当前位置:文档之家› 页面平均响应时间测试报告

页面平均响应时间测试报告

页面平均响应时间测试报告
页面平均响应时间测试报告

1 测试内容及方法

1.1 测试需求/目标

测试825系统,web前端页面跳转响应时间,进行监测和优化系统

1.2 测试内容

本次测试主要是对825系统,web前端页面跳转响应时间。

测试方法:

1.3 测试工具

主要测试工具为:LoadRunner性能测试工具

辅助软件:截图工具,Word

2测试结果及分析

这次测试属于内网环境进行,排除了外网的网速限制及不稳定性。

页面跳转响应时间测试

测试内容:

用户登录到XX系统,进入首页,加入思考时间(think time)3s,点击收藏按钮,跳转到收藏界面

结果总览:

说明:5个虚拟用户

总吞吐量(字节):84,742,165

平均吞吐量(字节/秒):256,019 总点击量:2,728

平均每秒点击率:8.242

说明:用户在前台操作时,页面跳转平均响应时间为2.148s,符合客户要求

性能测试规范

性能测试规范 神州数码系统集成服务有限公司 2018年10月

目录 1 概述3 编写目的3 适用范围3 2 性能测试指标3 响应时间3 定义3 测试方法3 分析评估4 TPS(QPS)、并发用户数5 定义5 测试方法5 分析评估5 请求成功率6 定义6 测试方法6 分析评估6 CPU使用率、内存使用率、IO WAIT 6 定义6 测试方法6 分析评估7 GC 7 进程级别的资源占用7

概述 编写目的 本文档在对性能指标的概念、测试及分析方法、评判标准以及工具的使用进行说明,旨在指导性能测试工程师更好的理解各个性能指标,并对系统的性能质量做出准确的评价和分析。 适用范围 本规范适用范围:性能测试、性能调优和性能验收活动。 性能测试指标 响应时间 定义 响应时间通常是指客户发出请求到得到响应的整个过程所耗费的时间,通常被定义TTLB(Time to Laster Byte),代表从发起一个请求开始,到客户端收到响应的最后一个字节所耗费的时间。 响应时间根据所耗费的时间段可以做细致的拆解,我们可以把它拆解为三部分,系统处理时间、数据传输时间、呈现时间(Web页面特有,接口类请求无呈现时间),每个部分的时间消耗影响的因素有所不同。 呈现时间:主要是浏览器对接收到的数据渲染展示的过程,呈现时间不止于浏览器有关,和操作系统、电脑的硬件配置也有关系。 数据传输时间:请求、响应数据在网络中传输消耗的时间,和网络的时延、带宽有关系。 系统处理时间:系统接收到请求后,对请求处理,并将结果返回的时间,和系统服务器的软硬件配置有关系。 测试方法 测试前提 前提一:性能测试中响应时间的测试,需要保持一个稳定的网络环境。 不建议在办公网络中搭建“施压设备”,不稳定的办公网络环境会影响对测试结果的评判。建议在以下两种环境下测试: ①施压设备与被测系统在同一局域网中,更能够排除网络情况对响应时间的影响,能够更准确的衡量“系统处理时间”。 ②施压设备和被测系统在不同的机房环境中通过公网测试,这种场景更能准确的模拟并评估系统在生产环境中的表现。 测试工程师可以根据测试的目的,选择后两种环境进行测试。 前提二:确定一定的并发量来测试响应时间 最优并发用户场景、最高并发用户场景两种场景测试,响应时间的表现是不同的,最高并发场景的响应时间将会比最优并发的响应时间大得多,测试前我们需要确定我们测试的场景是最优并发还是最高并发。 测试步骤 找到最高的吞吐量(TPS)。 测试前确定一个响应时间的标准(如:小于100ms),然后进行基准测试,通过虚拟并发用户数为1的方式测试,记录测试的TPS、响应时间测试结果,将该响应时间与标准比较,若大于标准响应时间,那么则说明系统有问题无法满足标准,若该响应时间小于标准时间,则继续下面的测试。 通过压力测试找到最大的吞吐量:在基准测试响应时间的限制下,找到系统最大的吞吐量(TPS),该状况下响应时间满足要求、吞吐量最大,可确定为“最佳并发用户数”。方法是按照一定的步

响应时间

扬州大学广陵学院 本科生课程设计 题目:反应时间测试仪 课程:电子线路课程设计 专业电气工程及其自动化 班级:电气81201 学号: 120010137 姓名:袁鸿 指导教师:年漪蓓,刘伟 完成日期: 2014/6/23至2014/6/28

总目录第一部分:任务书 第二部分:课程设计报告 第三部分:设计图纸

第一部分 任 务 书

一、课程设计的目的 本课程是在学完《数字电子技术基础》之后,进行的复杂程度较高、综合性较强的设计课题的实践环节,通过该教学环节,要求达到以下目的: 1.使学生进一步掌握数字电子技术的理论知识,学会查询资料,方案比较,培养学生 工程设计能力和综合分析问题、解决问题的能力; 2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 二、课程设计的要求 1.设计时要综合考虑实用、经济并满足性能指标要求; 2.必须独立完成设计课题; 3.合理选用元器件; 4.按时完成设计任务并提交设计报告。 三、设计题目及内容 课题:响应时间测试仪 内容:设计、安装、调试响应时间测试仪 课程要求:测试者按下按钮1,灯亮,被测试者见灯亮按下按钮2,灯灭,用二位数码管显示被测者的响应时间(精度为10ms) 四、设计要求 用中小型规模集成电路设计、安装、调试出所要求的电路。 五、参考文献 1、“数字电子技术基础”教材; 2、有关“电子技术课程设计指导书”; 3、“集成电路特性应用手册”; 4、其他。

第二部分 课 程 设 计 报 告

一个OA系统的性能测试方案

一个OA系统的性能 测试方案 1

中国石油办公自动化系统压力测试报告 中国软件评测中心 8月3日

历史记录

目录 1. 测试内容................................................................. 错误!未定义书签。 2. 测试方法................................................................. 错误!未定义书签。 3. 测试目标................................................................. 错误!未定义书签。 4. 测试场景................................................................. 错误!未定义书签。 5. 测试环境................................................................. 错误!未定义书签。 6. 测试结果描述......................................................... 错误!未定义书签。 6.1 2M带宽登录 ................................................... 错误!未定义书签。 6.2 4M带宽登录 ................................................... 错误!未定义书签。 6.3 2M带宽打开word文档 ................................. 错误!未定义书签。 6.4 4M带宽打开word文档 ................................. 错误!未定义书签。 6.5 10M带宽打开word文档 ............................... 错误!未定义书签。 6.6 服务器处理能力( 以登录页面为例) ............. 错误!未定义书签。

浅析热电偶的热响应时间

浅析热电偶的热响应时间 摘要:温度出现阶段变化时,热电偶的输出变化至相当于该阶段的某个规定百分数所需的时间称为热电偶的响应时间。测量热电偶的热响应时间比较复杂,不同的实验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。 关键词:热电偶的结构尺寸热惰性热响应时间 工业用热电偶在温度出现阶段变化时,热电偶的输出变化至相当于该阶段的某个规定百分数所需的时间称为热电偶的响应时间。 热电偶在测量温度时,其插入到被测介质部分包括:保护管、绝缘管、空气隙、热电板等。它们都具有一定的热容量和热传导的电阻,所以当热电偶插入阶段变化的温度场中,热电偶指示的温度不会产生突然的变化,而是按指数规律逐渐上升或下降。这是因为热电偶首先要吸收热量使其温度升高,同时还要通过热传导将热量传递到热电偶的测量端,测量端受热后温度升高,热电偶回路才有热点势产生,仪表才能指示出温度来,这个过程需要一段时间,这就是热电偶的热惰性。由于热惰性的存在,热电偶插入被测介质后,其稳定的温度指示值不能立即指示出来,而是逐渐上升,直到测量端吸热放热达到平衡后,才能具有稳定的温度指示值。在热电偶插入被测介质后到指示值稳定以前的整个不稳定过程中,热电偶的瞬时指示值与稳定后的指示值存在偏差,这个偏差称热电偶动态响应误差。 理论和实践证明,热电偶的热惰性愈小则动态响应速度愈快,动态误差就愈小。所以热响应时间是表示热电偶动态响应快慢的一个重要性指标。 一、影响热电偶响应时间的因素有 1.材料不同,导热性能也不同,如金属保护管比瓷保护导热好,热惰性小,热电偶达到的稳定时间就短、即响应时间短。 2.热电偶的结构、尺寸。热电极、保护管的直径电极、保护管的直径愈粗,惰性愈大;管壁愈厚,惰性也愈大,这样热电偶达到稳定的时间就愈长,即响应时间长。 3.响应时间还随着工作状况的变化而不同,就是说相同结构的热电偶,在不同的热交换条件下,其响应时间是不同的。 二、热电偶的热响应时间测量 测量热电偶的热响应时间比较复杂,不同的实验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。

淘宝客服响应时间问题及基本功

售前客服响应时间问题及基本功 【造成响应时间长的原因】——如何解决 1.客户发截图,表情,久久才显示(不可避免的状况,但较少) 2.客户复制宝贝名称(或者货号)直接问,要搜索(现店铺产品标题已加上货 号,要求客服人员熟悉产品货号是非常重要的一项!) 3.暂时离开岗位(吃饭、上洗手间),无人回复(人手请尽快配备,吃饭或暂 时离开时,尽量要求其他同事帮忙看着,及时响应客户) 4.尺码推荐,每款产品尺码有差异,销售员需要斟酌推荐(现品牌平台分开, 在人员完善后,我们才有时间有条件去落实尺码重新测量事宜,让每位售前同事都熟悉产品的大小及合适人群,这是非常重要的一项,请公司重视,目前人手都不够,根本没有闲暇去处理这事) 5.关联销售(这一项还是销售员对店铺经营产品熟悉度的问题,了解店铺具体 都有哪些商品,才能更及时地为客户作推荐) 6.修改运费,价格(店铺做活动时根据活动执行,没有活动的时候,可根据 实际情况考虑,尽量能够达成不减价格改送小礼品以提高客单价,因议价实在谈不下的可问当班组长或部门负责人) 7.库存变动大,核实库存当客户问道什么码有没有货的时候,要点进链接里 面去核实库存(之前已有作一份工厂和仓库的库存分开,现公司作调整了,希望关于这些如何分工的能在大会上宣布,让所有同事都清楚现在哪些工作该向谁了解) 8.打字速度(客服人员的打字速度直接影响到响应时间,希望在职客服人员 加强打字速度训练,公司也有必要做这一项的培训。在与客户沟通时,如果存在需要打很长一段文字时,建议分开发送,降低响应时间) 9.电脑系统卡有时候旺旺卡死、电脑死机、聊天窗口点了要等段时间才会跳 转(不可避免的状况,但较少) 10.网速卡,页面打不开(不可避免的状况,但较少) 11.产品不够熟悉客户问到一些比较少见的问题,比如是什么面料科技,比如 鞋跟高多少(我们的宝贝详情需要做完善,很多别人家作到的,我们还没有做到,比较鞋子的详情尺码…)

液晶显示器响应时间全面解析[1]

液晶显示器响应时间全面解析 发布时间:2005-11-30 8:53 作者:PCPOP-电脑时尚来源:新浪响应时间与色彩的博弈 与液晶显示器一起诞生的,还有一个新的名词,那就是“响应时间”,对于买过液晶的人,打算买液晶的人,以及各种游戏及影碟发烧友来说,这是一个如雷贯耳的名词。 从最早可追忆的IBM推出的60ms的液晶显示器,到现在优派以及明基推出的灰阶2ms响应时间的液晶显示器,技术在不断的进步,响应时间在不断缩短。但是,所有的人都知道,液晶显示器的色彩表现效果与响应时间是不可兼得的熊掌和鱼。 所谓响应时间,是液晶显示器各像素点对输入信号反应的速度,即像素由暗转亮或由亮转暗所需要的时间(其原理是在液晶分子内施加电压,使液晶分子扭转与回复)。 响应时间越短则使用者在看动态画面时越不会有尾影拖曳的感觉。 为了将响应时间这个非常抽象的意义更形象的展示给大家,我们可以做一个简单的换算:30毫秒=1/0.030=每秒钟显示33帧画面;25毫秒=每秒钟显示40帧画面;16毫秒=每秒钟显示63帧画面;12毫秒=每秒钟显示83帧画面,而8毫秒=每秒钟显示125帧画面。 到底多快人眼就感觉不到拖曳呢? 那么,每秒要显示多少帧画面才能让肉眼感觉不到拖曳呢?这里就涉及到一个视觉暂留的问题。人的肉眼可见的画面分为静止的画面和动态的画面,人眼的视觉暂留时间是0.05秒,因此,当连续的图象变化超过每秒24帧画面的时,人眼便无法分辨每幅单独的静态画面,因而看上去是平滑连续的视觉效果。

这就是我们最早看到的动画片,但是人们并不满足于此,我们追求更连贯的动态画面,于是逐渐产生了VCD和DVD。播放DVD时,所需要的画面支持是每秒60帧的画面显示,即16ms的响应时间。也就是说,使用16毫秒以上响应时间的液晶显示器,便可以完全满足各种影音文件的播放要求。 现在,随着大型网络游戏的发展,特别是极品飞车、CS等速度游戏的发展,对于响应时间的要求也越来越高。在玩这样的游戏时,显示画面一直在快速的运动,因此,如果响应时间不够快,那么就明显的看到拖影,直接影响游戏效果,甚至会在CS 中由于看不清敌人而被毙命。 那么究竟多快的响应时间才够玩这样刺激的游戏呢?对于这个问题我们从另一个角度来思考——游戏对FPS的要求。玩CS的老鸟都知道,在玩CS的时候FPS锁定为90或者100,游戏就会非常流利顺畅。 FPS(frame per second)即每秒钟所显示画面的帧数,也就是说倍受欢迎的CS游戏对画面显示的最佳要求是100,即每秒钟显示100帧画面。把这个转化成液晶显示器的响应时间,那么就是1/100=0.01即10ms的响应时间。也就是说,当液晶显示器的响应时间达到10毫秒,就完全可以满足CS游戏的需求了。但是为什么还是有很多人连8毫秒响应时间的液晶显示器仍然不满意呢?这个时候我想引用一个CS高手的话:“当你在挑剔你的显示器的时候,先检讨一下你的主机配置,如果你的主机配置没有问题,那么你就该检讨下你自己的技术了。” 你到底需要买多快的液晶? 最后我们再来从成本上来讨论下,到底多少响应时间的液晶适合你。了解液晶的人都知道,液晶显示器响应时间的提升,是通过在液晶面板中增加各种控制芯片来实现的。

性能测试中的并发用户数、交易响应时间、tps每秒交易

性能测试中的并发用户数、交易响应时间、TPS每秒交易并发用户是指:在某一时间点,与被测目标系统同时进行交互的客户端用户的数量;并发用户数有以下几种含义: 1)并发虚拟用户数: 是指在使用专用的测试工具(如Loadrunner)时用于模拟客户端用户的进程或线程的数量; 2)有效并发虚拟用户数: 是指被评估的目标系统感受到的等效业务请求压力的无思考时间的并发用户数;当使用测试工具对目标系统进行压力加载时设定了思考时间(Think Time),那么实际有效的并发虚拟用户数可使用如下公式计算得出:有效并发虚拟用户数=(并发虚拟用户数×被加载交易在目标系统上运行的实际平均响应时间)/(被加载交易在目标系统上运行的实际平均响应时间+虚拟用户执行一次该交易过程中使用的思考时间的总和);由此可见增加思考时间意味着减少对目标系统的业务请求压力; 3)内在并发用户数: 是指目标系统内部能够同时并行处理的客户端用户数;该参数体现了目标系统的内在并发度,因此当对目标系统进行任何有效的优化和调整之后,其内在并发用户数即内在并发度就会发生变化,通常来讲是指改变目标系统的第一瓶颈后会发生变化;当加载的有效并发虚拟用户数小于或等于内在并发用户数时,目标系统可以真正地并行处理所有被加载用户的任务请求,此时交易的响应时间会相对保持不变,即交易的实际响应时间,也是交易在目标系统中处理的最快时长;当加载的有效并发虚拟用户数大于内在并发用户数时,目标系统会利用内部的请求调度机制将多出的请求进行排队并在所有的用户请求之间进行任务切换处理,外在表现就是被加载交易的响应时间开始延长。 4)并发在线用户数: 一般是指实际生产系统中已经和目标系统建立了会话连接的用户总数,并发在线用户数通常是指实际的客户端操作员的数量,是人工发起的业务会话的数量;并发在线用户数产生的请求压力可以通过公式计算出目标系统感受到的实际业务请求压力,即有效并发虚拟用户数,公式如下:有效并发虚拟用户数=(并发在线用户数×被加载交易在目标系统上运行的实际平均响应时间)/(每个操作员用户发起该交易请求的平均间隔时间); 二、吞吐量(TPS) 吞吐量(TPS)即在所有加载的用户稳定运行后,目标系统在单位时间内完成被请求的交易的数量。在使用测试工具模拟业务请求压力时,吞吐量TPS是指所有被加载的虚拟用户在运行一段时间后稳定获得的每秒交易数。 三、响应时间 响应时间:在所有加载的用户稳定运行后,目标系统平均完成客户端用户请求的一个交易的总时长。 四、思考时间(ThinkTime) ThinkTime时间也叫思考时间,该功能或机制的设计初衷是用于模拟实际生产环境下业务请求压力的不同形态,其主要功能有: 1)模拟人工操作产生业务请求过程中存在的停歇时长; 2)模拟不同业务繁忙程度下的业务请求压力,即在指定的并发虚拟用户数下进行测试时,可以通过设定并调节思考时间进行有效压力的调整,以获得不同

LoadRunner响应时间与用户体验时间不一致问题的深入分析

LoadRunner响应时间与用户体验时间不一 致问题的深入分析 在新一代一期项目非功能测试过程中,我们发现了LoadRunner测试响应时间与客户端实际用户体验时间不一致的现象。例如员工渠道上线后,客户体验时间远远超过了LoadRunner测试响应时间。本文针对这一现象深入研究了导致二者不一致的原因并提供了意见和建议,现与大家分享。 1、用户体验时间 用户通过浏览器访问Web服务器时,体验时间可以细化。如下图所示,体验时间包括用户感应时间、浏览器处理时间、网络传输延时和后端服务器处理时间。 2、LoadRunner单次事务响应时间度量 我们通常将核心业务操作定义为事务,在LoadRunner脚本中具体为web_url()、web_submit_data()等函数调用。下面举例计算单个事务响应时间,定义一次web_url()调用为事务,web_url函数中请求4个文件。 LoadRunner 获取每个资源都要经过反应、第一次缓冲和接收三个阶段,反应阶段包括DNS解析、建立初始连接、SSL握手、FTP认证;第一缓冲时间是显示从初始HTTP请求(通常为GET)到成

功收到Web服务器返回的第一次缓冲所经过的时间;接收时间显示在服务器发出的最后一个字节到达,即下载完成之前所有的时间;客户端时间显示由于浏览器反应时间或其他客户端相关延迟而导致请求在客户机上延迟的平均时间。 LoadRunner 执行web_url()语句时,请求资源的先后顺序不依赖代码书写顺序,导致很难直接确定执行web_url()的开始时间,但可以借助LoadRunner的分析工具模块页面诊断器(Web Page Diagnostics)获取事务开始时刻和结束结束。在Web Page Diagnostics中可以获取资源下载完成时刻(Scenario Elapsed Time)和花费时间(Page Component's Download Time),二者之差即为资源下载的开始时刻,资源开始下载的最小时刻为事务的开始时刻;在Web Page Diagnostics中资源下载完成时刻(Scenario Elapsed Time)最大值为事务的结束时刻。结束时刻与开始时刻之差为单次事务响应时间。LoadRunner单次事务响应时间取决于资源下载时间的最大值,下载时间包括第一次缓冲时间、接收时间等。 3、结论与建议 综上所述,LoadRunner测试响应时间不包括用户浏览器的JS文件解析执行、渲染、布局、绘制和人眼识别所需时间,只包括网络延时和后端服务时间。这也从侧面说明LoadRunner主要用来测试后端服务器性能和处理能力。LoadRunner测试时间与用户体验时间的差异如下表: 一般情况下LoadRunner测试的响应时间小于用户实际体验时间。 针对后续非功能测试,本文提出以下测试建议: (1)如果测试目的要求获取用户体验时间,需要在LoadRunner测试响应时间的基础上考虑添加误差因子;

27.一阶系统响应时间测量实验

实验二十七一阶系统响应时间测量实验 1. 简介 对一阶响应实验台,系统的输入x i(t)和输出x0(t)可等效为一阶测试系统。当系统输入为单位阶跃时,相应的微分方程为: 一阶系统的传递函数为: 式中,t为一阶系统的时间常数。 传感器敏感元件的响应输出滞后于物理量的变化,带来误差。这个误差可以用一阶系统的时间响应常数t来表示,t越小,系统响应越快。系统的时间响应常数可以通过测量系统在单位阶跃信号输入下的响应信号来完成。 通过本实验可以了解一阶系统阶跃响应的基本特性,并计算一阶响应的时间常数。 2. 结构组成 一阶响应系统实验台的结构示意如图1所示,结构总体尺寸为(长×宽×高),主要包括的零件有: 图1 一阶响应实验台结构示意图

3. 操作说明 3.1 实验准备 运用一阶响应实验台进行实验教学所需准备的实验设备为: 1. drvi可重组虚拟实验开发平台1套 2. 一阶响应实验台(lyx-12-a)1套 3. 温度传感器(lwz-5-a)1个 4. 套筒(ltz-a)3个 5. 蓝津数据采集仪(ldaq-epp2)1台 6. 开关电源(ldy-a)1套 备齐所需的设备后,将开关电源的12v电源和恒温器背面的接线柱相连,温度传感器的5芯电缆和数据采集仪1通道连接,数据采集仪通过并口电缆与pc机并口连接。在保证接线无误的情况下,打开恒温器电源开关开始加热。 3.2 实验操作 1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的“联机注册”图标,进行主数据采集仪之间的注册。联机注册成功后,启动drvi内置的“web服务器功能”,开始监听8500端口。 图2 一阶系统响应(服务器端) 2. 启动drvi中的“一阶系统响应(服务器端)”实验脚本。将温度传感器完全旋进套筒内,向容器内加入2/3的清水,打开实验台电源开关,旋动温度调节开关,选择一个温度开始加温。 3. 点击面板中的“测试”按钮,首先测量常温状态下温度传感器的数值,等加温到恒定温度后,将温度传感器投入到容器中,开始测量随着温度的升高趋势曲线的变化过程,当温度上升趋势变化到很缓慢的时候停止采样,然后点击“计算时间常数”按钮,此时在数码框中将显示出时间常数的计算值。

LoadRunner中响应时间与事物时间详解

这里的响应时间不包含客户端GUI时间(例如浏览器解释页面所消耗的时间)。 前面说响应时间是用户请求发出和服务器返回之间的时间差,那么得到这个时间就够了吗? 例如:现在有一场跑步比赛。当比赛完成后,可以得到每位运动员跑完整个比赛所需要消耗的时间,现在需要分析谁的起跑好、谁的冲刺好,能分析出来吗?答案是不能,虽然得到了最重要的完成比赛的响应时间,但是这对分析和优化几乎没有作用,因为只知道了结果而不知道过程。跑步的时间是由起跑、中途、冲刺等时间组成的,如果想要进行分析优化,必须先了解各个阶段所花费的时间和速度以及各个运动员的优缺点。 对于软件来说,通过事务得到的系统响应时间也是由非常多的部分组成的,一般来说响应时间由网络时间、服务器处理时间、网络延迟三大部分组成。先来看看当一个客户端发出请求到服务器返回需要经历哪些路径,如图2所示。

1.网络时间 客户端发出请求首先通过网络来到Web Server上(消耗时间为N1);然后Web Server 将处理后的请求发送给App Server(消耗时间为N2);App Server将操作数据指令发送给Database (消耗时间为N3);Database服务器将查询结果数据发送回App Server(消耗时间为N4);App Server将处理后的页面发给Web Server(消耗时间为N5);最后Web Server 将HTML转发到客户端(消耗时间为N6)。这里的Nx都是网络传输上的时间开销,没有计算业务处理所需要花费的时间。 2.服务器处理时间 另外一个方面还要考虑各个服务器处理所需要的时间WT、AT、DT。 3.网络延迟 除了上面两种时间开销以外,还要考虑网络延迟的问题。 所以最终的响应时间组成为: 响应时间= 网络延迟时间+ WT+AT+DT +(N1+N2+N3)+(N4+N5+N6)+ WT+AT+DT 也可以简单认为响应时间由网络开销(前端)和服务器开销(后端)两大部分组成,如图3所示。

光电探测器光谱响应度和响应时间的测量(刘1)_百度文库解析

光电探测器光谱响应度的测量 光谱响应度是光电探测器的基本性能之一,它表征了光电探测器对不同波长入射辐射的响应。通常热探测器的光谱响应比较平坦,而光子探测器的光谱响应却具有明显的选择性。一般情况下,以波长为横坐标,以探测器接受到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。 一、实验目的 (1)加深对光谱响应概念的理解; (2)掌握光谱响应的测试方法; (3)熟悉热释电探测器和硅光电二极管的使用。 二、实验内容 (1)用热释电探测器测量钨丝灯的光谱辐射特性曲线; (2)用比较法测量硅光电二极管的光谱响应曲线。 三、基本原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为 (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 (1-2)

式中,P(λ为波长为λ时的入射光功率;V(λ为光电探测器在入射光功率P(λ作用下的输出信号电压;I(λ则为输出用电流表示的输出信号电流。为简写起见, 和均可以用表示。但在具体计算时应区分 和,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长辐射照射下光电探测器输出的电信号V(λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率P(λ需要利用参考探测器(基准探测器)。即使用一个光谱响应度为 的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准 探测器。由参考探测器的电信号输出(例如为电压信号)可得单色辐 射功率,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用图1-2所示的实验装置。用单色仪对钨丝灯辐射进行分光,得到单色光功率P(λ。 图1-2 光谱响应测试装置图 这里用响应度和波长无关的热释电探测器作参考探测器,测得P(λ入射时的输出电压为。若用表示热释电探测器的响应度,则显然有 (1-3) 这里Kf为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。在本实验中,,为热释电探测器的响应度,实验中在所用的25Hz调制频率下,。

关于反应堆保护系统响应时间两种测试方法的优缺点分析

关于反应堆保护系统响应时间两种测试方法的优缺点分析 发表时间:2019-05-27T10:40:56.677Z 来源:《电力设备》2018年第35期作者:张帅王连名 [导读] (中国核电工程有限公司华东分公司浙江嘉兴 314300) 引言: 反应堆保护系统(RPS - Reactor Protection System)是核电站重要的安全系统,主要执行1E安全级监测和保护功能,其上端连接保护仪表组(核仪表和热工仪表),接收仪表监测的物理参数,进行逻辑处理,符合逻辑组合的要求时给出保护动作触发信号,驱动下游的停堆断路器或专设安全驱动器动作,完成保护功能。 反应堆保护系统响应时间测量要验证保护通道的响应时间是否满足反应堆保护系统安全准则的要求。 概述 根据福清5、6号机组《反应堆保护系统安全准则》中对反应堆保护系统T2时间的定义:保护通道的T2时间,指从传感器的输出端到停堆断路器的输入端(失压线圈失电)的时间;专设安全通道的T2时间,指的是从传感器的输出端到优先级逻辑模块(福清1-4号机组为PLM 模块,福清5、6号机组为AV42模块)输出端的时间。安全准则中关于T2的描述即安全级DCS整体的响应时间,包括PIP、RPS、PAC的响应时间等。 第一种测试方法是按照对PIP、RPS、PAC机柜分别分段测试,然后将测得三段的响应时间计算分析得出结果,根据结果来判断是否符合技术规格书及设计文件要求。即通过分别测量PIP机柜、RPS机柜、PAC机柜各自的响应时间,然后再将各自的响应时间数据相加,得到从传感器输出端到优先级逻辑模块输出端的响应时间,具体的试验方法如下: 1.PIP部分: 如上图所示,通过信号发生器产生的4-20mA电流信号来模拟传感器或者是变送器输入信号,信号发生器线缆正端接至相应的电缆正端,负端接至PIP机柜相应负端,分别将PIP模块输入端和SNV1的输出端接至快速响应记录仪,从而获取两者的响应时间。 2.RPS部分: 如上图所示,为RPS部分响应时间测试原理图,通过模拟装置模拟信号至PAC-EHL机柜侧或RPS机柜侧,信号输入端和RPS机柜输出端信号分别接至快速响应记录仪,两者的时间差即为对应的响应时间。 3.PAC部分: 如上图所示,AV42模块的SFOFF2或SFON2端临时接至+24VDC电源,测试箱的一端连接至代表安全保护命令的SFOFF1或者SFON1端以及快速响应记录仪的通道1,记录仪的通道2连接至AV42的端子输出侧,从而获取PAC部分的响应时间。 第二种测试方法采用按照反应堆保护系统逻辑功能来进行响应时间的测量,而非按照机柜模块的分段测试。以蒸汽管道压力低低触发蒸汽管道隔离部分为例:

相关主题
文本预览
相关文档 最新文档