当前位置:文档之家› 布朗运动及其定义布朗运动的一些性质与布朗运动的相关的

布朗运动及其定义布朗运动的一些性质与布朗运动的相关的

布朗运动和伊藤引理的运用

布朗运动与伊藤引理的运用 一、引言 1827年英国植物学家布朗发现液体中悬浮的花粉粒具有无规则的运动,这种运动就是布朗运动。1900年,法国数学家巴舍利耶()在其博士论文《投资理论》中,给出了布朗运动的数学描述,提出用算术布朗运动来模拟股票价格的变化。如果股票价格遵循算术布朗运动将意味着股票价格可能取负值,因此股票价格不遵循算术布朗运动,基于这个原因,萨缪尔森()提出股票的收益率服从算术布朗运动的假设,即股票价格服从算术布朗运动。在柯朗研究所着名数学家的帮助下,萨缪尔森得到了欧式看涨期权的显式定价公式,但是该公式包含了一些个体的主观因素。1973年,布莱克()和斯科尔斯()发表了一篇名为《期权和公司负债定价》的论文,推导出了着名的Black-Scholes公式,即标准的欧式期权价格显式解,这个公式中的变量全是客观变量。哈佛大学教授莫顿(Merton)在《期权的理性定价理论》一文中提出了与Black-Scholes类似的期权定价模型,并做了一些重要推广,从此开创了金融学研究一个新的领域。 二、相关概念和公式推导 1、布朗运动介绍 布朗运动(Brownian Motion)是指悬浮在流体中的微粒受到流体分子与粒子的碰撞而发生的不停息的随机运动。然而真正用于描述布朗运动随机过程的定义是维纳(Winener)给出的,因此布朗运动又称为维纳过程。 (1)、标准布朗运动 设t?代表一个小的时间间隔长度,z ?代表变量z在t?时间内的变化,遵循标准布朗运动的z ?具有的两种特征: 特征1:z ?和t?的关系满足下式: z?= 其中,ε代表从标准正态分布(即均值为0、标准差为的正态分布)中的一个随机值。 特征2:对于任何两个不同时间间隔t?,z ?的值相互独立。

布朗运动理论一百年

布朗运动理论一百年 郝柏林 由爱因斯坦、斯莫鲁霍夫斯基(M.Smoluchowski)等人在20世纪初开始的布朗运动理论,在一百年间发展出内容丰富的众多学科分支,现在正在成为分析生物细胞内分子机器运作原理的有力工具。爱因斯坦1905年发表的5篇论文中,关于布朗运动的文章可能人们知道得最少,而实际上它被引用的次数却超过了狭义相对论。 1 我们从布朗运动本身开始回顾 英国植物学家罗伯特·布朗在1828年和1829年的《哲学》杂志上发表了两篇文章,描述自己在1827年夏天在显微镜下观察到花粉颗粒在液体中的不停顿的运动。他最初曾经以为是看到了生命运动,但后来确认这种运动对细小的有机和无机颗粒都存在,因而不是生命现象所致。布朗认为运动的原因在于这些颗粒包含着“活性分子”(active molecules),而与所处液体没有关系。 事实上,布朗并不是观察到这类运动的第一人。他在上述两篇文章里就曾提到了约十位前人,包括做过大量观察的制作显微镜的巧手列文胡克(Antonnie von Leeuwenhock)。 2 爱因斯坦的扩散长度公式 爱因斯坦在1901—1905年期间致力于博士论文研究。他1905年发表的头一篇文章——“分子大小的新测定”就基于其博士论文。爱因斯坦考察了液体中悬浮粒子对渗透压的贡献,把流体力学方法和扩散理论结合起来,建议了测量分子尺寸和阿佛伽德罗常数的新办法。这样的研究同布朗运动发生关系是很自然的。然而,他1905年5月撰写的第二篇论文的题目并没有提及布朗运动。这篇题为《热的分子运动论所要求的静止液体中悬浮小粒子的运动》的文章,一开始就说:“可能,这里所讨论

的运动就是所谓的布朗分子运动;可是,关于后者我所能得到唯一的资料是如此的不准确,以致在这个问题上我无法形成判断。” 爱因斯坦确实建立了布朗运动的分子理论,并且开启了借助随机过程描述自然现象的数理科学发展方向。 我们不在此重复爱因斯坦当年对扩散系数D的推导,直接从熟知的(一维)扩散方程出发: 假定在t?=0时刻粒子位于x=0处,即ρ(x,0)=δ(x),扩散方程的解是: 即粒子的密度遵从高斯分布。对于固定的时刻t,x和x2的平均值分别是: 〈x〉=0,〈x2〉=2Dt 于是得到扩散长度的公式: 这里出现了著名的爱因斯坦的1/2指数。

(完整版)布朗运动以及维纳过程学习难点总结

1、引言 布朗运动的数学模型就是维纳过程。布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。 2.维纳过程 2.1独立增量过程 维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。现在我们就来介绍独立增量过程。 定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。 若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量 )()(,),()(),()(11201----n n t X t X t X t X t X t X Λ 是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。 我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。 如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。那么这个时候,增量)()(s X t X -的分布函数只与时间差)0(t s s t <≤-有关,而与t 和s 无关(令s h -=便可得出)。值得注意的是,我们称独立增量过程是齐次的,此时的增量具有平稳性。

关于布朗运动的理论(爱因斯坦)

关于布朗运动的理论 爱因斯坦 1905年12月 在我的论文《热的分子[运动]论所要求的[静]液体中悬浮粒子的运动》发表后不久,(耶那的)西登托普夫(Siedentopf)告诉我:他和别的一些物理学家——首先是(里昂的)古伊(Gouy )教授先生一一通过直接的观测而得到这样的信念,认为所谓布朗运动是由液体分子的不规则的热运动所引起的。不仅是布朗运动的性质,而且粒子所经历路程的数量级,也都完全符合这个理论的结果。我不想在这里把那些可供我使用的稀少的实验资料去同这个理论的结果进行比较,而把这种比较让给那些丛实验方面掌握这个问题的人去做。 下面的论文是要对我的上述论文中某些论点作些补充。对悬浮粒子是球形的这种最简单的特殊情况,我们在这里不仅要推导出悬浮粒子的平移运动,而且还要推导出它们的旋转运动。我们还要进一步指明,要使那篇论文中所给出的结果保持正确,观测时间最短能短到怎样程度。 要推导这些结果,我们在这里要用一种此较一般的方法,这部分地是为了要说明布朗运动同热的分子[运动]论的基础有怎样的关系,部分地是为了能够通过统一的研究展开平动公式和转动公式。因此,假设α是一个处于温度平衡的物理体系的一个可量度的参数,并且假定这个体系对于α的每一个(可能的)值都是处在所谓随遇平衡中。,

按照把热同别种能量在原则上区别开的古典热力学,α不能自动改变;按照热的分子〔运动]论,却不然。下面我们要研究,按照后一理论所发生的这种改变必须遵循怎么样的定律。然后我们必须把这些定律用于下列特殊情况:—— 1、 α是(不受重力的作用的)均匀液体中一个球形悬浮粒子的重心的 X 坐标。 2、α是确定一个球形粒子位置的旋转角,这个粒子是悬浮在液体中的,可绕直径转动。 §1、热力学平衡的一个情况 假设有一物理体系放在绝对温度为 T 的环境里,这个体系同周围环境有热交换,并且处干温度平衡状态中。这个体系因而也具有绝对温度T ,而且依据热的分子[运动]论,它可由状态变数p p n 1完全地确定下来。在所考查的这个特殊情况中,构成这一特殊体系的所有原子的坐标和速度分量可以被选来作为状态变数p p n 1。 对于状态变数p p n 1在偶然选定的一个时刻处于一个 n 重的 无限小区域(p p n d d 1)中的几率,下列方程成立—— (1) p p e n E RT N d d C dw 1-= 次处C 是一个常数,R 是气体方程的普适常数,N 是一个克分子中实际分子的数目,而E 是能量。假设α是这个体系的可以量度的参数,并且假设每一组值p p n 1都对应一个确定的α值,我们要用 αAd 来表示在偶然选定的一个时刻参数α的值处在α和ααd +之间的几率。于是

布朗运动理论

布朗运动理论一百年1 布朗运动理论一百年 郝柏林 由爱因斯坦、斯莫鲁霍夫斯基(M.Smoluchowski)等人在20世纪初开始的布朗运动理论,在一百年间发展出内容丰富的众多学科分支,现在正在成为分析生物细胞内分子机器运作原理的有力工具。爱因斯坦1905年发表的5篇论文中,关于布朗运动的文章可能人们知道得最少,而实际上它被引用的次数却超过了狭义相对论。 1 我们从布朗运动本身开始回顾 英国植物学家罗伯特·布朗在1828年和1829年的《哲学》杂志上发表了两篇文章,描述自己在1927年夏天在显微镜下观察到花粉颗粒在液体中的不停顿的运动。他最初曾经以为是看到了生命运动,但后来确认这种运动对细小的有机和无机颗粒都存在,因而不是生命现象所致。布朗认为运动的原因在于这些颗粒包含着“活性分子”(active molecules),而与所处液体没有关系。 事实上,布朗并不是观察到这类运动的第一人。他在上述两篇文章里就曾提到了约十位前人,包括做过大量观察的制作显微镜的巧手列文胡克(Antonnie von Leeuwenhock)。

2 科学前沿与未来 2 爱因斯坦的扩散长度公式 爱因斯坦在1901—1905年期间致力于博士论文研究。他1905年发表的头一篇文章——“分子大小的新测定”就基于其博士论文。爱因斯坦考察了液体中悬浮粒子对渗透压的贡献,把流体力学方法和扩散理论结合起来,建议了测量分子尺寸和阿佛伽德罗常数的新办法。这样的研究同布朗运动发生关系是很自然的。然而,他1905年5月撰写的第二篇论文的题目并没有提及布朗运动。这篇题为《热的分子运动论所要求的静止液体中悬浮小粒子的运动》的文章,一开始就说:“可能,这里所讨论的运动就是所谓的布朗分子运动;可是,关于后者我所能得到唯一的资料是如此的不准确,以致在这个问题上我无法形成判断。” 爱因斯坦确实建立了布朗运动的分子理论,并且开启了借助随机过程描述自然现象的数理科学发展方向。 我们不在此重复爱因斯坦当年对扩散系数D 的推导,直接从熟知的(一维)扩散方程出发: 22D t x ρρ??=?? 假定在t =0时刻粒子位于x =0处,即ρ(x ,0)=δ(x ),扩散方程的解是: ()241,4πx Dt x t e Dt ρ-= 即粒子的密度遵从高斯分布。对于固定的时刻t ,x 和x 2的平均值分别是: 〈x 〉=0,〈x 2〉=2Dt 于是得到扩散长度的公式: 这里出现了著名的爱因斯坦的1/2指数。

布朗运动和伊藤引理的运用

布朗运动与伊藤引理的运用 唐雨辰3112352013 统计2107 一、引言 1827年英国植物学家布朗发现液体中悬浮的花粉粒具有无规则的运动,这种运动就是布朗运动。1900年,法国数学家巴舍利耶(L.Bachelier)在其博士论文《投资理论》中,给出了布朗运动的数学描述,提出用算术布朗运动来模拟股票价格的变化。如果股票价格遵循算术布朗运动将意味着股票价格可能取负值,因此股票价格不遵循算术布朗运动,基于这个原因,萨缪尔森(P.A.Samuelson)提出股票的收益率服从算术布朗运动的假设,即股票价格服从算术布朗运动。在柯朗研究所著名数学家H.P.McKean的帮助下,萨缪尔森得到了欧式看涨期权的显式定价公式,但是该公式包含了一些个体的主观因素。1973年,布莱克(F.Black)和斯科尔斯(M.Scholes)发表了一篇名为《期权和公司负债定价》的论文,推导出了著名的Black-Scholes公式,即标准的欧式期权价格显式解,这个公式中的变量全是客观变量。哈佛大学教授莫顿(Merton)在《期权的理性定价理论》一文中提出了与Black-Scholes类似的期权定价模型,并做了一些重要推广,从此开创了金融学研究一个新的领域。 二、相关概念和公式推导 1、布朗运动介绍 布朗运动(Brownian Motion)是指悬浮在流体中的微粒受到流体分子与粒子的碰撞而发生的不停息的随机运动。然而真正用于描述布朗运动随机过程的定

义是维纳(Winener )给出的,因此布朗运动又称为维纳过程。 (1)、标准布朗运动 设t ?代表一个小的时间间隔长度,z ?代表变量z 在t ?时间内的变化,遵循标准布朗运动的z ?具有的两种特征: 特征1:z ?和t ?的关系满足下式: z ?= (2.1) 其中,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中的一个随机值。 特征2:对于任何两个不同时间间隔t ?,z ?的值相互独立。 从特征1可知,z ?本身也具有正态分布特征,其均值为0为t ?。 从特征2可知,标准布朗运动符合马尔可夫过程,因此是马尔可夫过程的一种特殊形式。 现在我们来考察遵循标准布朗运动的变量z 在一段较长时间T 中的变化情形。我们用z (T )-z (0)表示变量z 在T 中的变化量,它可被看作是在N 个长度为t ?的小时间间隔中z 的变化总量,其中/N T t =?,因此, 1()(0)N i z T z ε=-=∑ (2.2) 其中(1,2,)i i N ε= 是标准正态分布的随机抽样值。从特征2可知,i ε是相互独立的,因此z (T )-z (0)也具有正太分布特征,其均值为0,方差为N t T ?=, 由此我们可以发现两个特征:○ 1在任意长度的时间间隔T 中,遵循标准布朗 运动的变量的变化值服从均值为0,○ 2对于相互独立的正态分布,方差具有可加性,而标准差不具有可加性。 当0t ?→时,我们就可以得到极限的标准布朗运动: dz = (2.3) (2)、普通布朗运动

金融市场的布朗运动和分数布朗运动 (马金龙 )

金融市场的布朗运动和分数布朗运动(马金龙) [转帖2005.08.27 00:49:37] 1 布朗运动及其在金融市场的应用 1.1 布朗运动 布朗运动指的是一种无相关性的随机行走,满足统计自相似性,即具有随机分形的特征,但其时间函数(运动轨迹)却是自仿射的。具有以下主要特性:粒子的运动由平移及其转移所构成,显得非常没规则而且其轨迹几乎是处处没有切线;粒子之移动显然互不相关,甚至于当粒子互相接近至比其直径小的距离时也是如此;粒子越小或液体粘性越低或温度越高时,粒子的运动越活泼;粒子的成分及密度对其运动没有影响;粒子的运动永不停止。 原始意义的布朗运动(Brownian motion,BM)是Robert Brown于1827年提出,系指液体中悬浮微粒的无规则运动, 直至1877年才由J. 德耳索作出了正确的定性分析:布朗粒子的运动,实际上是由于受到周围液体分子的不平衡碰撞所引起的。1905年,A. 爱因斯坦对这种“无规则运动”作了物理分析,成为布朗运动的动力论的先驱,并首次提出了布朗运动的数学模型。1908年,P. 朗之万在研究布朗运动的涨落现象时, 给出了物理学中第一个随机微分方程。1923年,诺伯特?维纳(Norbert Wiener)提出了在布朗运动空间上定义测度与积分,从而形成了Wiener空间的概念,并对布朗运动作出了严格的数学定义,根据这一定义,布朗运动是一种独立增量过程,是一个具有连续时间参数和连续状态空间的随机过程(Stochastic Process)。它是这样的随机过程中最简单,最重要的特例。因而维纳过程是马尔科夫过程(Markov process)的一种特殊形式,而马尔科夫过程又是一种特殊类型的随机过程。数学界也常把布朗运动称为维纳过程(Wiener Process)。不久,Paul Levy及后来的研究者将布朗运动发展成目前的巨构,如稳定的Levy分布。20世纪40年代,日本数学家伊藤清(Ito Kiyosi)发展了维纳的研究成果,建立了带有布朗运动干扰项B(t)的随机微分方程。1990年,彭实戈-E. 巴赫杜(Pardoux)进一步提出了一大类可解的倒向随机微分方程,并给出方程解的一般形式,它可看成是Black-Scholes公式的一般化。总之,如今布朗运动在理论上与应用上已与帕松过程(Poisson process) 构成了两种最基本的随机过程。 1.2 布朗运动在金融市场的应用 将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。 1900年法国的巴施利叶(Louis Bachelier)在博士论文《投机理论》中将股票价格的涨跌也看作是一种随机运动,所得到的方程与描述布朗粒子运动的方程非常相似。第一次给予布朗运动以严格的数学描述。但由此得到的股票价格可能取负值,显然与实际不符。遗憾的是,他的工作在当时并未引起重视,直到半个世纪后人们才发现其工作的重要性,从而开创了理论金融经济学新时代。Markowiz(1952)发表投资组合选择理论;Arrow和Denreu(1954)提出一般经济均衡存在定理;Roberts和Osborne(1959)把随机数游走和布朗运动的概念带入股市研究;以及稍后的Sharpe(1964)和Linther(1965)、Mossin(1966)等的资本资产定价模型(CAPM);Samuelson和Fama(1970)的有效市场理论(EMH);Fischer Black和Scholes(1973)

1.下列关于布朗运动的叙述,正确的是( )

1.下列关于布朗运动的叙述,正确的是() A.固体小颗粒做布朗运动是由于固体小颗粒内部的分子运动引起的 B.液体的温度越低,悬浮小颗粒的运动越缓慢,当液体的温度降到零摄氏度时,固体小颗粒的运动就会停止 C.被冻结在冰块中的小炭粒,不能做布朗运动是因为冰中的水分子不运动 D.固体小颗粒做布朗运动是由于液体分子对小颗粒的碰撞引起的 解析:选D.固体小颗粒的布朗运动是由于液体分子的无规则运动引起的,故A错误,D正确;温度越低,小颗粒的运动由于液体分子的运动减慢而减慢,但即使降到零摄氏度,液体分子还是在运动的,布朗运动是不会停止的,故B项错误;被冻结在冰块中的小炭粒不能做布朗运动是因为受力平衡,而不是由于水分子不运动(水分子不可能停止运动,因为热运动是永不停息的),故C项错误. 2.(2011年高考四川理综卷)气体能够充满密闭容器,说明气体分子除相互碰撞的短暂时间外() A.气体分子可以做布朗运动 B.气体分子的动能都一样大 C.相互作用力十分微弱,气体分子可以自由运动 D.相互作用力十分微弱,气体分子间的距离都一样大 解析:选C.布朗运动是指悬浮颗粒因受分子作用力不平衡而引起的悬浮颗粒的无规则运动,选项A错误;气体分子因不断相互碰撞其动能瞬息万变,因此才引入了分子的平均动能,选项B错误;气体分子不停地做无规则热运动,其分子间的距离大于10r0,因此气体分子间除相互碰撞的短暂时间外,相互作用力十分微弱,分子的运动是相对自由的,可以充满所能达到的整个空间,故选项C正确;气体分子在不停地做无规则运动,分子间距离不断变化,故选项D错误. 3.做布朗运动实验,得到某个观测记录如图1-3-3.图中记录的是() 图1-3-3 A.分子无规则运动的情况 B.某个微粒做布朗运动的轨迹 C.某个微粒做布朗运动的速度—时间图线 D.按等时间间隔依次记录的某个运动微粒位置的连线 解析:选D.图中的折线记录的是某个做布朗运动的微粒按相等时间间隔依次记录的位置连线,不是分子无规则运动的情况,也不是微粒做布朗运动的轨迹,更不是微粒运动的v t 图线,故D对,A、B、C错. 4.我们知道分子热运动的速率是比较大的,常温下能达几百米/秒.将香水瓶盖打开后,离瓶较远的人,为什么不能立刻闻到香味呢? 解析:分子热运动的速率虽然比较大,但分子之间的碰撞是很频繁的,由于频繁的碰撞使得分子的运动不再是匀速直线运动,香水分子从瓶子到鼻孔走过了一段曲折的路程,况且引起人的嗅觉需要一定量的分子,故将香水瓶盖打开后,离得较远的人不能立刻闻到香味.答案:见解析

金融市场布朗运动研究的发展与状况

金融市场布朗运动研究的发展与状况 马金龙1,2马非特2 (1.中国科学院广州地球化学研究所,广东广州,510640, 2. 长沙非线性特别动力工作室,湖南长沙,410013) 摘要:布朗运动的理论构筑了主流金融经济学(数理金融学)的完整体系;分数布朗运动为在复杂系统科学体系下揭示金融市场价格波动的规律创造了契机;而基于复杂系统科学的有限尺度布朗运动进行金融市场交易价格波动投机指明了方向。 关键词:金融市场,布朗运动,分形,分数布朗运动,有限尺度布朗运动 1 布朗运动及其在金融市场的应用 1.1 布朗运动 布朗运动指的是一种无相关性的随机行走,满足统计自相似性,即具有随机分形的特征,但其时间函数(运动轨迹)却是自仿射的。具有以下主要特性:粒子的运动由平移及其转移所构成,显得非常没规则而且其轨迹几乎是处处没有切线;粒子之移动显然互不相关,甚至于当粒子互相接近至比其直径小的距离时也是如此;粒子越小或液体粘性越低或温度越高时,粒子的运动越活泼;粒子的成分及密度对其运动没有影响;粒子的运动永不停止。 原始意义的布朗运动 (Brownian motion,BM)是Robert Brown于1827年提出,系指液体中悬浮微粒的无规则运动, 直至1877年才由J. 德耳索作出了正确的定性分析:布朗粒子的运动,实际上是由于受到周围液体分子的不平衡碰撞所引起的。1905年,A. 爱因斯坦对这种“无规则运动”作了物理分析,成为布朗运动的动力论的先驱,并首次提出了布朗运动的数学模型。1908年,P. 朗之万在研究布朗运动的涨落现象时, 给出了物理学中第一个随机微分方程。1923年,诺伯特丒维纳 (Norbert Wiener)提出了在布朗运动空间上定义测度与积分,从而形成了Wiener空间的概念,并对布朗运动作出了严格的数学定义,根据这一定义,布朗运动是一种独立增量过程,是一个具有连续时间参数和连续状态空间的随机过程(Stochastic Process)。它是这样的随机过程中最简单,最重要的特例。因而维纳过程是马尔科夫过程(Markov process)的一种特殊形式,而马尔科夫过程又是一种特殊类型的随机过程。数学界也常把布朗运动称为维纳过程(Wiener Process)。不久,Paul Levy及后来的研究者将布朗运动发展成目前的巨构,如稳定的Levy分布。20世纪40年代,日本数学家伊藤清(Ito Kiyosi)发展了维纳的研究成果,建立了带有布朗运动干扰项B(t)的随机微分方程。1990年,彭实戈-E. 巴赫杜(Pardoux)进一步提出了一大类可解的倒向随机微分方程,并给出方程解的一般形式,它可看成是Black-Scholes公式的一般化。总之,如今布朗运动在理论上与应用上已与帕松过程 (Poisson process) 构成了两种最基本的随机过程。

布朗运动

布朗运动 在显微镜下看起来连成一片的液体,实际上是由许许多多分子组成的。液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。悬浮的微粒足够小时,受到的来自各个方向的液体分子的撞击作用是不平衡的。在某一瞬间,微粒在另一个方向受到的撞击作用强,致使微粒又向其它方向运动。这样,就引起了微粒的无规则的布朗运动。 1定义 悬浮微粒永不停息地做无规则运动的现象叫做布朗运动 例如,在显微镜下观察悬浮在水中的藤黄粉、花粉微粒,或在无风情形观察空气中的烟粒、尘埃时都会看到这种运动。温度越高,运动越激烈。它是1827年植物学家R.布朗最先用显微镜观察悬浮在水中花粉的运动而发现的。作布朗运动 的粒子非常微小,直径约1~10微米,在周围液体或气体分子的碰撞下,产生一种涨落不定的净作用力,导致微粒的布朗运动。如果布朗粒子相互碰撞的机会很少,可以看成是巨大分子组成的理想气体,则在重力场中达到热平衡后,其数密度按高度的分布应遵循玻耳兹曼分布。J.B.佩兰的实验证实了这一点,并由此相当精确地测定了阿伏伽德罗常量及一系列与微粒有关的数据。1905年A.爱因斯坦根据扩散方程建立了布朗运动的统计理论。布朗运动的发现、实验研究和理论分析间接地证实了分子的无规则热运动,对于气体动理论的建立以及确认物质结构的原子性具有重要意义,并且推动统计物理学特别是涨落理论的发展。由于布朗运动代表一种随机涨落现象,它的理论对于仪表测量精度限制的研究以及高倍放大电讯电路中背景噪声的研究等有广泛应用。 这是1826年英国植物学家布朗(1773-1858)用显微镜观察悬浮在水中的花粉时发现的。后来把悬浮微粒的这种运动叫做布朗运动。不只是花粉和小炭粒,对于液体中各种不同的悬浮微粒,都可以观察到布朗运动。布朗运动可在气体和液体中进行。 2特点 无规则 每个液体分子对小颗粒撞击时给颗粒一定的瞬时冲力,由于分子运动的无规则性,每一瞬间,每个分子撞击时对小颗粒的冲力大小、方向都不相同,合力大小、方向随时改变,因而布朗运动是无规则的。 永不停歇

分形分析的几个重要原理

分形分析的几个重要原理 金融市场的分形分析方法依据分形的基本原理和市场 的分形特性,其方法最大的优点是可以准确完整地界定市场的主流趋势性质,也就是市场变化的稳定方向;并且可以较准确地界定市场的趋势边界以找到最好的进场位置,从而融入并顺应趋势交易。它的可信度以及客观全面的分析方法源自几个重要的原理。 其一是市场的极端最大化原理。这主要指的是市场的自激励、自扩张、自强化作用。这是众多的交易者可以直接从市场中经验到的作用。作为开放系统的金融交易市场,只要有机会,只要出现明确的趋势,就会吸引交易者并活跃成交。一个盈利者会带动3—5个交易者入市,而3—5个交易者同样会成倍数地吸引更多的交易者,使趋势不断被强化。最后,所有对趋势有推动作用的题材和资金全部被发掘完毕,市场走到自己的反面,也就是极端最大化的地方。在这个地方,市场对立的交易双方会进行性质截然相反的交换(交易就是交换),而迅速改变市场性质。这就是物极必反。但是相反的交换一旦开始,就会立即扭转为相反的趋势。相反的交换又会产生新的自激励作用,新的趋势又开始运行了。市场就是以这种形式寻求价值发现的。分形是有主体和层次的。在极端最大化的地方,分形的主体和层次会发生极其强烈的分

形矛盾,市场会用分形来预示市场到了极端最大化的地方。分形结构、分形边界、分形空间等都可以明确预示市场的极端。但在趋势未到极端最大化之前,任何对趋势的主观臆断都是违背市场真相的。市场是不受控制的,没有谁可以改变市场的极端最大化的作用机制。有了这样的原理机制,就可以运用分形对市场的趋势做完整的界定,找到市场的主流趋势分形,而避免发生根本的市场错误。 其二,偏差与反偏差的必然交替原理。趋势绝不是一条直线,市场更不是通常的线性事物。对于主流趋势而言,市场由偏差和反偏差组成。与趋势同方向的偏差会不断出现,也就是趋势在运行中短时间向前走得太远的偏差,或者叫正偏差。反偏差就是向趋势相反方向出现的偏差。反偏差相对于趋势而言是一种错误。市场总会诱惑许多交易者向反偏差方向交易而犯这样的错误。对于交易者而言,交易的根本目标就是市场的错误,也是其他交易者的错误。在对手交易错了的地方,自己才会有机会。而反偏差就是市场的错误。市场由一连串的反偏差所组成。反偏差总会发生的,其根源在与人性和人性所组成的市场本性。它的出现是必然的。所以一个趋势总是给交易者许多机会,并附带许多陷阱。有了这样的原理,交易者就有许多机会可以加入趋势的行列,并且有许多机会可以纠正自己的错误。所以人人有机会,时时有机会。

浅谈布朗运动

浅谈布朗运动 吉林大学 物理学院

浅谈布朗运动 摘要: 布朗运动作为具有连续时间参数和连续状态空间的一个随机过程,是一个最基本、最简单同时又是最重要的随机过程。本文对应用随机过程中的布朗运动理论进行了介绍,对布朗运动的背景,定义,性质及应用进行了阐述。 关键词: 布朗运动的定义;布朗运动的性质;布朗运动的应用 一、 概述 1827年,英国植物学家布朗(Robert Brown)发现浸没在液体中的花粉颗粒做无规则的运动,此现象后被命名为布朗运动.爱因斯坦(Albert Einstein)于1905年解释了布朗运动的原因,认为花粉粒子受到周围介质分子撞击的不均匀性造成了布朗运动.1918年,维纳(Wiener)在他的博士论文中给出了布朗运动的简明数学公式和一些相关的结论。 如今,布朗运动的模型及其推广形式在许多领域得到了广泛的应用,如经济学中, 布朗运动的理论可以对股票权定价等问题加以描述. 从数学角度来看,布朗运动是一个随机过程。具体的说,是连续时间、连续状态空间的马尔科夫过程。 二、 布朗运动的定义 随机过程}0t t {X ≥),(如果满足: 1、00X =)( . 2、}0t t {X ≥),(有独立的平稳增量. 3、对每个 t > 0,)(t X 服从正态分布) t 2,0N(σ

则称}0t t {X ≥),(为布朗运动,也称维纳过程。 常记为B(t),T ≥0或W(t), T ≥0。 如果1=σ,称之为标准布朗运动,标准布朗 运动的定义是一个随机函数()()X t t T ∈,它是维纳 随机函数。 皮兰1908的布朗运动实验 三、布朗运动的性质 1、它是高斯随机函数。 2、它是马尔科夫随机函数。它的转移概率密度是: {}(,)()()f t s y x P X t y X s x y ?--=≤=?21/22 2()2()exp 2()y x t s t s πσσ-??-??=--????-?? 可以看出它对空间和时间都是均匀的。 3、如()(0)X t t ≤是标准布朗运动,则下列各个随机函数也是标准布朗运动。 (1)、2 1( )(/)X t c Xtc = (c >0为常数,t ≥0) (2)、2()()()X t Xt h Xh =+- (h >0为常数,t ≥0) (3)、1 3()(0)()0 (0) tX t t X t t -?> =? =? 4、标准布朗运动的协方差函数2 (,)min(,)C s t s t σ=。 5、标准布朗运动非均方可微。 由于布朗运动()X t 是维纳随机函数,而后者按照定义应有 2 2 [()()] W t s W t h σ+-=。因而令()()X t W t =后,必有:2 2 ()()X t h X t h h σ+-?? = ? ?? ,

各种有趣的分形

各种有趣的分形 我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。 但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。让 图中的风景图片又是说明分形的另一 很好的例子。这张美丽的图片是利用分 形技术生成的。在生成自然真实的景物 中,分形具有独特的优势,因为分形可 以很好地构建自然景物的模型。 这是一棵厥类植物,仔细观察,你会发 现,它的每个枝杈都在外形上和整体相 同,仅仅在尺寸上小了一些。而枝杈的 枝杈也和整体相同,只是变得更加小 了。 Sierpinski三角形具有严格的自相似特 性

Kohn雪花具有严格的自相似特性 分维及分形的定义 分维概念的提出 对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。但用这种办法对分形的层层细节做出测定是不可能的。曼德尔布罗特放弃了这些测定而转向了维数概念。分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。维数是几何形体的一种重要性质,有其丰富的内涵。整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称

分形理论及其发展历程.

分形理论及其发展历程 李后强汪富泉 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下。过程中,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫 (F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干 (G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 二 1960年,曼德尔布罗特在研究棉价变化的长期性态时,发现了价格在大小尺度间的对称性。同年在研究信号的传输误差时,发现误差传输与无误差传输在时间上按康托集排列。在对尼罗河水位和英国海岸线的数学分析中,发现类似规律。他总结自然界中很多现象从标度变换角度表现出的对称性。他将这类集合称作自相似集,其严格定义可由相似映射给出。他认为,欧氏测度不能刻划这类集的本质,转向维数的研究,发现维数是尺度变换下的不变量,主张用维数来刻划这类集合。1975年,曼德尔布罗特用法文出版了分形几何第一部著作《分开:形状、机遇和维数》。1977年该书再次用英文出版。它集中了1975年以前曼德尔布罗特关于分形几何的主要思想,它将分形定义为豪斯道夫维数严格大于其拓朴维数的集合,总结了根据自相似性计算实验维数的方法,由于相似维数只对严格自相似这一小类集有意义,豪斯道夫维数虽然广泛,但在很多情形下难以用计算方法求得,因此分形几何的应用受到局限。1982年,曼德尔布罗特的新著《自然界的分形几何》出版,将分形定义为局部以某种方式与整体相似的集,重新讨论盒维数,它比豪斯道夫维数容易计算,但是稠密可列集盒维数与集所在空间维数相等。为避免这一缺陷,1982年特里科特(C.Tricot)引入填充维数,1983年格拉斯伯格(P.Grassberger)和普罗克西娅(I.Procaccia)提出根据观测记录的时间数据列直接计算动力系统吸引子维数的算法。1985年,曼德尔布罗特提出并研究自然界中广泛存在的自仿射集,它包括自相似集并可通过仿射映射严格定义。1982年德金(F.M.Dekking)研究递归集,这类分形集由迭代过程和嵌入方法生成,范围更广泛,但维数研究非常困难。德金获得维数上界。1989年,钟红柳等人解决了德金猜想,确定了一大类递归集的维数。随着分形理论的发展和维数计算方法的逐步提出与改进,1982年以后,分形理论逐渐在很多领域得到应用并越来越广泛。建立简便盛行的维数计算方法,以满足应用发展的需要,还是一项艰巨的任务。

布朗运动

气溶胶灭火剂的性能(3) 作者: 三、气溶胶的动力学性质 1.气溶胶粒子的力学问题 一般而言,气溶胶粒子受到以下三种力的作用: (1)外力:如重力、电场力或离心力等; (2)周围介质的作用力:如气体介质对粒子运动的阻力,流体作为连续介质所形成的流体动力,流体中个别分子对粒子无规则撞击的热动力等; (3)粒子间相互作用的势力:如范德华力、库仑力等; 气溶胶粒子的力学现象虽然形形色色,若从基本过程考虑,大体有三类: (1)粒子在重力作用下的沉降过程和外力作用下的沉淀过程或扬起过程; (2)粒子之间在三种力联合作用下的碰并过程; (3)粒子上的物质与传热过程。 气溶胶粒子体系是一个多粒子体系,因此气溶胶粒子沉降等力学现象在大多数情况下是多粒子相互作用而产生的力学现象。多粒子力学即使在低雷诺数(Re)条件下也很难求解,为此在研究过程中总是把气溶胶粒子简化为一个孤粒子力学问题,同时又假定粒子形状为球形。因此,目前对气溶胶粒子的动力学研究仍较多地局限于球形粒子范围内。 2.气溶胶的动力学 气溶胶的动力学特性主要表现在三个方面:布朗运动、扩散、沉降与沉降平衡。其中最主要的是布朗运动,它是后两个特性的基础。另外,气溶胶还具有碰并和凝并的特点。(1)布朗运动 1827年,英国植物学家布朗(Brown)在显微镜下观察到悬浮于水中的花粉粒子处于不停息的,无规则的运动状态。以后发现凡是线度小于4×10-6m的粒子,在分散介质中皆呈现这种运动,由于这种现象是由布朗首先发现的故称为布朗运动。 气溶胶微粒的无规则热运动,是由于分散介质中气体分子的无规则热运动造成的。悬浮于气体中的微粒,处在气体分子的包围之中,气体分子一直处于不停的热运动状态,它们从四面八方连续不断地撞击着这些微粒。如果这些微粒相当大,则某一瞬间气体分子从各个方面对粒子的撞击可以彼此抵消,粒子便不会发生位移;若这些微粒较小时,则此种撞击便会不平衡,这意味着在某一瞬间,微粒从某一方向得到的冲量要多一些,因而会向某一方面发生位移,而在另一时刻,又从另一方向得到较多的冲量,因而又使其向另一方向运动,这样我们便能观察到微粒在不停地如图3-1所示的连续的、不断的、不规则的折线运动,由此可见,布朗运动是分子热运动的必然结果,是胶体粒子的热运动。 1905年爱因斯坦用几率的概念和分子运动论的观点,创立了布郎运动的理论,并推导出爱因斯坦——布朗平均位移公式: X=(RTt/3NAπrη)1/2 式中:X——t时间间隔内粒子的平均位移; r——微粒的半径; η——分散介质的粘度系数; T——温度; R——摩尔气体常数; NA——阿佛加德罗常数。 由上式可知,当其它条件一定时,微粒的平均位移与其粒径的平方根呈反比,这就是说粒径越小,微粒的布朗运动越剧烈。

布朗运动

43 布朗运动 华东理工大学化学系 胡 英 43.1 引 言 1827年,英国植物学家布朗(Brown R)在光学显微镜下发现了悬浮 在水中的花粉颗粒进行着无休止的不规则运动,他正确地将这种以后被 称为布朗运动的起因归结于物质的分子本性。但争论一直延续,直到 1888年古艾(Gouy G)做了排除了其它可能原因如机械振动、对流和光照 的实验后,才告消除。正如佩兰(Perrin J)在1910年指出的,颗粒的独立 运动并不受到密度和组成的影响。 在《物理化学》6.4中对布朗运动已有了初步的讨论,导得了爱因 斯坦(Einstein A)-斯莫鲁霍夫斯基(Smoluchowski M von)方程, Dt z 22>=<,其中><2z 是颗粒在t 时的均方位移,D 是扩散系数; 又导得斯托克斯(Stokes G G)-爱因斯坦方程,) π6/(L r RT D η=, r 是颗粒半径,η是粘度。在本章中将进行更深入的介绍。我们将从计入随机 力的朗之万(Langevin P)方程开始,首先对单个粒子的运动解出其速度和 位移,并引入时间相关函数;然后讨论在位形和速度相空间中找到颗粒 的概率,导出其随时间的演变,得出扩散方程。最后在结语中简要提及 不同颗粒运动间的相关。对布朗运动的进一步了解,将为研究稠密流体 包括高分子熔体中的传递打下良好的基础。 43.2 朗之万方程 设在粘度为η、密度为ρ的流体中,有一半径为a 质量为m 的中 性球体颗粒漂浮着,颗粒密度可视为与流体密度相同,因此有 3/43ρa m π=。如果时间尺度比起ηρ/2a 足够长(后者称为粘滞弛豫 viscous relaxation ,来源见后),运动的幅度又比a 小时,这时流体的粘 滞响应可用准稳态的斯托克斯拖曳力来表示,可以应用斯托克斯定律 u f a ηπ=6,f 即拖曳力或摩擦力,t d /d r u =是颗粒的运动速度,r 是 位置,f 、u 、r 均为矢量。这种处理将流体分子作用于颗粒上的力分解 为两部分:一是平均的拖曳力f , 另一个则为随时间涨落的随机的布朗

分形理论概述

分形理论概述 分形理论是当今世界十分风靡和活跃的新理论、新学科。分形的概念是美籍数学家曼 德布罗特(B.B.Mandelbort)首先提出的。1967年他在美国权威的《科学》杂志上发表了题 为《英国的海岸线有多长?》的著名论文。海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。我们不能从形状和结构上区分这部分海岸与那部分海岸有 什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去会十分相似。事实上,具有自相似性的形态广泛存在于自然界中,如:连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方 式相似的形体称为分形(fractal)。1975年,他创立了分形几何学(fractal geometry)。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(fractal theory)。 分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方 法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识 部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复 杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。 分形理论的原则 自相似原则和迭代生成原则是分形理论的重要原则。它表征分形在通常的几何变换下 具有不变性,即标度无关性。由自相似性是从不同尺度的对称出发,也就意味着递归。分形形体中的自相似性可以是完全相同,也可以是统计意义上的相似。标准的自相似分形是数学上 的抽象,迭代生成无限精细的结构,如科契(Koch)雪花曲线、谢尔宾斯基(Sierpinski)地毯曲线等。这种有规分形只是少数,绝大部分分形是统计意义上的无规分形。 分维,作为分形的定量表征和基本参数,是分形理论的又一重要原则。分维,又称分形维或分数维,通常用分数或带小数点的数表示。长期以来人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种传统的维数观受到了挑战。曼德布罗特曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成

相关主题
文本预览
相关文档 最新文档