当前位置:文档之家› -脱硝SCR法(中低温)

-脱硝SCR法(中低温)

-脱硝SCR法(中低温)
-脱硝SCR法(中低温)

脱硝SCR工艺介绍

第一章脱硝技术介绍

SCR 脱硝系统是利用催化剂,在一定温度下,使烟气中的NOx 与氨气供应系统注入的氨气混合后发生还原反应,生成氮气和水,从而降低NOx 的排放量,减少烟气对环境的污染。其中SCR 反应器中发生反应如下:

4NO + 4NH

3 + O

2

催化剂

4N

2

+ 6H

2

O (1)

6NO

2 + 8NH

3

催化剂

7N

2

+ 12H

2

O (2)

NO + NO

2 + 2NH

3

催化剂

2N

2

+ 3H

2

O (3)

SCR 脱硝工艺系统可分为氨水储运系统、氨气制备和供应系统、氨/空气混合系统、氨喷射系统、烟气系统、SCR 反应器系统和废水吸收处理系统等。

其中由氨水槽车运送氨水,氨水由槽车输入储氨罐内,并依靠氨水泵将储氨罐中的氨水输送到氨水蒸发罐内蒸发为氨气,与稀释风机鼓入的稀释空气在氨/空气混合器中混合后,送达氨喷射系统。在SCR 入口烟道处,喷射出的氨气和来自焦炉出口的烟气混合后进入SCR 反应器,通过两层催化剂进行脱硝反应,最终通过出口烟道回至余热锅炉,达到脱硝的目的。

第二章方案编制输入条件

1. 概述

1.1 编制依据

(1) 中华人民共和国国家标准GB 16171-2012《炼焦化学工业污染物排放标准》和临汾大气污染防治文件。

(2) 中华人民共和国的有关法律、法规、部门规章及工程所在地的地方法规;

(3) 现行有关的国家标准、规范,行业标准、规范及自治区级有关标准、规范;

(4)业主提供的设计资料。

1.2 主要设计原则

(1)选择符合环保要求的最经济合适的烟气脱硝工艺方案,烟气脱硝系统不能影响系统正常运行;

(2)烟气脱硝工程尽可能按现有设备状况及场地条件进行布置,力求工艺流程和设施布置合理、操作安全、简便,对原机组设施的影响最少;

(3)对脱硝副产物的处理应符合环境保护的长远要求,尽量避免脱硝副产物的二次污染,脱硝工艺应尽可能减少噪音对环境的影响;

(4)脱硝工程应尽量节约能源和水源,降低脱硝系统的投资和运行费用;

(5)脱硝系统年运行小时数按8000小时,脱硝系统可利用率98%以上;

(6)SCR装置按反应器出口NO x含量150mg/Nm3以下达到环保要求。

第三章系统设计指标

1. NOx脱除率、氨的逃逸率、SO2/SO3转化率

在下列条件下,对NOx脱除率、氨的逃逸率、SO

2/SO

3

转化率同时进行考核。

(1) 焦炉50%THA-100%BMCR负荷;

(2) 入口烟气中NOx含量;

(3) 脱硝系统入口烟气含尘量不大于50mg/Nm3(干基);

(4) NH

3

/NOx摩尔比不超过保证值 1时;

(5) 烟气入口温度:设计

脱硝装置在性能考核试验时的NOx脱除率不小于80%,氨的逃逸率不大于10ppm,

SO

2/SO

3

转化率小于1%;

脱硝装置在附加层催化剂投运前,NOx脱除率不小于70%,氨的逃逸率不大于10ppm,

SO

2/SO

3

转化率小于1%;

出口NOx环保要求值为<150mg/Nm3,入口NOx含量应该<600mg/Nm3 。

脱硝效率定义:

脱硝率=

C1-C2

×100%

C1

式中: C1——脱硝系统运行时脱硝入口处烟气中NOx含量(mg/Nm3)。

C2——脱硝系统运行时脱硝出口处烟气中NOx含量(mg/Nm3)。氨的逃逸率是指在脱硝装置出口的氨的浓度。

2. 压力损失

从脱硝系统入口到出口之间的系统压力损失不大于1000Pa (100%BMCR 工况,并考虑附加催化剂层投运后增加的阻力)。 3. 脱硝装置可用率

脱硝整套装置的可用率在最终验收前不低于98%。 脱硝装置的可用率定义:

%100?--=

A

C

B A 可用率 A :脱硝装置统计期间可运行小时数。 B :脱硝装置统计期间强迫停运小时数。

C :脱硝装置统计期间强迫降低出力等效停运小时数。 4. 催化剂寿命

催化剂寿命为脱硝装置首次注氨后不低于24000小时,机械寿命40000小时。 催化剂寿命是指催化剂的活性能够满足脱硝系统的脱硝效率不低于第1条指标条件时催化剂的连续使用时间。

第四章 SCR 系统设计

1. 方案设计原则 1.1 技术要求

为了与焦炉运行匹配,脱硝装置的设计必须保证在焦炉负荷波动时将有良好的适应特性。

脱硝装置必须满足如下运行特性:

(1)将能适应焦炉50%THA 工况和100%BMCR 工况之间的任何负荷,并能适应机组的负荷变化和机组启停次数的要求。装置和所有辅助设备将能投入运行而对焦炉负荷和焦炉运行方式不能有任何干扰。而且脱硝装置必须能够在烟气排放浓度为最小值和最大值之间任何点运行。

(2)整套系统及其装置将能够满足整个系统在各种工况下自动运行的要求,系统的的启动、正常运行监控和事故处理将实现完全自动化。

(3)在电源故障时,所有可能造成不可挽回损失的设备,将同保安电源连接。 (4)对于容易损耗、磨损或出现故障并因此影响装置运行性能的所有设备,即使设有备用件,也将设计成易于更换、检修和维护。

(5)烟道和箱罐等设备将配备足够数量的人孔门,所有的人孔门使用铰接方式,且能容易开/关。所有的人孔门附近将设有维护平台。

(6)所有设备和管道,包括烟道、膨胀节等在设计时必须考虑设备和管道发生故障时能承受最大的温度热应力和机械应力。

(7)设计选用的材料必须适应实际运行条件,包括考虑适当的腐蚀余量。

(8)所有设备与管道等的布置将考虑系统功能的实现和运行工作的方便。

(9)所有电动机的冷却方式不采用水冷却。

1.2 脱硝工艺系统设计原则

脱硝工艺系统设计原则包括:

(1)脱硝系统设置烟气旁路系统。

(2)脱硝反应器布置在锅炉前。

(3)吸收剂为氨水。

(4)采用蜂窝式催化剂。

(5)脱硝设备年利用小时按8500小时考虑。

(6)脱硝装置可用率不小于98%。

(7)装置服务寿命为30年。

1.3 脱硝装置主要布置原则

(1)总平面布置

根据厂区总平面布置的规划,脱硝剂制备区域布置待定。

(2)管线布置

有汽车通过的架空管道净空高度为5米,室内管道支架梁底部通道处净空高度为2.2米。

2 SCR区主要设备

2.1 烟道

烟道将根据可能发生的最差运行条件进行设计。

烟道设计将能够承受如下负荷:烟道自重、风荷载、地震荷载、灰尘积累、内衬和保温的重量等。

烟道最小壁厚至少按5mm设计,烟道内烟气流速不宜超过15m/s。

在外削角急转弯头和变截面收缩急转弯头处等,以及根据烟气流动模型研究结果要求的地方,将设置导流板。

为了使与烟道连接的设备的受力在允许范围内,特别要注意考虑烟道系统的热膨胀,热膨胀将通过膨胀节进行补偿。

烟道将在适当位置配有足够数量测试孔。

2.2 SCR反应器

至少包括:

配套的法兰;反应器流场优化装置;进气和排空罩;反应器罩上的隔板;整流装置;催化剂层的支撑(包括预留层);催化剂层的密封装置;催化剂吊装和处理所需的结构;在线分析监测系统等;

SCR反应器的设计将充分考虑与周围设备布置的协调性及美观性。反应器将设计成烟气竖直向下流动,反应器入口将设气流均布装置,反应器入口及出口段将设导流板,对于反应器内部易于磨损的部位将设计必要的防磨措施。反应器内部各类加强板、支架将设计成不易积灰的型式,同时必须考虑热膨胀的补偿措施;

反应器将设置足够大小和数量的人孔门;

反应器将配有可拆卸的催化剂测试元件;

在喷氨格栅处设置取样口测量浓度和烟气流速;

反应器上游和催化剂各层设置取样口,不间断测量NO

X 、O

2

、NH

3

等;

反应器出口设有取样口(每个催化剂模块设有一个);

为了正常运行、开车和完成测试等工作设置足够数量的开孔;

反应器设计还将考虑内部催化剂维修及更换所必须的起吊装置。

2.3 催化剂

根据工况条件、催化剂的活性、用量进行SCR反应器内催化剂层数、种类和结构型式

的设计,使其在任何工况条件下将氨的逃逸率控制在10ppm以内, SO

2氧化生成SO

3

的转

化率控制在1%以内。

催化剂的型式采用蜂窝式,根据飞灰的特性合理选择孔径大小并设计有防堵灰措施,以确保催化剂不堵灰,同时,催化剂设计将尽可能的降低压力损失。

催化剂模块设计有效防止烟气短路的密封系统,密封装置的寿命不低于催化剂的寿命。催化剂各层模块一般将规格统一、具有互换性。

催化剂设计考虑燃料中含有的任何微量元素可能导致的催化剂中毒。

在加装新的催化剂之前,催化剂体积将满足性能保证中关于脱硝效率和氨的逃逸率等的要求。同时,乙方必须考虑预留加装催化剂的空间。

催化剂采用模块化设计以减少更换催化剂的时间。

催化剂模块采用钢结构框架,并便于运输、安装、起吊。

注:目前商业上应用比较广泛的是运行温度处于320-450℃的中温催化剂,当反应温度低于300℃时,在催化剂表面会发生副反应,NH3与S03和H20反应生成(NH4)2S04或NH4HSO4减少与NOx的反应,生成物附着在催化剂表面,堵塞催化剂的通道和微孔,降低催化剂的活性。另外,如果反应温度高于催化剂的适用温度,催化剂通道和微孔发生变形,从而使催化剂失活。因此,保证合适的反应温度是选择性催化还原法(SCR)正常运行的关键。

因(NH4)2S04熔点(℃): 230-280℃,NH4HSO4沸点350℃,故在工程设计中需加装烟气升温装置(或引用高温烟气),催化剂每运行1-2个月必须用高温烟气(350℃以上)对催化剂进行高温冲刷,防止铵盐的堵塞。

2.4 氨喷射系统

入口烟道设置一套完整的氨喷射系统,保证氨气和烟气混合均匀,喷射系统将设置流量调节阀,能根据烟气不同的工况进行调节。喷射系统将具有良好的热膨胀性、抗热变形性和和抗振性。

氨喷射系统使用喷氨格栅,保证氨气和烟气混合均匀。喷入反应器烟道的氨气为空气稀释后的含氨气的混合气体,每台炉配备二台稀释风机(一运一备),风机靠近脱硝装置布置。

2.5 吹灰系统

(1) 设计原则

按每台SCR反应器设置一套吹灰系统进行设计。

(2) 技术要求

为避免产生积灰堵塞催化剂对脱硝系统性能产生影响,本工程选择空气吹灰器进行清灰。每个反应器设置6个吹灰器进行吹灰(含备用层),每层催化剂布置2个吹灰器。空气吹灰器所需空气参数如下:

空气压力:0.7MPa

3. 脱硝剂存储、制备、供应系统

本工程采用氨水来制备脱硝剂。

氨水储存、制备、供应系统包括储氨罐、氨水蒸发罐、废水罐、废水泵等。此套系统提供氨气供脱硝反应使用。储槽中的氨水输送到氨水蒸发罐内蒸发为氨气,然后与稀释空气在混合器中混合均匀,再送达脱硝系统。氨气系统紧急排放的氨气则排入废水罐中,再通过废水泵打到污水处理场处理。

本工程共用脱硝剂存储、制备、供应系统,布置1个氨区。氨水储存和制备区域独立成岛布置,在全厂总平面的布置中由乙方统一设计。

氨水贮存、制备系统主要设备。

(1)氨水储罐

氨水储罐的容量,7天的用量进行设计,本期工程设置1台氨水储罐。氨水储罐设有防太阳辐射措施,四周安装有事故喷淋管线及喷嘴,当氨水储罐罐体温度、压力过高时自动淋水装置启动,对罐体自动喷淋减温降压;

(2)氨水蒸发罐

氨水蒸发所需要的热量采用热空气加热来提供。热空气通过空气换热器获得。(3)废水泵

废水排到废水池,并通过废水泵排到厂区污水处理场系统。废水泵共设2台(一用一备)。

(4)氨气输送管道

焦炉提供一根氨气输送厂区管道,由氨水贮存区到SCR区后送至反应器的喷氨格栅。

4.烟气加热系统

因本项目烟气温度较低(大约280℃),考虑到中低温催化剂的脱硝运行成熟稳定、催化剂的成本及脱硝运行成本,故增设一套烟气加温装置。

烟气加热系统主要包括:煤气燃烧器、煤气排水罐、煤气分配控制阀、煤气管道等。

5. 检修、起吊设施

对于催化剂的安装、更换及其它检修和维护需要的部位,设计全部的起吊设施和必要的轨道。

起重设施包括电动葫芦,安装在工字轨道或桥式轨道上。

电动葫芦为永久安装,提升能力为2t及以上(满足安装及检修最大的起吊重量要求)。

6. 仪表和控制系统

6.1 技术要求

SCR反应系统分别由DCS系统控制,控制盘柜就近找房间布置。同时,两者和单元机组DCS系统设有冗余双向通讯接口,运行人员通过脱硝DCS操作员站对氨区系统被控对象及工艺参数进行控制和监视,最终实现远方控制,就地无人值班。

第五章附件

主要工艺设备(但不限于此)

说明:以上数据为方案参考数据,不是最终数据,乙方需进一步完善和调整,达到最佳设计参数。

低温SCR催化剂课件资料

低温SCR催化剂 催化剂是SCR技术的核心,其中MMNOx/TiO2、 MNOx-CeO2/TiO2,MNOx/AI2O3、CuO/Tio2等在中低温范围内都表现良好的脱硝活性。研究表明,以锰铈氧化物为活性组分的催化剂具有较高的催化活性和N2选择性,是低温SCR催化剂研究的焦点。 活性组分 催化剂的活性组分在低温SCR反应过程中,对反应物的吸附以及电子传递起着至关重要的作用,直接决定着反应能否顺利进行,影响着催化活性和N2选择性的高低。常见的低温SCR催化剂活性组分主要有活性氧化锰和二氧化铈二种。 活性氧化锰 MNOx的晶格中含有大量的活性氧,能有效促进低温SCR脱硝反应的进行。常见的锰的氧化物主要有MnO2、Mn2O3、M3O4和Mn5O8等,它们在SCR脱硝反应中的作用各不相同。Kapteijn等研究发现MnO2催化剂具有较好的低温活性,而Mn2O3则具有较高的N2选择性。锰氧化物的催化活性顺序为: MnO2>Mn5O8>Mn2O3>Mn3O4。研究发现,虽然纯的MNOx低温活性较高,但其N2选择性较差,且易受烟气中SO2和H2O的影响导致催化剂中毒。通常将MNOx与其他氧化物结合,制备双金属或复合氧化物催化剂,以提高催化剂的活性和N2选择性,延长催化剂的使用寿命。 二氧化铈

CeO2在低温SCR反应中具有良好的活性,在催化加入Ce元素,可提高催化剂的储氧能力,从而提高催化剂的活性。贺泓等通过浸渍法制备了Ce/TiO2催化剂并考察了反应性能。吴忠标等通过溶胶-凝胶法在MNOx/TiO2中添加Ce元素制备了MNOx-CeO2/TiO2催化剂,研究发现Ce的添加有助于提高NO的转换率。顾婷婷等研究硫酸化改性后CeO2催化剂活性。前人研究表明,CeO2具有较强的表面酸性和储存氧的能力,可以促进NH3在催化剂表面的活化和吸附。 催化剂载体 载体是催化剂成型的关键,良好的催化剂载体不仅可以促进底物的吸附,提高催化活性,而且有助于催化剂的规模化生产和工业应用。低温SCR催化剂的载体主要有二氧化钛、氧化铝活性炭、沸石分子筛等。 二氧化钛 TiO2是常见的催化剂载体,不易被酸化,且能提高低温SCR催化反应的活性、N2选择性和抗硫性。TiO2通常有锐钛矿、金红石和板钛矿三种晶型,其中锐钛矿型TiO2常被用来选作脱硝催化剂的载体。Qi等将Mn、Cu、V、Fe等过渡金属负载在TiO2上考察催化剂的活性,其中通过浸渍法把Mn负载在TiO2上的催化剂活性较好。吴忠标采用溶胶-凝胶法制备了Mn/TiO2催化剂并用Fe、Cu、Zn、V等过渡金属对其进行改性,结果表明,催化剂活性在150度时均能达到95%以上。徐文青等通过浸渍法制备了Ce/TiO2催化剂,在

SCR低温脱硝催化剂

SCR低温脱硝催化剂 一、技术背景 我国烟气脱硝市场中,选择性催化还原(SCR)技术是电站锅炉NO X排放控制的主要技术,SCR反应的完成需要使用催化剂。目前商业上应用比较广泛的是运行温度处于320-450℃的中温催化剂,因此催化还原脱硝的反应温度应控制在320- 400℃。当反应温度低于300℃时,在催化剂表面会发生副反应,NH3与S03和H20反应生成(NH4)2S04或NH4HSO4减少与NOx的反应,生成物附着在催化剂表面,堵塞催化剂的通道和微孔,降低催化剂的活性。另外,如果反应温度高于催化剂的适用温度,催化剂通道和微孔发生变形,从而使催化剂失活。因此,保证合适的反应温度是选择性催化还原法(SCR)正常运行的关键。 由于电站锅炉在大气温度较低和低负荷运行时,烟气温度会低于SCR适用温度。由于锅炉设计方面的原因,在低气温和低负荷条件下亚临界和超高压汽包锅炉烟气温度的缺口可以达到20℃以上,比直流和超临界锅炉更大,此时SCR 停运,烟气排放浓度将不能满足国家环保要求。我国目前尚没有成熟的低温SCR 脱硝技术,需要使用复杂的换热系统才能应用SCR脱硝增加了能耗和设备投资,因此面临着艰巨的NO X减排困难。 根据环保部《火电厂大气污染物排放标准》是国家强制标准,火电厂在任何运行负荷时,都必须达标排放。脱硝系统无法运行导致的氮氧化物排放浓度高于排放限值要求的,应认定为超标排放,并依法予以处罚。目前全工况脱硝技术已经成熟,火电厂现有脱硝系统与运行负荷变化不匹配、不能正常运行、造成超标排放的,应进行改造,提高投运率和脱硝效率。 二、技术现状

SCR低温脱硝催化剂,是洛阳万山高新技术应用工程有限公司为了解决汽包锅炉某些工况烟气温度过低和SCR低负荷运行时,导致SCR脱硝无法正常运行的技术难题,该技术是结合现有SCR脱硝工艺,从而实现SCR低温脱硝催化剂低温脱硝,SCR低温脱硝催化剂最为简单有效,由于烟气中的氮氧化物主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,很容易通过碱液喷淋等手段将其从烟气中脱出。将烟气中的NO转化为高价态,需引入较强的SCR低温脱硝催化剂,在众多催化剂中,SCR低温脱硝催化剂是最环保最清洁的SCR低温脱硝催化剂,它以低温脱硝催化技术最为简单有效,在高效转化NO至高价态的过程中不遗留任何二次污染物,另外不同于其它催化剂,工作环境恶劣,自由基存活时间非常短,能耗较高,SCR低温脱硝催化剂的生存周期相对较长,能将少量氧气或空气电离后产生催化氧化,然后送入烟气中,可显著降低能耗。 三、技术原理 SCR低温脱硝催化剂具有很强的催化性,完全有能力将烟气恶劣环境中的NO氧化成高价态,提高烟气中氮氧化物的水溶性,从而将NO脱除。利用SCR 低温脱硝催化剂将NO催化为高价态的氮氧化物后,需要进一步地吸收。常见的吸收液有Ca(OH)2、CaCo3等碱液。不同的吸收剂脱除的NO效果会有一定的差异。例如有人在利用水吸收尾气时,NO的脱除效率可达到80%以上,这是利用气体在水中的溶解度进行吸收,也有试验利用吸收液将高价氮氧化物还原成为N2后直接排入大气中。 四、技术性能 采用SCR低温脱硝催化剂脱硝技术可得到较高的NO X脱除率,典型的低温

低温SCR脱硝催化剂研究现状

低温SCR脱硝催化剂研究现状 1 引言 氮氧化合物(NO,NO2,N2O)是空气污染的主要来源,他们能产生光化学烟雾,酸雨,臭氧空洞以及温室效应。几乎所有的NOx都来自于运输和火力发电厂。因此控制NOx在空气中的排放是一个亟待解决的问题。在我国的燃煤电站中大多采用低NOx燃烧技术,而脱硝效率较高的选择性催化还原(SCR)技术则相对应用较少[1]。在国外SCR脱硝技术应用十分广泛。SCR脱硝技术的核心是催化反应,成功开发用于催化反应的催化剂是关键。 商业上应用比较成功SCR脱硝催化剂主要是以钛钒基(V2O5/TiO2)与WO3或者MoO3的混合物[2]。虽然钒基催化剂有很高的活性和抵抗SO2的能力,但是还才存在很多缺点。这种催化剂在300-400℃这样一个很窄的温度区间有活性,在这个温度区间可以避免由NH4HSO4和(NH4)2S2O7这样的硫酸铵盐引起的毛孔堵塞[3]。这种高温SCR脱硝装置一把设在省煤器之后,空气预热器和脱硫装置之前,由于烟气未进行除尘处理,容易造成催化剂孔道堵塞,影响催化剂寿命。而低温SCR催化剂可以在能耗较低的情况下把催化剂布置在脱硫之后[4],这样可以降低能耗,防止催化剂孔道堵塞,提高催化剂寿命。所以近年来开发低温高效、性能稳定的SCR脱硝催化剂成为学者们研究的热点。 2 SCR的基本原理 选择性催化还原法(SCR)脱硝是在催化剂存在的条件下,采用氨、碳氢化合物或者H2等作为还原剂,将烟气中的NOx还原为N2。 以NH3作为还原剂用SCR还原NOx时的主要化学方程式为[5]: 4NO + 4NH3 + O24N2 + 6H2O 2NO2 + 4NH3 + O23N2 + 6H2O 当以碳氢化合物作为还原剂时,碳氢化合物种类的不同导致其反应过程中的中间产物有着明显的区别,但多数情况下都有CO2的生成。这时,SCR反应的化学方程式[6]可以表示为: CxHy + mNO + (2x + y/2–m)O2xCO2 + m/2N2 + y/2H2O 当以H2作为还原剂时,主要的化学方程式[7]为: 2NO + 4H2 + O2N2 + 4H2O H2O和SO2存在下催化剂失活[8-10]以及在低于200℃时较低的N2反应选择性使得碳水化合物作为还原剂(HC-SCR,T<200℃)的工业技术的发展变的不可能。

SCR脱硝催化剂的发展历程

SCR脱硝催化剂的发展历程 SCR 反应的催化剂发展主要经历了四个阶段。最早是采用Pt、Rh、Pd 等贵金属作为活性组分,以CO 和H2或碳氢化合物作为还原剂,其催化反应的活性温度区间较低,通常在300 ℃以下,现在多用于柴油机的排放控制中;后来,引入了V2O5/TiO2 等在化工过程中采用的金属氧化物类催化剂,最佳活性温区多处于250~400 ℃,其中钛基钒类催化剂也是燃煤电站SCR 系统中最常采用的催化剂;再后来发展了碳基催化剂,使烟气同时脱硫脱氮技术得以发展;近年来,对金属离子交换沸石类催化剂研究较多,其有效的活性温区较高,最高可达600℃,对NOx 的催化还原和催化分解活性都很高,是研究中比较活跃的领域。 1 贵金属催化剂 Pt、Ph 和Pd 等贵金属类催化剂通常以氧化铝等整体式陶瓷作为载体,这种催化剂在20 世纪70 年代前期就已经作为排放控制类的催化剂而有所发展,并成为SCR 反应中最早使用的催化剂。贵金属催化剂对NH3氧化具有很高的催化活性,但在选择催化还原过程中会导致还原剂大量消耗而增加运行成本,同时,贵金属催化剂不仅造价昂贵,还易发生硫中毒,所以贵金属催化剂的研究目标是进一步提高低温活性,提高抗硫性能和选择性。目前,贵金属催化剂仅应用于低温条件下以及天然气燃烧后尾气中NOx 的脱除。在这类催化剂中,Pt 的研究相对深入,其本反应过程为NO 在Pt 的活性位上脱氧,然后碳氢化合物再将Pt- O 还原。Pt 催化剂的优点是具有较高的效率,缺点是有效温度区间较窄。在这类催化剂中,较多的采用CO 以及碳氢化合物作为还原剂。 2 金属氧化物催化剂 金属氧化物类催化剂,主要包括V2O5、WO3、Fe2O3、CuO、CrOx、MnOx、MgO、MoO3和NiO 等金属氧化物或其联合作用的混合物,如水滑石中提取出来的Co-Mg- Al,Cu-Mg- Al 和Cu- Co-Mg- Al 等。通常以TiO2、Al2O3、ZrO2、SiO2 等作为载体,这些载体主要作用是提供大的比表面积的微孔结构,在SCR 反应中所具有的活性极小。当采用这一类催化剂时,通常以氨或尿素作为还原剂。目前,工程应用上使用最多的是V2O5/TiO2 类催化剂。在以具有锐钛矿结构的TiO2 作为载体的钒类催化剂中,以化学组成来说,通常有几种不同类型,分别是V2O5 -WO3/TiO2,V2O5 -MoO3/TiO2,V2O5 -WO3-MoO3/TiO2 等,其中尤以V2O5-WO3/TiO2 研究以及应用较多,而单一活性成分的V2O5/TiO2则较少应用。各活性成分的主要作用是:V2O5 作为主要的活性组分,其担载量通常不超过1 %(质量分数)。这是由于V2O5 也可同时将SO2 氧化成SO3,这对SCR 反应很不利,因此,钒的担载量不能过大。锐钛矿结构的TiO2 作为载体主要是因为钒的氧化物的TiO2的表面有很好的分散度;SO2氧化生成的SO3与TiO2发生的反应

铁基中低温SCR脱硝催化剂性能研究.

英文摘要 铁基中低温SCR脱硝催化剂性能研究 摘要 氮氧化物(NOx)对人体、环境的危害很大,是目前国内外急需解决的问题之一。选择性催化还原法具有脱硝效率高、N2选择性好等优点,得到广泛使用。商业化的脱硝催化剂存在价格昂贵,活性温窗窄,活性窗口温度较高且废弃的催化剂易造成二次污染等问题,所以,开发廉价、低温、高效的环境友好型催化剂具有十分重要的意义。铁的氧化物具有环境友好、价格低廉以及还原性强等优点,在NOx 选择催化还原(SCR)脱除领域已经受到了国内外学者的广泛关注。本文主要针对氧化铁脱硝催化剂的制备、表征等各方面进行了研究。 本文首先考察了制备方法、助剂CeO2含量两个因素对非负载型Fe2O3催化剂性能的影响。通过XRD、XPS、H2-TPR、BET比表面积测试、UV-vis DRS等表征手段,对催化剂进行了表征,并且对催化剂的脱硝活性和对氨气的氧化率进行评价。然后,通过XRD、XPS、XRF、BET比表面积测试的表征手段,分析了一种工业级多元金属氧化物(MO)的基本性质,研究了其基础脱硝活性。以XO为催化剂基体,TiO2为载体,Fe2O3为活性组分制备了负载型脱硝催化剂。考察了XO及不同助剂对SCR催化活性的影响。利用XRD、H2-TPR、BET比表面积测试等技术对制备的催化剂进行了表征。 对非负载型Fe2O3催化剂研究表明:模板法比共沉淀制备的催化剂具有更大的比表面积,更强的氧化性和酸性,促进了催化剂脱硝活性的升高;前者比后者的活性温区宽,并且具有较好的高温脱硝活性。对不同含量CeO2催化剂的表征比较发现,当CeO2含量为2 %和4%时具有相对较高的催化活性和相对较小的氨气氧化率,这主要是由催化剂中铁物种氧化性的变化导致的。 对多元金属氧化物基本性质的研究表明,多元金属氧化物中主要有Fe、Si、Al等多种元素,颗粒表面存在Si、Na、Al、V等元素的富集。多元金属氧化物比表面积极低,基础脱硝活性较低,不适合直接作为脱硝催化剂或者活性组分。 制备了XO为催化剂基体,TiO2为载体,Fe2O3为活性组分的催化剂,考察基体对催化剂的影响。实验结果表明,加入多元金属氧化物后,催化剂比表面积减小、氧化性增强。在250 ℃-350 ℃内催化剂的脱硝活性在90 %以上,但是活性温窗较窄。分别使用CeO2、MoO3、WO3对催化剂进行掺杂,实验结果表明:掺杂后催化剂比表面积增大,有利于氨气的吸附,促进SCR反应的进行;CeO2掺杂后催化剂的脱硝活性在整体上提高,但是最佳活性温窗没有变宽或者变化;MoO3、WO3掺杂后催化剂的中低温活性降低,高温活性提高,活性温窗宽,并向高温移动。 III

【CN109999891A】一种低温SCR脱硝催化剂及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910379422.7 (22)申请日 2019.05.08 (71)申请人 四川大学 地址 610064 四川省成都市一环路南一段 24号 (72)发明人 郭家秀 李晶 袁山东 李建军  楚英豪 文新茹  (74)专利代理机构 成都正华专利代理事务所 (普通合伙) 51229 代理人 郭艳艳 (51)Int.Cl. B01J 29/03(2006.01) B01J 29/04(2006.01) B01J 35/10(2006.01) B01J 37/02(2006.01) B01J 37/08(2006.01)B01D 53/90(2006.01)B01D 53/56(2006.01) (54)发明名称 一种低温SCR脱硝催化剂及其制备方法 (57)摘要 本发明公开了一种低温SCR脱硝催化剂及制 备方法。该催化剂包括载体以及负载在该载体上 的活性组分和掺杂改性组分,其中载体为MCM -41 或锶或锆或铝掺杂改性的MCM -41,所述活性组分 为锰。本发明采用等体积浸渍发制备的催化剂具 有介孔有序结构,制备工艺简单易行,具有良好 的应用前景,其中Mn/Al -MCM -41在180~400℃宽 温度窗口中保持优异的SCR脱硝活性,氮氧化物 去除率达60%以上,200~400℃维持100%的氮 氧化物去除率。权利要求书1页 说明书5页 附图4页CN 109999891 A 2019.07.12 C N 109999891 A

权 利 要 求 书1/1页CN 109999891 A 1.一种低温SCR脱硝催化剂,其特征在于:所述催化剂包括载体以及负载于所述载体上的活性组分和改性组分;所述载体为MCM-41,所述活性组分为含锰化合物,所述改性组分为含锶化合物、含锆化合物或含铝化合物,且所述催化剂中锰的质量百分比为3%~7%,锶、锆或铝的质量百分比1%~4%。 2.根据权利要求1所述的低温SCR脱硝催化剂,其特征在于:所述活性组分为二氧化锰,且催化剂中锰的质量百分比为5%。 3.根据权利要求要求1所述的低温SCR脱硝催化剂,其特征在于:所述改性组分为氧化锶、氧化锆或氧化铝,且催化剂中锶、锆或铝的质量百分比为2%。 4.制备如权利要求1~3任一项所述低温SCR脱硝催化剂的方法,其特征在于,包括以下步骤: S1:取改性前体,将其配成浓度为0.02~0.50g/ml的改性溶液,然后将MCM-41以1g:0.5~2ml的料液比加入到改性溶液中,再搅拌15min,然后于100℃~120℃条件下烘干,得产物一;所述改性前体为Sr(NO3)2、Al(NO3)3·9H2O或Zr(NO3)4·5H2O; S2:将产物一于480~520℃下煅烧2~4h,得煅烧产物; S3:取活性前体,将其配成浓度为0.02~0.50g/ml的改性溶液,再将S2中得到的煅烧产物以1g:1ml的料液比加入到改性溶液中,再搅拌15min,然后于100℃~120℃条件下烘干,得产物二;所述活性前体为硝酸锰; S4:将产物二于400~600℃下煅烧2~3h,得低温SCR脱硝催化剂。 5.根据权利要求4所述的方法,其特征在于:S1中MCM-41与改性溶液的料液比为1g: 1ml,烘干温度为110℃。 6.根据权利要求4所述的方法,其特征在于:S2中煅烧温度为500℃,煅烧时间为3h。 7.根据权利要求4所述的方法,其特征在于:S4中煅烧温度为500℃,煅烧时间为3h。 8.根据权利要求4或5所述的方法,其特征在在于,所述MCM-41经过以下步骤制得: (1):将十六烷基三甲基溴化铵溶于水中并调节溶液的pH值为11~13,然后向溶液中加入正硅酸乙酯,搅拌均匀得混合液;混合液于60℃水浴下搅拌反应2h,得悬浊液;混合液中十六烷基三甲基溴化铵、正硅酸乙酯与水的摩尔比为0.1~0.5:1~2:70; (2):将悬浊液转移至聚四氟乙烯反应釜中,于130℃下反应24h,然后降至室温并抽滤,用去离子水将沉淀清洗至中性,110℃下烘干得白色粉末; (3):对步骤二所得到的白色粉末进行煅烧,得到有序介孔材料MCM-41。 9.根据权利要求8所述的方法,其特征在于:步骤(1)调节十六烷基三甲基溴化铵溶液的pH值为12;混合液中十六烷基三甲基溴化铵、正硅酸乙酯和水的摩尔比为0.1:1:70。 10.根据权利要求8所述的方法,其特征在于:步骤(3)中煅烧分两段进行,第一段煅烧温度为360℃,煅烧时间为1h;第二段煅烧温度为550℃,煅烧时间为6h。 2

颗粒状中低温SCR脱硝催化剂的制备及性能测试 王旭

颗粒状中低温SCR脱硝催化剂的制备及性能测试王旭 发表时间:2018-01-28T20:44:17.500Z 来源:《基层建设》2017年第32期作者:王旭 [导读] 摘要:随着社会的飞速发展,氮氧化物(NOx)对空气的污染日益严重,已经成为我国大气环境的主要污染物之一。 中国钢研集团上海金自天正信息技术有限公司上海 201900 摘要:随着社会的飞速发展,氮氧化物(NOx)对空气的污染日益严重,已经成为我国大气环境的主要污染物之一。本课题为实现低温SCR脱硝工艺,以改进Yoldas-滴球法制备的高比表面积、高强度和耐磨特性的γ-Al2O3为载体,以Fe、Ce和Mn三种过渡金属元素形成的复杂氧化物为活性组分,采用田口实验设计法制备并优化了一种低温下脱硝性能优良、抗SO2性能良好,使用寿命较长的脱硝催化剂 Fe0.05Mn0.09Ce0.05Ox/γ-Al2O3,并通过SEM、BET、XRD等表征技术和密置单层模型得出了该催化剂的基本理化特征。基于此,本文就针对颗粒状中低温S脱硝催化剂的制备及性能测试进行具体分析。 关键词:颗粒状;低温SCR;脱硝催化剂;制备;性能测试 1.概述 氨气选择性催化还原(NH3-SCR)烟气脱硝技术是最具潜力、应用最广泛的烟气脱硝技术,其最主要的化学反应式为: 4NH3+4NO+O2→4N2+6H2O (1) 另,在不同反应条件下,反应过程中还存在如下三个主要反应: 4NH3+2NO2+O2→4N2+6H2O (2) 4NH3+6NO→5N2+6H2O (3) 4NH3+4NO+3O2→4N2O+6H2O (4) 目前SCR脱硝催化剂的活性温度区间为300-400℃,属于高温SCR催化剂,具有优良的脱硝和抗SO2中毒能力,但在脱硝系统的使用过程中还存在以下问题①受工作温度的限制,高温催化剂必须布置在省煤器与空气预热器之间的高温高尘段,烟气中含有的粉尘、碱性金属、As化合物和高浓度SO2,极易导致催化剂中毒。另,由于SCR脱硝系统的应用在我国起步较晚,已建锅炉未预留SCR脱硝装置空间,故已建锅炉的脱硝工程改造复杂,投资巨大。②我国火电行业所用燃煤来源广泛,总体品质不高,燃煤飞灰对布置在高温高尘段的SCR装置和催化剂腐蚀严重,并且碱性金属和As化合物极易导致SCR催化剂中毒失活,一般情况下,催化剂在运行3-5年后必须更换,极大地增加了SCR系统的运行成本。 而低温 SCR脱硝催化剂具有工程建设成本低、运行工况温和催化剂寿命长等优势。国内30%的工业窑炉排放的尾气出口温度为 150~250℃,电厂锅炉低负荷运行时,烟气出口温度会低于 320℃。因此,开发 150~320℃宽活性温度窗口的烟气脱硝催化剂具有重要的意义。 利用由原位溶胶-凝胶技术制备的TiO2@V2O5作为复合载体,不改变现有的V2O5-WO3/TiO2三元催化剂制备方法,仍采用活性组分浸渍法,在三元催化剂V2O5-WO3/TiO2催化剂体系基础上,改用TiO2@V2O5作为复合载体,并引入活性助剂三氧化钼(MoO3),开发出四元中低温SCR催化剂,提高催化剂的脱硝效率并拓宽活性温度窗口至150-320℃,使其满足中低温脱硝特性,并制备成颗粒状便于性能测试。 2.颗粒状中低温脱硝催化剂性能要求 为适应复杂的烟气环境,满足脱硝设计要求,中低温脱硝催化剂应具备以下性能: (1)较高的脱硝效率 在SCR系统中,气体以较高的速度流经催化剂表面,SCR系统中空速约为4000 h-1-20000 h-1,催化剂与烟气中的NOx接触时间较短,催化剂必须具有较高的脱硝效率。 (2)良好的催化选择性 在SCR系统中,烟气由多种气体成分混合组成,通常均含有大量的CO2、H2O、O2、N2、SO2和CO,在气体与催化剂接触的有限时间内,为避免副反应发生,提高主反应速率,催化剂必须具有良好的催化选择性。 (3)较好的NOx浓度适应性 NOx浓度因系统运行工况的不同而复杂多变,浓度变化可以达到300-2000 ppm,为保证在较大NOx浓度变化范围内达到排放标准,催化剂必须具有较好的NOx浓度适应性。 (4)中低温脱硝温度窗口 众多工业炉窑烟气温度在150-320℃,如果使用高温SCR脱硝催化剂就需要对烟气进行再加热,为了降低脱硝温度、降低原有锅炉烟气工程改造难度和成本,需要开发中低温SCR脱硝催化剂。 (5)抗中毒能力 复杂的烟气成分会导致催化剂中毒,烟气中的碱金属会破坏催化剂表面的活性酸位,导致催化剂中毒,脱硝效率下降。烟气中的SO2经氧化变为SO3与烟气中的H2O或碱金属化合形成硫酸盐,破坏催化剂表面酸碱性,也会导致催化剂中毒,催化剂必须具有良好的抗中毒能力。 3.颗粒状催化剂常用制备方法 目前制备颗粒状负载型催化剂的主要方法分为:浸渍法、沉淀法、离子交换法、溶胶凝胶法、混合法等。 3.1 浸渍法 浸渍法是将一种或几种活性物质通过载体浸渍附着于载体上的方法。通常采用载体侵入金属盐溶液中,通过多孔介质的毛细管吸力,使溶液中的金属盐类吸附或忙存在载体空隙内部,再经干燥、煅烧和活化制得催化剂。 3.2 沉淀法 将沉淀剂和金属盐溶液一同加入搅拌罐中混合,使之生成难溶的金属盐或金属水合氧化物,再经洗涤、过滤、干燥、煅烧制得催化剂。

国内外SCR脱硝催化剂的研究对比

国内外SCR脱硝催化剂的研究对比 1国外SCR脱硝催化剂的研究现状 研究历史 SCR技术发展至今已有三十多年的历史,是目前国外应用比较广泛的一种烟气脱技术。但由于催化理论和反应机理研究上的欠缺,致使该项技术远未达到完善的程度。因此,对SCR技术的研究也从未停止过。近年来,在反应机理及反应动力学、抗毒性能、新型催化剂及载体的研究等方面又有了很大的发展。 研究机构 目前国外关于SCR催化剂的研究机构主要有:英国剑桥大学、英国雷丁大学、美国密歇根大学、日本九州大学、日本国立材料和化学研究所等等,其中密歇根大学主要致力于贵金属催化剂的研究,日本国立材料和化学研究所主要致力于金属氧化物催化剂制备方法的研究。 研究进展 贵金属催化剂 贵金属催化剂低温催化活性优良,对NOx还原及对NH3、CO氧化均具有很高的催化活性,因此在SCR过程中会导致还原剂大量消耗而增加系统运行成本。此外,催化剂造价昂贵,易发生氧抑制和硫中毒。目前研究人员主要致力于采用新制备技术和新型载体,针对某些含硫低的尾气开发出一些性能较好的低温催化剂。 在贵金属催化剂的制备方面,研究者不仅要考虑到贵金属活性组分的种类,还要考虑到所用载体的种类问题。在(NH3+H2)-NO 条件下,Evgenii V. Kondratenko 等对Ag/Al2O3 进行了SCR 研究,结果表明,在低温范围内,同时有O2 和H2 存在的情况下,该催化剂的活性能得到很大程度的提高。I. Salem 等就ZrO2 及SnO2 对SCR 催化剂Pt/Al2O3 催化活性的影响进行了研究;此外,关于不同还原剂对SCR 反应的影响也进行了探讨。研究结果指出,当采用C3H6 为还原剂时,在250 ℃左右,ZrO2 和SnO2 的添加,可以有效提高NOx 的转化率,同时还可以减少N2O 的产生;但是随着反应温度的升高,NOx 的转化率反而会降低。日本Ken-ichi Shimizu 等在尿素选择性催化还原NO 的过程当中,添加了%的H2,便使催化剂Ag/Al2O3 的催化活性大大增强。研究结果还指出,在200~500 ℃温度范围内,体积空速为75000 h-1 时,Ag/Al2O3 表现出最高的选择性催化还原活性,NO 的转化率可达84 % 以上,而且还没有N2O 生成。西班牙P. Bautista 等对富氧条件下硫酸盐掺杂Pd/ZrO 上进行的CH4

《SCR脱硝-技术方案2-采用低温板式催化剂》讲解

SCR 烟气脱硝 术技方案 (采用低温催化剂) 日12月9年2016. 一设计概述

1.1 设计背景 本设计方案为山东xxxx玻璃科技有限公司玻璃窑烟气SCR脱硝处理项目。 1.1.1烟气参数 33/h(标况)37000m73000Nm /h(工况);(1)烟气流量:(2)烟气温度:248~260℃; (3)氮氧化物含量:2769~2948 mg/m3 (4)SO2含量:226~738 mg/m3 (5)O2浓度:10~11.7% 1.1.2烟气排放指标: 氮氧化物含量:50 mg/Nm3(《山东省工业窑炉大气污染物排放标准》DB37/2375-2013) 1.2 SCR烟气脱硝技术介绍 1.2.1 SCR工艺原理: 选择性催化还原法(SCR)是指在催化剂的作用下,在锅炉排放的烟气中均匀地喷入氨气,从而将烟气中的NO还原生成N和HO。2x2SCR 是一个连续的化学工艺过程,其中含氮还原剂例(如氨气)加入到含NO的烟气中。x主要的化学反应如下: →4N+ 6HO 4NH+ 4NO + O (1.2-1) 23 22 →3N+ 6HO O (1.2-2) 4NH+ 2NO+ 23 222 4NH+ 6NO →5N+ 6H(1.2-3) O 22 3

8NH+ 6NO →7N+ 12HO (1.2-4) 22 23 烟气中的NO主要是由NO和NO组成的,其中NO总量的95%x2x 为NO,其余的5%基本上为NO。所以脱硝反应的主要化学反应方2程式是(1.2-1),它的反应特性如下: ①NH和NO的反应摩尔比为1左右;3②脱硝反应中离不开O的参与;2③最为典型的反应温度窗口:300℃~400℃; 除了以上提及的化学反应方程式,其实脱硝反应中还存在着有害反应,具体如下: SO被氧化成SO的反应:32(1.2-5)SO?O?22SO322NH 的氧化反应:3(1.2-6)O?6H?4NH?5O??4NO223(1.2-7)ON?6H?ONH4?3??22223催化剂的选择性成分为NOx的还原反 应提供了很高的催化活性。 氮气和水是脱硝反应的主要产物。SCR技术需要的反应温度窗口为300℃~400℃。在反应温度较高的情况下,会导致催化剂产生结晶或着烧结等现象;在反应温度较低的情况下,硫酸铵在催化剂表面凝结,催化剂的微孔被堵塞,催化剂的活性会降低。 SCR技术具有脱硝效率高,氨消耗少、脱硝性能稳定、运行平稳、成熟等优点,是世界公认的烟气脱硝主流技术。 1.2.2 SCR烟气脱硝系统选择 1)SCR反应塔布置方案 )高温侧高飞灰烟气段布置。1(. 在设计的过程中,将SCR反应器直接安装在了省煤器出口和预热器

相关主题
文本预览
相关文档 最新文档