉格朗日乘子法的应用显得更加重要。本文首要介绍了增广拉格朗日乘子法的产生,通过解释增广拉格朗日乘子法是罚函数法和拉格朗日乘子法的有机结合,引出了现在对增广拉格朗日法的发展状况,概述了增广拉格朗日乘子法基本理论。然后具体说明了增广拉格朗日法在科学领域上的实际应用,如在供水系统和图像复原的应用,也证明了增广拉格朗日乘子法的实际应用性。 关键词:增广拉格朗日乘子法;罚函数法;供水系统;图像复原

ABSTRACT Augmented lagrange multiplier methods as an important method for solving constrained optimization problems, recent studies in applications of augmented lagrange multiplier methods is even more important. This paper describes the generation of primary augmented lagrange multiplier method. By interpreting the augmented lagrangian multiplier methods is the combination of penalty function methods and Lagrange multiplier methods, It is given to a recent development of augmented lagrangian methods. Then is shown the basic theories of augmented lagrangian multiplier methods. Finally it is specified the augmented lagrangian method on the practical applications of scientific fields, such as water supply ystems and image restorations, also proved augmented lagrangian multiplier methods of practical application. Key words:Augmented Lagrange Multiplier Methods;Penalty Function Methods Water Supply Systems ;Image Restorations

【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和 KKT条件 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)。提到KKT条件一般会附带的提一下拉格朗日乘子。对学过高等数学的人来说比较拉格朗日乘子应该会有些印象。二者均是求解最优化问题的方法,不同之处在于应用的情形不同。一般情况下,最优化问题会碰到一下三种情况:(1)无约束条件这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。(2)等式约束条件设目标函数为f(x),约束条件为h_k(x),形如: s.t. 表示subject to ,“受限于”的意思,l表示有l个约束条件。则解决方法是消元法或者拉格朗日法。消元法比较简单不在赘述,这里主要讲拉格朗日法,因为后面提到的KKT条件是对拉格朗日乘子法的一种泛化。例如给定椭球: 求这个椭

球的内接长方体的最大体积。这个问题实际上就是条件极值问题,即在条件下,求的最大值。当然这个问题实际可以先根据条件消去z (消元法),然后带入转化为无条件极值问题来处理。但是有时候这样做很困难,甚至是做不到的,这时候就需要用拉格朗日乘数法了。首先定义拉格朗日函数F(x):(其中λk是各个约束条件的待定系数。) 然后解变量的偏导方程:......, 如果有l个约束条件,就应该有l+1个方程。求出的方程组的解就可能是最优化值(高等数学中提到的极值),将结果带回原方程验证就可得到解。回到上面的题目,通过拉格朗日乘数法将问题转化为对求偏导得到 联立前面三个方程得到和,带入第四个方程解之 带入解得最大体积为:至于为什么这么做可以求解最优化?维基百科上给出了一个比较好的直观解释。举个二维最优化的例子: min f(x,y) s.t. g(x,y) = c 这里画出z=f(x,y)的等高线(函数登高线定义见百度百科): 绿线标出的是约束g(x,y)=c的点的轨迹。蓝线是f(x,y)的等高线。箭头表示斜率,和等高线的法线平行。从梯度的方向上来看,显然有d1>d2。绿色的线是约束,也就是说,只要正好落在这条绿线上的点才可能是满足要求的点。如果没有

2009年海南省海口市高中数学优质课评选活动参赛课例导数的几何意义

海口市2009 年高中数学课堂教学优质课评比教学实录 1.1.3 导数的几何意义 、创设情境、导入新课师:上节课我们学习了导数的概念,请回答:函数在x x0处的导数f '(x0) 的含义? 生:函数在x x0 处的瞬时变化率. / y f x0 x f (x0) f x0 lim lim x 0 x x 0 x 师:那么,用定义求导数分哪几个步骤?同学们可参考教材第6 页例1. y f x0 x f (x0) 生:第一步:求平均变化率; xx y 师:非常好,并且我们从求导数的步骤中发现:导数就是求平均变化率当x x 趋近于O时的极限. 明确了导数的概念之后,今天我们来学习导数的几何意义. 、引导探究、获得新知 y 师:观察函数y=f(x) 的图象,平均变化率在图中 x 什么几何意义? 生:平均变化率表示的是割线AB的斜率. 第二步:求瞬时变化率,即x0 li x m0 师:是的,平均变化率的几何意义就是割线的斜率

师:请看教材第7页图1.1-2 :P是一定点,当动点P n沿着曲线y=f(x)趋近于点 生:当点P n 沿着曲线y=f(x) 趋近于点P 时,割线PP n 趋近于在P 处的切线PT. 师:看来这位同学已经预习了,他说的很对,“当点P n沿着曲线y=f(x) 逼近点P 时,即x 0,割线PP n趋近于确定的位置,这个确定位置上的直线PT 称为点P处的切线. ”这就是切线的概念. 师:观察图①,曲线y=f(x) 与它的割线有2个交点,与它的切线PT有1个交点. 那么,能否根据直线与曲线交点个数来判断直线与曲线的位置关系? 生:若曲线与直线有2 个公共点,则它们相交;若曲线与直线有1 个公共点,则它们相切.

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

拉格朗日乘数法

§4 条件极值 (一) 教学目的:了解拉格朗日乘数法,学会用拉格朗日乘数法求条件极值. (二) 教学内容:条件极值;拉格朗日乘数法. 基本要求: (1)了解拉格朗日乘数法的证明,掌握用拉格朗日乘数法求条件极值的方法. (2) 较高要求:用条件极值的方法证明或构造不等式. (三) 教学建议: (1) 本节的重点是用拉格朗日乘数法求条件极值.要求学生熟练掌握. (2) 多个条件的的条件极值问题,计算量较大,可布置少量习题. (3) 在解决很多问题中,用条件极值的方法证明或构造不等式,是个好方法.可推荐给 较好学生. —————————————————————— 在许多极值问题中,函数的自变量往往要受到一些条件的限制,比如,要设计一个容积为V 的长方体形开口水箱,确定长、宽和高, 使水箱的表面积最小. 设水箱的长、宽、高分别为 z y x ,,, 则水箱容积 xyz V = 焊制水箱用去的钢板面积为 xy yz xz z y x S ++=)(2),,( 这实际上是求函数 ),,(z y x S 在 xyz V = 限制下的最小值问题。 这类附有条件限制的极值问题称为条件极值问题, 其一般形式是在条件 )(,,,2,1,0),,,(21n m m k x x x n k <== ? 限制下,求函数 ),,,(21n x x x f 的极值 条件极值与无条件极值的区别 条件极值是限制在一个子流形上的极值,条件极值存在时无条件极值不一定存在,即使存在二者也不一定相等。 例如,求马鞍面 12 2+-=y x z 被平面 XOZ 平面所截的曲线上的最低点。请看这个问题的几何图形(x31马鞍面) 从其几何图形可以看出整个马鞍面没有极值点,但限制在马鞍面被平面 XOZ 平面所截的曲线上,有极小值 1,这个极小值就称为条件极值。

《导数与最值》评课资料

1、看是不是量体裁衣,优选活用 我们知道,教学有法,但无定法,贵在得法。一种好的教学方法总是相对而言的,它总是因课程,因学生,因教师自身特点而相应变化的。也就是说教学方法的选择要量体裁衣,灵活运用。 (一)从教学目标上看 1、了解导数概念的实际背景,体会导数的思想及其内涵; 2、通过函数图象直观地理解导数的几何意义; 3、能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数; 4、了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求函数的单调区间; 5、了解函数在某取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值,以及闭区间上函数的最大值和最小值;体会导数方法在研究函数性质中的一般性有效性; 6、会用导数的性质解决一些实际问题,如生活中的最优化问题等。 (二)从处理教材上看 在进行新课时,教师给出一个简单问题:利用导数求函数的极值和单调区间,同学们很快的得出答案。接着,老师又提出要求:根据上述结果画出函数的大致图像。然后又提出问题:函数与直线有几个交点时参数的取值范围,学生通过图像可以找到答案。最后把问题上升到一个高度,当两个函数有交点时求参数的取值范围,引导学生把问题转化为可以利用前面的方法解决的问题,拓展学生的知识面,努力使学生的知识得到迁移。这堂课在教材处理和教法选择上突出了重点,突破了难点,抓住了关键。 教学思路由易到难,不断拓展,既完成了教学目标所规定的知识内容,又使学生获得更多的方法和能力。上课的脉络和主线清晰,根据教学内容和学生水平两个方面的实际情况设计教学方案,做到各知识点的合理编排、组合、衔接、过渡。以课程目标为主线,教师采用复习、引导、启发、探究等教学方法,课堂安排紧凑。在课堂上既有老师问题的不断抛出和理论阐述,又有学生的独立思考。总体感觉这堂课结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。 (三)从教学方法和手段上看 把关注学生放在第一位,时时处处以学生的课堂表现为自己下步教学的出发点。学生的演板是检验教学效果的最好方法。曹老师对此很重视,不惜利用宝贵的时间对学生的问题进行矫正和耐心的指导。关注学生课堂表现,让学生充分暴露问题,暴露教师教学问题是绕满远老师特别设计和关注的。在教学中,注重引导学生将获取的新知识纳入已有的知识体系中,真正懂得将本学科的知识与其它相关的学科的知识联系起来,并让学生把所学的数学知识灵活运用到相关的学科中去,解决相关问题,加深了学生对于知识的理解,提高了学生掌握和综合应用知识的能力。 (四)从教师教学基本功上看 上课特点鲜明,使听课老师感到轻松自然。教学过程中层次分明,语言稳重得体,不失诙谐和幽默。板书设计科学合理、语言精练、言简意赅,条理性强,字迹工整美观,板画娴熟。教态明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。语言准确清楚精当简炼,生动形象有启发性,数学语言表达正确。 (五)从教学效果上看 教学效果好。学生学到了知识,体会到思考问题的常用方法。使学生养成注重细节,严谨认真,一丝不苟的作风。同时学到了课本以外的许多知识方法和态度。教师的榜样作用得以体现。

导数的几何意义教学设计(教案)-函数的导数的几何意义教学设计

导数的几何意义教学设计(教案) 一、【教学目标】 1.知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 2.过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 3.情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 二、【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意 义奠定基础) 师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角

拉格朗日乘子法和KKT条件的定义及选取原因

拉格朗日乘子法和KKT条件的定义及选取原因 拉格朗日乘子法无疑是最优化理论中最重要的一个方法。但是现在网上并没有很好的完整介绍整个方法的文章。所以小编整理了如下文章,希望能博得大家一赞。在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。 KKT条件是拉格朗日乘子法的泛化。之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么要这样去求取最优值呢?本文将首先把什么是拉格朗日乘子法(Lagrange Multiplier) 和KKT条件叙述一下;然后开始分别谈谈为什么要这样求最优值。 一. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件通常我们需要求解的最优化问题有如下几类 :(i) 无约束优化问题,可以写为:min f(x); (ii) 有等式约束的优化问题,可以写为:min f(x), s.t. h_i(x) = 0; i =1, ..., n (iii) 有不等式约束的优化问题,可以写为:min f(x), s.t. g_i(x) 合成为一个式子L(a, x) = f(x) + a*h(x), 这里把a和h(x)视为向量形式,a是横向量,h(x)为列向量,之所以这么写,完全是因为csdn很难写数学公式,只能将就了.....。然后求取最优值,可以通过对L(a,x)对各个参数求导取零,联立等式进行求取,这个在高等数学里面有讲,但是没有讲为什么这么做就可以,在后面,将简要介绍其思想。(b) KKT条件对于含有不等式约束的优化问题,如何求取最优值呢?常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + a*g(x)+b*h(x),KKT条件是说最优值必须满足以下条件: 1. L(a, b, x)对x求导为零; 2. h(x) =0; 3. a*g(x) = 0;求取这三个等式之后就能得到候选最优值。其中第三个式子非常有趣,因为g(x)=0,我们可以把f(x)写为:max_{a,b} L(a,b,x),为什么呢?因为h(x)=0, g(x)<=0,现在是取L(a,b,x)的最大值,a*g(x)是<=0,所以L(a,b,x)

导数的几何意义教案word

导数的几何意义教案 【教学目标】 知识与技能目标: (1)使学生掌握函数在处的导数的几何意义就是函数的图像在 处的切线的斜率。(数形结合),即: =切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 过程与方法目标:通过让学生在动手实践中探索、观察、反思、讨论、总结,发 现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 【教学手段】采用计算机(Flash,Powerpoint),实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 【教学过程】 (一)作业点评,承上启下: 问题:在高台跳水运动中,秒时运动员相对于水面的高度是 (单位:),求运动员在时的瞬时速度,并解释 此时的运动状态;在时呢? 教师点评作业的优点及不足;由学生甲解释,时运动员的运动状态。 (说明:实例引入,承上启下,有效铺垫,直接过渡) (二)课题引入,类比探讨:

由导数的物理意义是瞬时速度,我们知道了导数的本质。 ●问(一):导数的本质是什么?写出它的表达式。 学生活动:在“学生动手实践”中,学生写出: 导数的本质是函数在处的瞬时变化率,即: (说明:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意义奠定基础) ●问(二):导数的本质仅是从代数(数)的角度来诠释导数,若从图 形(形)的角度来探究导数的几何意义,应从哪儿入手呢? 教师引导学生:数形结合是重要的思想方法。要研究“形”,自然要结合“数”:即:导数的代数表达式,并回忆求导数的步骤。 ●问(三)求导数的步骤有哪几步? 教师引导学生回答: 第一步:求平均变化率; 第二步:当趋近于0时,平均变化率无限趋近于的常 数就是。(回归本质,数形结合) 教师进一步引导学生:这是从“数”的角度来求导数,若从“形”的角度探索导数的几何意义,类比地,也可以分两个步骤: ●问(四):第一步:平均变化率的几何意义是什么? 请在函数图像中画出来; 学生动手活动:见“学生动手实践”。 由学生乙回答:平均变化率的几何意义是割线AB的斜率。

拉格朗日乘数法word版

§4 条件极值 (一) 教学目的:了解拉格朗日乘数法,学会用拉格朗日乘数法求条件极值. (二) 教学内容:条件极值;拉格朗日乘数法. 基本要求: (1)了解拉格朗日乘数法的证明,掌握用拉格朗日乘数法求条件极值的方法. (2) 较高要求:用条件极值的方法证明或构造不等式. (三) 教学建议: (1) 本节的重点是用拉格朗日乘数法求条件极值.要求学生熟练掌握. (2) 多个条件的的条件极值问题,计算量较大,可布置少量习题. (3) 在解决很多问题中,用条件极值的方法证明或构造不等 式,是个好方法.可推荐给较好学生. 在许多极值问题中,函数的自变量往往要受到一些条件的限制,比如,要设计一个容积为V 的长方体形开口水箱,确定长、宽和高, 使水箱的表面积最小. 设水箱的长、宽、高分别为 z y x ,,, 则水箱容积 xyz V = 焊制水箱用去的钢板面积为 xy yz xz z y x S ++=)(2),,(这实际上是求函数 ),,(z y x S 在xyz V = 限制下 的最小值问题。 这类附有条件限制的极值问题称为条件极值问题, 其一般形式是在条件 )(,,,2,1,0),,,(21n m m k x x x n k <== ? 限制下,求函数 ),,,(21n x x x f 的极值 条件极值与无条件极值的区别

条件极值是限制在一个子流形上的极值,条件极值存在时无条件极值不一定存在,即使存在二者也不一定相等。 例如,求马鞍面 122+-=y x z 被平面 XOZ 平面所截的曲线上的最低点。请看这个问题的几何图形(x31马鞍面) 从其几何图形可以看出整个马鞍面没有极值点,但限制在马鞍面被平面 XOZ 平面所截的曲线上,有极小值 1,这个极小值就称为条件极值。 二. 条件极值点的必要条件 设在约束条件0),(=y x ?之下求函数= z ),(y x f 的极值 . 当满 足约束条件的点),(00y x 是函数),(y x f 的条件极值点 , 且在该点函数),(y x ?满足隐函数存在条件时, 由方程0),(=y x ?决定隐函数 )(x g y =, 于是点0x 就是一元函数())( , x g x f z =的极限点 , 有 0)(='+=x g f f dx dz y x . 代入 ) ,() ,()(00000y x y x x g y x ??- =', 就有 0) ,() ,() ,(),(00000000=-y x y x y x f y x f y x y x ??, ( 以下x f 、y f 、x ?、y ?均表示相应偏导数在点),(00y x 的值 . ) 即 x f y ?—y f x ?0= , 亦即 (x f , y f ) (?y ? ,x ?-)0= . 可见向量(x f , y f )与向量(y ? , x ?-)正交. 注意到向量(x ? , y ?)也与向量(y ? , x ?-)正交, 即得向量(x f , y f )与向量(x ? , y ?)线性相关, 即存在实数λ, 使

高中数学_导数的几何意义教学设计学情分析教材分析课后反思

3.1.3导数的几何意义 教学三维目标: 1.知识与技能:了解平均变化率与割线斜率之间的关系; 2.过程与方法:理解曲线的切线的概念; 3.情态与价值:通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学方法:讨论法 教学工具:多媒体 教学课时:1课时 教学过程: 创设情景 (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 新课讲授 (一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? 我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线. 问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? ⑵切线PT 的斜率k 为多少? 图3.1-2

容易知道,割线n PP 的斜率是00 ()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()lim x f x x f x f x k x ?→+?-'==? 说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标; ②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x ?→+?-'==? ,得到曲线在点00(,())x f x 的切线的斜率; ③利用点斜式求切线方程. 典例分析 例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程. (2)求函数y =3x 2在点(1,3)处的导数. 解:(1)222 100[(1)1](11)2|lim lim 2x x x x x x y x x =?→?→+?+-+?+?'===??, 所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -= (2)因为222211113313(1)|lim lim lim3(1)611 x x x x x x y x x x =→→→-?-'===+=-- 所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --= (2)求函数f (x )=x x +-2 在1x =-附近的平均变化率,并求出在该点处的导数. 解:x x x x x y ?-=?-?+-+?+--=??32)1()1(2

浅谈拉格朗日乘数法的应用

“高观点”下的初等数学 许高峰11数本一班 摘要拉格朗日乘数法是一种对于解决条件极值问题非常有效的方法,在大学的各类微积分教材中都有介绍,对于初学者可能看不到这种方法的具体作用,以致在学习的过程中难免忽略了它,本文透过拉格朗日乘数法的介绍,以及它在一些问题上的具体应用,让无论是数学专业的本科生,以及将来从事数学师范专业的学生,都能从中获取一些启发。 关键词拉格朗日乘数法最大值最小值约束条件 例一:设实数y x ,满足554422=++xy y x ,设22y x S +=,则S 的最小值为 .(浙江省杭州市2012届高三上学期期中七校联考数学(理))证明:因为 5)(2 135)(2 5445 544022222222?+=?+++≤?++=y x y x y x xy y x 所以有05)(21322≥?+y x 成立,即131022≥+y x ,所以S 的最小值为13 10,当且仅当y x =时成立.说明:一看到这类题,高中学生的第一反应一般是用不等式的知识去解决,这种思路是对的,但是用不等式的方法是有局限性的,不等式一般能解出最大值或最小值中的其中一个,却不一定能同时解出最大和最小值,比如,我把上述题目改为求S 的最大值是多少,显然改完之后,题目的难度就增加了,所以,这类题目需要我们进一步的研究,去寻找更一般的方法,从而更有效地解决这一类问题。 如果把上述题目改为求最大值,显然,如果在用不等式的知识就有点困难了,但是在高中生的知识水上,还是可以用初等数学的知识加以解决的。容易想到把上述等式凑成平方项之和以及完全平方的形式,从直观上便可以判断出所求未知量的最大值.考虑化成如下形式: 2 22222)(55 )()(By Bx Ay Ax By Bx Ay Ax +?=+?=+++

导数的几何意义评课

《导数的几何意义》评课稿 前阶段听了一节《导数的几何意义》,对这节课,我感觉: (一)从教学目标上看 1、了解导数概念的实际背景,体会导数的思想及其内涵; 2、通过函数图象直观地理解导数的几何意义; 3、能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数; 4、了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求函数的单调区间; 5、了解函数在某取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值,以及闭区间上函数的最大值和最小值;体会导数方法在研究函数性质中的一般性有效性; 6、会用导数的性质解决一些实际问题,如生活中的最优化问题等。 (二)从处理教材上看 在进行新课时,教师给出一个简单问题:利用导数求函数的极值和单调区间,同学们很快的得出答案。接着,老师又提出要求:根据上述结果画出函数的大致图像。然后又提出问题:函数与直线有几个交点时参数的取值范围,学生通过图像可以找到答案。最后把问题上升到一个高度,当两个函数有交点时求参数的取值范围,引导学生把问题转化为可以利用前面的方法解决的问题,拓展学生的知识面,努力使学生的知识得到迁移。这堂课在教材处理和教法选择上突出了重点,突破了难点,抓住了关键。 教学思路由易到难,不断拓展,既完成了教学目标所规定的知识内容,又使学生获得更多的方法和能力。上课的脉络和主线清晰,根据教学内容和学生水平两个方面的实际情况设计教学方案,做到各知识点的合理编排、组合、衔接、过渡。以课程目标为主线,教师采用复习、引导、启发、探究等教学方法,课堂安排紧凑。在课堂上既有老师问题的不断抛出和理论阐述,又有学生的独立思考。总体感觉这堂课结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。 (三)从教学方法和手段上看 把关注学生放在第一位,时时处处以学生的课堂表现为自己下步教学的出发点。学生的演板是检验教学效果的最好方法。杨老师对此很重视,不惜利用宝贵的时间对学生的问题进行矫正和耐心的指导。关注学生课堂表现,让学生充分暴露问题,暴露教师教学问题是绕满远老师特别设计和关注的。在教学中,注重引导学生将获取的新知识纳入已有的知识体系中,真正懂得将本学科的知识与其它相关的学科的知识联系起来,并让学生把所学的数学知识灵活运用到相关的学科中去,解决相关问题,加深了学生对于知识的理解,提高了学生掌握和综合应用知识的能力。 (四)从教师教学基本功上看 上课特点鲜明,使听课老师感到轻松自然。教学过程中层次分明,语言稳重得体,不失诙谐和幽默。板书设计科学合理、语言精练、言简意赅,条理性强,字迹工整美观,板画娴熟。教态明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。语言准确清楚精当简炼,生动形象有启发性,数学语言表达正确。 (五)从教学效果上看 教学效果好。学生学到了知识,体会到思考问题的常用方法。使学生养成注重细节,严谨认真,一丝不苟的作风。同时学到了课本以外的许多知识方法和态度。教师的榜样作用得以体现。

拉格朗日乘数法

拉格朗日乘数法是高等数学中求多元函数极值常用的方法,该方法针对某些高考 中二元及三元变量最值问题,不失为一种既实用又简便的方法。拉格朗日乘数法:求在约束条件(G(x,y,z) = 0,下f(x,y,z)的极值时,拉格朗日函数 L(x,y,z)二f(x,y,z)- 入H (x,y t z) -□右(xy乂),可由L x=0, L y=0, Lz=0, ll(xyz) = 0, G(xyz)二0,解出函数可能的极值点,求出目标函数f(x,y,z)的极值。这 里L x=0, L y=0, L z=0可以理解为关于x,y,z求偏导数,入,□称为拉格朗日乘数。 例.已知x2寸 xy 3,求x2y2xy的最大值和最小值。 1.已知正实数x, y满足xy+2x+y=4,则x+y+1的最小值为 ______________ . 、‘ 1 1 2■若正实数x, y,满足x y 5,则x y的最大值是 _____________ . x y 3. 若实数x, y满足x2y2xy 1,则x y的最大值___________________ . 4. 设正实数x,y,z满足x2-3xy + 4y2—z = 0,则当—取得最小值时,x+ 2y—z的最大值为() xy 5. 设a,b,c为实数,且满足a+2b+3c=6,则a2+4b2+9c2的最小值为 ____________ 6. ____________________________________________________________________________________ 已知实数a,b,c满足a+b+c=0, a 2+b2+c2=1,则a的最大值为_______________________ . 2 2 3 4 5 7. 对于c 0,当非零实数a,b满足4a 2ab 4b c 0,且使|2a b|最大时,的最小值 a b c 8.已知a,b [0,1],a+b=1, 求「二+ +(1-a)(1-b) 的取值范围。(若去掉条件a+b=1呢)

复变函数学习心得体会

复变函数学习心得体会 数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy,Riemann,Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。 复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的! 复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。 由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。 在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和 分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。 难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和

全国青年教师素养大赛一等奖导数的概念教学设计

导数的概念 教学内容剖析: 1.本节内容是北师大版《选修2-2—第二章变化率与导数》第二课时 的内容, 2.在本节内容之前教材设置的是《变化率与平均变化率》,为推导出 本节内容提供了许多丰富的实例背景, 3.本节内容的设置为学习《导数的几何意义》、《导数与函数单调性》、 《导数与极值》奠定了坚实的理论基础. 教学目标: 一、知识目标: 1.理解导数的概念, 2.会运用导数定义式求函数在 x处的导数值. 二、能力目标: 1.培养学生归纳推理能力, 2.发展学生辩证思维能力. 三、情感目标: 使学生进一步体会极限的思想,感受数学逻辑与形式之美. 教学重难点: 重点: 1.理解导数的概念; 2.会运用导数的定义求解函数在 x处的导数值. 难点:导数概念的突破.

学生学情分析: 1.学生学习过了《变化率与平均变化率》,已经有了一定的理论基础, 2.由于导数概念的高度抽象导致学生对于导数的概念理解乏力. 教学策略: 为了使本节课的内容丰满而立体,教师选择将《变化率与平均变化率》中的瞬时速度例题后移,成为本节内容的例1;如此设置可以使得导数概念的推导更加完整而及时.在导数概念的推导中,教师加入了割线的极限位置,通过ppt的形象演示,利用视觉观感加深学生对于极限的理解.由两者共性出发,再结合多种实例,归纳推理出导数的概念. 一静一动,层层推导的设置可以帮助教师引领学生突破本节的教学难点. 对于导数的概念认真而细致的解读,有助于学生理解导数的概念,掌握相关的数学符号的使用,并加强学生做题严谨性这一数学素质的培养. 讲解完导数的概念及相关数学符号后,需先将知识内容进行推进深化,从导数的概念过渡到导数的定义式,实现学以致用这一实用性的转化.接着设置例2,对导数定义式的用途赋予丰满的形象说明;从而使得导数的概念实现第一次的螺旋上升.通过对例2的学习,学生大致掌握了导数定义式的使用,此时,教师及时设置当堂练习,巩固学习成果,并为导数概念实现第二次螺旋上升提供准备.由于不同学生对于导数定义式的理解,当堂训练出现了多种解法.教师要求学生对不同解法共性的挖掘,实现了导数概念的第二次螺旋上升,得到

相关主题
文本预览
相关文档 最新文档