当前位置:文档之家› 解读钛和钛合金原理及分类

解读钛和钛合金原理及分类

解读钛和钛合金原理及分类

解读钛和钛合金原理及分类

我们在进行网上配镜的时候经常会选择钛或者是钛合金的眼镜框,可是往往却分不清楚钛与钛合金究竟是什么原理又有哪些分类呢,今天我们就来解读钛和钛合金的原理及分类,让大家网上配镜更便捷。

1956年,麦克格维伦提出按照退火状态下相的组成对钛以及钛合金进行分类的方法,即将钛及其合金划分为纯钛、α钛合金、α-β钛合金、β钛合金四类。

纯钛在常温下为密排六方晶体,885摄氏度时转变成体心立方结构,该温度称为β钛的相变点。在纯钛中添加合金元素,根据添加元素的种类和添加剂量不同,会因引起β钛相变点的变化,出现α+β两相区。

合金化后再室温下为α单相的合金称为α钛合金,有α+β两相区得称为α-β钛合金,在β钛相变点温度以上淬火,能得到亚稳定β单位的合金称为β钛合金。

我国钛合金牌号分别以TA、TB、TC作为开头,表示α钛合金、β钛合金、α-β钛合金。所以我们能在眼镜材质说明上根据字母的缩写便能区分钛合金眼镜的材质了。

按照工艺方法,钛合金也是可以分为变形钛合金、铸造钛合金以及粉末钛合金等。按照使用性能,钛合金可分为结构钛合金、耐热钛合金以及耐腐蚀钛合金。

以上便是钛及钛合金的原理及分类汇总,让大家网上配镜的时候更加便捷,具体可参考产品描述的内容。

第三章-钛合金及合金化原理

第三章-钛合金及合金化原理

第三章钛合金及合金化原理 3.1钛合金相图类型及合金元素分类 1.钛合金的二元相图 (1)第一种类型与α和β均形成连续互溶的相图。只有2个即Ti-Zr和Ti-Hf 系。钛、锆、铪是同族元素,其原子外层电子构造一样,点阵类型相同,原子半径相近。这两元素在α钛和β钛中溶解能力相同,对α相和β相的稳定性能影响不大。温度高时,锆的强化作用较强,因此锆常作为热强钛合金的组元。(2)第二种类型β是连续固溶体,α是有限固溶体。有4个:Ti-V Ti-Nb Ti-Ta Ti-Mo系。V、Nb、Ta、Mo四种金属只有一种一种体心立方,所以它们与具有相同晶型的β-Ti形成连续固溶体,而与密排六方点阵的α-Ti形成有限固溶体。 V属于稳定β相的元素,并且随着浓度的提高,它急剧降低钛的同素异晶转变温度。V含量大于15%时,通过淬火可将β相固定到室温。对于工业钛合金来说,V在α钛中有较大的浓度(>3%),这样可以得到将单相α合金的优点(良好的焊接性)和两相合金的有点(能热处理强化,比α合金的工艺塑性好)结合在一起的合金。Ti-V系中无共析反应和金属化合物。 Nb在α钛中溶解度大致和V相同(约4%),但作为β稳定剂的效应低很多。Nb含量大于37%时,可淬火成全β组织。 Mo在α钛中的溶解度不超过1%,而β稳定化效应最大。Mo含量大于1%时,可淬火成全β组织.Mo的添加有效地提高了室温和高温的强度。Mo室温一个缺点是熔点高,与钛不易形成均匀的合金。加入Mo时,一般是以Mo-Al中间合金形式(通过钼氧化物的铝热还原过程制得)加入。 (3)第三种类型与α、β均有限溶解,并且有包析反应的相图。Ti-Al、Ti-Sn、Ti-Ca、Ti-B、Ti-C、Ti-N、Ti-O等。5%~25% Al浓度范围内的相区范围内存在有序化的α2(Ti3X)相,它会使合金的性能下降。铝当量Al*=Al% +1/3Sn%+ 1/6Zr% + 1/2Ga% + 10[O]% ≤ 8%~9% 。只要铝当量低于8%~9%,就不会出现α2相。Sn是相当弱的强化剂,但能显著提高热强性,以锡合金化时,其室温塑性不降低而热强性增加。微量的B可细化钛及其合金的大晶粒,Ga可以与钛良好溶合,并显著提高钛合金的热强性。氧是较“软”的强化剂,在含量允许的范围内时,不仅可保证所需的强度水平,而且可以保证足够高的塑性。 (4)第四种类型与α、β均有限溶解,并且有共析分解的相图,有Ti-Cr、Ti-Mn、Ti-Fe、Ti-Co、Ti-Ni、Ti-Cu、Ti-Si、Ti-Bi、Ti-W、Ti-H。 Ti-Cr系中,形成的Ti2Cr化合物有两种同素异晶形式,其固溶体以δ和γ表示。Cr属于β稳定元素,在α钛中的溶解度不超过0.5%。Cr含量大于9%时,通过淬火可将β相固定到室温。Cr可以使钛合金有好的室温塑性并有高的强度,同时可保证有高的热处理强化效应。 Ti-W系中,会产生偏析转变:β′ ? α + β′′。偏析反应温度较高,Ti-W系的热稳定性比Ti-Cr合金高的多。W在α钛中的溶解度不高。W含量大于25%时,通过淬火可将β相固定到室温。 氢降低钛的同素异晶转变温度,形成共析反应,从而使β固溶体分解而形成α相和钛的氢化物,在共析温度下氢在α钛中的溶解度为0.18%。氢组成间隙型固溶体,属于有害杂质,会引起钛合金的氢脆。在非合金化钛和以α组织为基的单相钛合金中,氢脆的主要原因是脆性氢化物相的析出,急剧降低断裂强度。在两相合金中,不形成氢化物,但形成氢的过饱和固溶体区,在低速变形时引起脆性断裂。在β相含量小的合金中,这两种产生联合作用。纯钛和近α

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

第一章 钢的合金化原理作业题 参考答案要点

第一章钢的合金化原理作业题参考答案要点 1、名词解释: 1)合金元素:特别添加到钢中用以改变钢的组织、提高钢的性能的化学元素。2)微合金元素:有些合金元素如V,Nb,Ti和B等,当其含量只在0.2%左右甚至更低时(如B 0.002%)时,也会显著地影响钢的组织与 性能,将这种化学(合金)元素称为微合金元素。 3)原位析出:在淬火回火过程中,合金元素溶解于原渗碳体中,当其溶解度超过其最大溶解量后,合金渗碳体转变为特殊碳化物的析出方式。4)离位析出:在淬火回火过程中,直接从α相中析出特殊碳化物的析出方式。5)二次硬化:在强K形成元素含量较高的合金钢淬火后,在500- 600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的 HRC和强度提高的现象。 6)二次淬火:在强K形成元素含量较高的合金钢淬火后,残余奥氏体十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在 冷却时部分转变成马氏体,使钢的硬度和强度提高的现象。 2、说明钢中常用合金元素(V,Mo,Cr,Ni,Mn,Si,Al, B)对珠光体(贝 氏体)转变影响的作用机制。 答:(1)对珠光体转变影响的作用机制:P20 (2)对贝氏体转变影响的作用机制:P20 3、以低碳回火马氏体钢20SiMn2MoVB 为例,说明其合金化及热处理(淬火 加低温回火)中存在哪些强化与韧化途径?

答:低碳回火马氏体钢通过合金化与热处理工艺相结合,在实现强化的同时,保证有较好的韧性。主要体现在以下方面: (1)强化: ①C及合金元素的固溶强化; ②加入Si, Mn等合金元素能提高奥氏体的过冷能力,从而细化晶粒; ③加入V、Ti后的弥散强化; ④加入V、Ti后的细化晶粒作用; ⑤马氏体中大量位错的位错强化。 (2)韧化: ①低碳马氏体为位错型马氏体,韧性较好; ②Ni,Mn韧性元素的加入有利于提高韧性; ③工艺中的快冷、加入的合金元素对奥氏体过冷能力的提高、第二相粒子对晶粒长大的抑制作用,均能使马氏体晶粒细化,从而提高韧性; ④通过加入Si对低温回火脆性温度的延迟作用以及钢的回火稳定性的增加,可以适当提高回火温度,从而提高韧性水平。 4、为何Si-Mn-Mo-V复合添加可以大大提高钢的淬透性? 答:Si、Mn、Mo、V这四种合金元素提高过冷奥氏体稳定性的机制不同。 (1)Si在钢中不形成碳化物,也不溶于体,因此碳化物晶核形成必须等待硅的扩散(推迟P转变)。另外,Si能提高铁原子间作用力,提高铁的自扩散激活能,推迟P和B转变; (2)Mn是扩大γ相区元素,大大增加了α形核功;且锰也是碳化物形成元素,推迟合金渗碳体的形核与长大,因此锰不仅使C曲线向右移,且使之向下移; (3)Mo是中强碳化物形成元素,除了推迟珠光体转变时碳化物的形核与长

金属材料学教学大纲

金属材料学 (Science of Metal Materials) 课程编号:07171390 学分:3 学时: 48 (其中:讲课学时:38 课堂讨论学时:10 ) 先修课程:金属学、热处理原理、热处理工艺、工程材料力学性能 适用专业:金属材料工程、材料成型加工、冶金专业。 教材:戴起勋主编.金属材料学.北京:化学工业出版社,2005.9 开课学院:材料科学与工程学院 一、课程的性质与任务: 《金属材料学》是一门综合性应用性较强的专业必修课。在金属学、金属组织控制原理及工艺和力学性能等课程的基础上,系统介绍金属材料合金化的一般规律及金属材料的成分、工艺、组织、性能及应用的关系。通过课堂讲授、实验等教学环节,使学生系统掌握有关金属材料学方面的知识,培养学生研究开发和合理应用金属材料的初步能力。 二、课程的基本内容及要求 绪论(金属材料的过去、现在和将来): 1.教学内容 (1)金属材料发展简史 (2)现代金属材料 (3)金属材料的可持续发展与趋势 2.基本要求 了解金属材料在国民经济中的地位与作用、金属材料的发展概况和本课程的性质、地位和任务。 第一章钢的合金化概论 1.教学内容 (1)钢中的合金元素:合金元素和铁基二元相图;合金元素对Fe-C相图的影响;合金钢中的相组成;合金元素在钢中的分布; (2)合金钢中的相变:合金钢加热奥氏体化,合金过冷奥氏体分解;合金钢回火转变; (3)金元素对强度、韧度的影响及其强韧化; (4)合金元素对钢工艺性能的影响; (5)微量元素在钢中的作用 (6)金属材料的环境协调性设计基本概念; (7)钢的分类、编号方法。 2.基本要求 (1)掌握钢中合金元素与铁和碳的作用;铁基固溶体、碳(氮)化合物的形成规律;合金元素在钢中的分布;合金元素对铁-碳状态图的影响(2)了解钢的分类、编号方法 (3)掌握合金元素对合金钢工艺过程的影响 (4)掌握合金元素对合金钢力学性能的影响规律 (5)理解微量元素在钢中的作用 (6)了解材料的环境协调性设计基本概念

钛及钛合金的分类

钛及钛合金的分类 市场供货的钛产品主要有工业纯钛和钛合金两大类: 一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。由于存在着杂质,所以工业纯钛中也存在着少量的B相。基本上是沿着晶界分布。 工业纯钛按GB/T3620.1—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七个标准)。并且与ISO和美国的ASTM标准相对应,例如TA1对应Gr1, TA2对应Gr2, TA3对应Gr3, TA4对应Gr4。这样有利于各个行业在选材和应用上明晰各国标准的参照,也有利于在技术和商贸上与国际上的交流。 表1 钛及钛合金牌号和化学成分

第三章 钛合金及合金化原理

第三章钛合金及合金化原理 3、1钛合金相图类型及合金元素分类 1.钛合金得二元相图 (1)第一种类型与α与β均形成连续互溶得相图。只有2个即Ti-Zr与Ti-Hf 系。钛、锆、铪就是同族元素,其原子外层电子构造一样,点阵类型相同,原子半径相近。这两元素在α钛与β钛中溶解能力相同,对α相与β相得稳定性能影响不大。温度高时,锆得强化作用较强,因此锆常作为热强钛合金得组元。 (2)第二种类型β就是连续固溶体,α就是有限固溶体。有4个:Ti-V Ti-Nb Ti-Ta Ti-Mo系。V、Nb、Ta、Mo四种金属只有一种一种体心立方,所以它们与具有相同晶型得β-Ti形成连续固溶体,而与密排六方点阵得α-Ti形成有限固溶体。 V属于稳定β相得元素,并且随着浓度得提高,它急剧降低钛得同素异晶转变温度。V含量大于15%时,通过淬火可将β相固定到室温。对于工业钛合金来说,V 在α钛中有较大得浓度(>3%),这样可以得到将单相α合金得优点(良好得焊接性)与两相合金得有点(能热处理强化,比α合金得工艺塑性好)结合在一起得合金。Ti-V系中无共析反应与金属化合物。 Nb在α钛中溶解度大致与V相同(约4%),但作为β稳定剂得效应低很多。Nb含量大于37%时,可淬火成全β组织。 Mo在α钛中得溶解度不超过1%,而β稳定化效应最大。Mo含量大于1%时,可淬火成全β组织、Mo得添加有效地提高了室温与高温得强度。Mo室温一个缺点就是熔点高,与钛不易形成均匀得合金。加入Mo时,一般就是以Mo-Al中间合金形式(通过钼氧化物得铝热还原过程制得)加入。 (3)第三种类型与α、β均有限溶解,并且有包析反应得相图。Ti-Al、Ti-Sn、Ti-Ca、Ti-B、Ti-C、Ti-N、Ti-O等。5%~25% Al浓度范围内得相区范围内存在有序化得α2(Ti3X)相,它会使合金得性能下降。铝当量Al*=Al% +1/3Sn%+ 1/6Zr% + 1/2Ga% + 10[O]% ≤ 8%~9% 。只要铝当量低于8%~9%,就不会出现α2相。Sn 就是相当弱得强化剂,但能显著提高热强性,以锡合金化时,其室温塑性不降低而热强性增加。微量得B可细化钛及其合金得大晶粒,Ga可以与钛良好溶合,并显著提高钛合金得热强性。氧就是较“软”得强化剂,在含量允许得范围内时,不仅可保证所需得强度水平,而且可以保证足够高得塑性。 (4)第四种类型与α、β均有限溶解,并且有共析分解得相图,有Ti-Cr、Ti-Mn、Ti-Fe、Ti-Co、Ti-Ni、Ti-Cu、Ti-Si、Ti-Bi、Ti-W、Ti-H。 Ti-Cr系中,形成得Ti2Cr化合物有两种同素异晶形式,其固溶体以δ与γ表示。Cr属于β稳定元素,在α钛中得溶解度不超过0、5%。Cr含量大于9%时,通过淬火可将β相固定到室温。Cr可以使钛合金有好得室温塑性并有高得强度,同时可保证有高得热处理强化效应。 Ti-W系中,会产生偏析转变:β′?α + β′′。偏析反应温度较高,Ti-W系得热稳定性比Ti-Cr合金高得多。W在α钛中得溶解度不高。W含量大于25%时,通过淬火可将β相固定到室温。 氢降低钛得同素异晶转变温度,形成共析反应,从而使β固溶体分解而形成α相与钛得氢化物,在共析温度下氢在α钛中得溶解度为0、18%。氢组成间隙型固溶体,属于有害杂质,会引起钛合金得氢脆。在非合金化钛与以α组织为基得单相钛合金中,氢脆得主要原因就是脆性氢化物相得析出,急剧降低断裂强度。在两相合金中,不形成氢化物,但形成氢得过饱与固溶体区,在低速变形时引起脆性断裂。在β相含量小得合金中,这两种产生联合作用。纯钛与近α组织得钛合金对氢脆

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

钛及钛合金的分类修订稿

钛及钛合金的分类 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

钛及钛合金的分类 市场供货的钛产品主要有工业纯钛和钛合金两大类: 一.工业纯钛:钛属于多晶型金属,在低于882℃为a晶型,原子结构呈密排六方晶格,从882℃至熔点都是B晶型,呈体心立方晶格。工业纯钛在金相组织上呈现a相,如果退火完全的话,是大小基本相等等轴状单项晶格。由于存在着杂质,所以工业纯钛中也存在着少量的B相。基本上是沿着晶界分布。 工业纯钛按GB/—2007新标准共有九个牌号,TA1类型的有三个,TA2—TA4每个类型的各有两个,它们的差别就是纯度的不同。从表中我们可以看出,从TA1—TA4每个牌号都有一个后缀带ELI的牌号,这个ELI是英文低间隙元素的缩写,也就是高纯度的意思。由于Fe,C, N, H, O在a—Ti 中是以间隙元素存在的,它们的含量多少对工业纯钛的耐腐蚀性能以及力学性能产生很大的影响,C,N,O固溶于钛中可以使钛的晶格产生很大的畸变,使钛的被强烈的强化和脆化。这些杂质的存在是生产过程中由生产原料带入的,主要是海绵钛的质量。要是想生产高纯度的工业纯钛钛锭,就得使用高纯度的海绵钛。在标准中,带ELI的牌号在这6个元素含量的最高值均低于不带ELI的牌号。这些标准的修改是参照国际上或者说是西方国家的标准(我们国家的标准正在努力向西方国家靠拢,因为我们国家的很多基础工业还是比他们落后一些,很多老标准都是沿袭前苏联的),特别是在杂质的含量以及室温力学性能上各牌号的指标和国际上,以及西方国家基本上保持一致。这个新标准主要是参照ISO(国际标准)外科植入物和美国ASTM材料标准(B265, B338, B348, B381, B861, B862, B863这七

合金化的特点

转炉炼钢脱氧合金化的特点 贾卫国 (陕西略阳钢铁有限责任公司炼钢分厂) 摘要:论述了转炉炼钢脱氧、合金化的特点,并结合实际对脱氧剂使用、合金化工艺进行了探索。 关键词:硅钡钙硅钒氮 一、前言 略阳钢铁有限责任公司二炼钢自投产以来,通常采用硅钡钙、增碳剂、硅铁、锰硅铁、钒氮等作为脱氧、合金化材料。在冶炼HRB335钢时,合金易结块,造成[SI]、[Mn]成分波动大,冶炼HRB400钢时,钒氮合金回收率不稳定,易出现废品等问题,为此,对原有的脱氧、合金化特点进行了解,改进合金加入量,加入方法,有效解决上述问题。 二、各种合金特点 (一)硅钡钙 主要成份Ca30.16%,Ba10.69,Si20.38,采用硅钡钙脱氧,由于在炼钢温度下Ca的蒸汽压非常高,故反应激烈,加上有部分脱氧产物为气体CO,钢液搅动比较强,有利于合金的快速溶化和成分的均匀。 加入到钢中的硅钡钙是以氧化钙、硫化钙、铝酸钙的形式存在于钢中,由于钢中的AI2O3与钙钡的脱氧产物生成复合的钙酸盐夹杂,因此,钢中单纯的铝夹杂减少。 钡在炼钢温度范围内有效地降低钙的蒸气压,增加钙在钢液中的溶解度,同硅钙合金相比,用硅钡钙合金作为钙源加入钢液中,加入的钙量即

使是钙合金加入量的一半时,钢液中的钙含量却是硅钙合金的两倍左右,钙在钢液中也显著提高,充分显示钡在钢液中有效的保护了钙,降低了钙的氧化,从而达到对钢液钙处理的目的。 (二)锰的特点 锰是一种非常弱的脱氧剂,在碳含量非常低,氧含量很高时,可以显示出脱氧作用。 锰的作用是消除钢中硫的热脆倾向,改变硫化物的形态和分布以提高钢质。 锰对铁素体的固溶强化能力极强,可以提高钢的强度,钢含锰量高时,具有明显的回火脆性,锰对钢有使钢过热的倾向,为了克服这一倾向,可在钢中配加少量细化晶粒的元素钒等。钒产生极稳定的碳化物,可以强烈细化晶粒,所以钢中加钒对钢的性能特别有利。 (三)硅的特点 硅是钢中最基本的脱氧剂。普通钢中硅在0.17—0.37%,1450℃钢凝固时,能保证钢中与其平衡的氧小于碳平衡的量,抑制凝固过程中CO气泡的产生。 硅在钢中溶于铁素体内使钢的强度,硬度增加,塑性、韧性降低,硅与钢水中的FeO能结成密度较小的硅酸盐炉渣而被除去。 硅能还原钒 ①2/5V2O5+Si=4/5V+SiO2 ②1/2 V2O4+Si=V+SiO2 ③2/3 V2O3+Si=4/3V+SiO2

钛及钛合金牌号和化学成分汇总

《钛及钛合金牌号和化学成分》(2009/11/30 15:05) (引用地址:未提供) 目录:行业知识 浏览字体:大中小 《钛及钛合金牌号和化学成分》 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为: 钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗 TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。

钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。钛材生产的原则流程如图1—1。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。

我国钛及钛合金板材未来发展趋势

我国钛及钛合金板材未来发展趋势 智研数据研究中心网讯: 内容提要:随着我国石油、化工等行业对设备的要求越来越高,以及制造业整体水平的快速提升,加之国内需求拉动与国际产业转移的“双重动力”带动下,我国钛材制造业从中长期市场上看,将继续保持快速稳定增长的良好势头。钛板带材作为钛材的重要支柱,产量将会进一步扩大。生产企业要紧抓这一机遇,并逐渐向新产品新业务转移,获得更大的发展空间。 内容选自智研数据研究中心发布的《2012-2016年中国钛行业运营态势及投资前景分析报告》 近年来,我国钛材的需求量迅速增加,已成为继美国和欧洲之后的第三大钛产品消费国。另据相关统计数据分析目前整个钛及钛合金板带材市场应用情况,最大用户是石油化工领域,约占钛板带材消耗总量的60%,其他依次为航空航天领域,约占15%,体育用品行业占6%,海水淡化、核电领域占5%,舰船及海洋工程装备领域占5%,其它领域约占9%。 2007 年我国钛加工材产量为23 640 t,其中钛板材产量为10 552 t,占44. 6%;2008 年我国钛加工材产量为27 737 t,其中钛板材产量为14 707 t,占53%,比上年产量上升了39. 4%;2009 年我国钛加工材产量为24 965 t,其中板材产量为12 067 t; 保守估计2010 年我国钛加工材生产量将达到30 000 t,其中板材产量为16 000 t,板材产量的增长率远高于整个钛加工材的产量增长率。今后,国内各应用领域对钛材需求仍将持续快速增加,继续保持两位数增长态势。 我国的大飞机计划、嫦娥登月计划、太空站计划、核电发展计划以及国家“十二五”发展规划对新型能源开发、高端装备制造业扶持与鼓励,这些为钛板带材提供了前所未有的发展空间和历史契机,同时又对钛板带材提出了更高的要求。 具体表现在: ①在品种方面,对钛带及焊管用薄钛板带需求增大; ②在规格方面,对于宽幅厚钛板( 宽2 000 ~2 500 mm,厚4 ~10 mm) 、宽幅薄钛板( 宽 1 000 ~1 500 mm,厚0. 4 ~3. 5 mm) 及10 ~70 mm 厚的宽幅( 2 400 mm 以上) 厚钛板材的需求日趋增长,而目前我国大部分的钛板生产企业,其装备能力无法满足这些超大、超厚规格的要求,因此未来的两年内,宽幅、超厚钛板材的市场前景良好; ③在化学成分方面,要求均匀化,且铁、氧等杂质含量控制范围窄幅化; ④表面光洁,组织细小均匀,力学性能优异,可满足航空航天、石油化工和核电等行业的苛刻要求。

合金化原理

1、影响加热速度的因素有哪些?为什么? 答:(1)加热方法(加热介质)的不同。 由综合传热公式Q=а(T介-T工)得知,当加热介质与被加热工件表面温度差(T 介-T工)越小,单位表面积上在单位时间内传给工件表面的热量越小,因而加热速度越慢。 (2)工件在炉内排布方式的影响。 工件在炉内的排布方式直接影响热量传递的通道,例如辐射传递中的挡热现象及对流传热中影响气流运动情况等,从而影响加热速度。 (3)工件本身的影响。 工件本身的几何形状、工件表面积与其体积之比以及工件材料的物理性能(C、λ、γ等)直接影响工件内部的热量传递及温度,从而影响加热速度。同种材料制成的工件,当其特征尺寸s与形状系数k的乘积相等时,以同种方式加热时则加热速度相等 2、回火炉中装置风扇的目的是什么?气体渗碳炉中装置风扇的目的是什么? 答:回火炉中装置风扇的目的是为了温度均匀,避免因为温度不均而造成材料回火后的硬度不均。气体渗碳炉中装置的风扇的目的是为了气氛的均匀,避免造成贫碳区从而影响组织性能。 3、今有T8钢工件在极强的氧化气氛中分别与950度和830度长时间加热,试述加热后表层缓冷的组织结构,为什么? 答:根据题意,由于气氛氧化性强,则炉火碳势低。在950℃长时间加热时,加热过程中工件表面发生氧化脱碳。工件最外层发生氧化反应,往里,由于950℃高于Fe-C状态图中的G点,所以无论气氛碳势如何低,脱碳过程中从表面至中心始终处于A状态,缓冷后,由表面至中心碳浓度由于脱碳和扩散作用,碳含量依次升高直至0.8%,所以组织依次为铁素体和珠光体逐渐过渡到珠光体,再至相当于碳含量为0.8%的钢的退火组织(P+C)。当工件在830℃加热时,温度低于G点,最外层依然会发生氧化反应。往里,工件将在该温度下发生脱碳。由于气氛氧化性极强,则碳势将位于铁素体和奥氏体的双相区,所以工件发生完全脱碳。由外及里的组织在缓冷后依次是铁素体,铁素体加珠光体,珠光体加渗碳体。 4、今有一批ZG45铸钢件,外形复杂,而机械性能要求高,铸后应采用何种热处理?为什么? 答:实现应该采用均匀化退火,以消除铸件的偏析和应力(如果偏析不严重,也可以采用完全退火。就机械性能而言,45最好为调质,如果形状确实太复杂,淬火时容易变形、开裂、可用正火代替。 5、20GrMnTi钢拖拉机传动齿轮,锻后要进行车内孔,拉花键及滚齿等机械加工,然后进行渗碳淬火,回火。问锻后和机械加工前是否需要热处理?若需要,应进行何种热处理?主要工艺参数如何选择? 答:锻后和机械加工前需要正火处理,这样可使同批毛坯具有相同的硬度(便于切削加工),可以细化精粒,均匀组织,为后续的渗碳与淬火提供良好的组织状态;二则应该是把硬度调整到利于切削加工的硬度 正火工艺:正火加热温度为Ac3以上120~150(即在960℃左右),其原则是在不引起晶粒粗话的前提下尽量采用高的加热温度,以加速合金碳化物的溶解和奥氏体的均匀化,然后风冷5分钟左右,接着在640℃等温适当时间后空冷,硬度在HB180左右,利于切削加工。 6、45钢普通车床传动齿轮,其工艺路线为锻造---热处理---机械加工----高频淬火—回火。试问锻后应进行何种热处理,为什么? 答:常用淬火介质及冷却特性;进行正火处理,45钢市中碳钢,正火后其硬度接近于最佳切削加工的硬度。对45钢,虽然碳含量较高,硬度稍高,但由于正火生产率高,成本低,随意采用正火处理。

(完整版)金属材料学复习文九巴

1.钢中的杂质元素:O H S P 2.合金元素小于或等于5%为低合金钢,在5%-10%之间为中合金钢,大于10%为高合金 钢 3.奥氏体形成元素:Mn Ni Co(开启γ相区)C N Cu(扩展γ相区) 4.铁素体形成元素:Cr V Ti Mo W 5.间隙原子:C N B O H R溶质/R溶剂<0.59 6.碳化物类型:简单间隙碳化物MC M2C 复杂间隙碳化物M6C M23C M2C3 7.合金钢中常见的金属间化合物有σ相、AB2相和B2A相 8.二次硬化:淬火钢在回火时在一定温度下,由于特殊碳化物的析出的初期阶段,形成 [M-C]偏聚团,硬度不降低,反而升高的现象。 9.二次淬火:淬火钢在回火时,冷却过程残余奥氏体转变为马氏体的现象。 10.合金元素对铁碳相图的影响 1.改变奥氏体相区位置 2.改变共析转变温度 3.改变S和E等零界点的含碳量 11.合金元素对退火钢加热转变的影响 1.对奥氏体形成速度的影响中强碳化物形成元素与碳形成难溶于奥氏体的合金碳化 物,减慢奥氏体的形成速度 2.对奥氏体晶粒大小的影响大多数合金元素都有阻止奥氏体晶粒长大的作用,影响 程度不同。V Ti强碳化物和适量的AL强烈阻碍晶粒长大,他们的碳化物或氮化物熔点高,高温下稳定,不易聚集长大,能强烈阻碍奥氏体晶粒长大。Wu Mo Cr中强碳化物也有阻碍作用,但是影响程度中等。Si Ni非碳化物形成元素影响不大。

Mn P等元素含量在一定限度下促进奥氏体晶粒长大 12.合金元素对淬火钢回火转变的影响 1.提高耐回火性合金元素在回火过程中推迟马氏体分解和残留奥氏体的转变;提高铁 素体在结晶温度,使碳化物难以聚集长大,从而提高钢的耐回火性。 2.淬火钢在回火时产生二次硬化和二次淬火,提高钢的性能。 3.对回火脆性的影响产生第一类回火脆性和第二类回火脆性,降低晶界强度,从而使 钢的脆性增加 13.钢的强化机制:固溶强化、细晶强化、形变强化和第二相强化 14.合金元素对钢在淬火回火状态下力学性能的影响 1.合金元素一般均能减缓钢的回火转变过程,特别是阻碍碳化物的聚集长大,相对的 提高钢中组成相的弥散度 2.合金元素溶解于铁素体,是铁素体强化,并提高了铁素体的再结晶温度。 3.强碳化物形成元素提高了钢的耐回火性,并产生沉淀强化的作用 4.钼、钨等有利于防止或消除第二类回火脆性 15.合金元素对钢高温力学性能的影响 1.可以净化晶界,使易熔杂质元素从晶界转移到晶界内,强化晶界 2.可以提高合金原子间的结合力,增大原子自扩散激活能 3.强碳化物形成元素的加入,可以对位错运动有阻碍作用,可提高合金的高温性能16.合金元素对钢热处理性能的影响 淬透性、淬硬性、变形开裂性、过热敏感性、氧化脱碳倾向和回火脆化倾向 17.合金元素对钢的焊接性能影响 1.钢的焊接性能主要由焊后开裂敏感性和焊接区的硬度来评价

第三章钛合金及合金化原理

第三章钛合金及合金化原理 钛合金相图类型及合金元素分类 1.钛合金的二元相图 (1)第一种类型与α和β均形成连续互溶的相图。只有2个即Ti-Zr和Ti-Hf 系。钛、锆、铪是同族元素,其原子外层电子构造一样,点阵类型相同,原子半径相近。这两元素在α钛和β钛中溶解能力相同,对α相和β相的稳定性能影响不大。温度高时,锆的强化作用较强,因此锆常作为热强钛合金的组元。(2)第二种类型β是连续固溶体,α是有限固溶体。有4个:Ti-V Ti-Nb Ti-Ta Ti-Mo系。V、Nb、Ta、Mo四种金属只有一种一种体心立方,所以它们与具有相同晶型的β-Ti形成连续固溶体,而与密排六方点阵的α-Ti形成有限固溶体。 V属于稳定β相的元素,并且随着浓度的提高,它急剧降低钛的同素异晶转变温度。V含量大于15%时,通过淬火可将β相固定到室温。对于工业钛合金来说,V在α钛中有较大的浓度(>3%),这样可以得到将单相α合金的优点(良好的焊接性)和两相合金的有点(能热处理强化,比α合金的工艺塑性好)结合在一起的合金。Ti-V系中无共析反应和金属化合物。 Nb在α钛中溶解度大致和V相同(约4%),但作为β稳定剂的效应低很多。Nb含量大于37%时,可淬火成全β组织。 Mo在α钛中的溶解度不超过1%,而β稳定化效应最大。Mo含量大于1%时,可淬火成全β组织.Mo的添加有效地提高了室温和高温的强度。Mo室温一个缺点是熔点高,与钛不易形成均匀的合金。加入Mo时,一般是以Mo-Al中间合金形式(通过钼氧化物的铝热还原过程制得)加入。 (3)第三种类型与α、β均有限溶解,并且有包析反应的相图。Ti-Al、Ti-Sn、Ti-Ca、Ti-B、Ti-C、Ti-N、Ti-O等。5%~25% Al浓度范围内的相区范围内存在有序化的α2(Ti3X)相,它会使合金的性能下降。铝当量Al*=Al% +1/3Sn%+ 1/6Zr% + 1/2Ga% + 10[O]% ≤8%~9% 。只要铝当量低于8%~9%,就不会出现α2相。Sn 是相当弱的强化剂,但能显著提高热强性,以锡合金化时,其室温塑性不降低而热强性增加。微量的B可细化钛及其合金的大晶粒,Ga可以与钛良好溶合,并显著提高钛合金的热强性。氧是较“软”的强化剂,在含量允许的范围内时,不仅可保证所需的强度水平,而且可以保证足够高的塑性。 (4)第四种类型与α、β均有限溶解,并且有共析分解的相图,有Ti-Cr、Ti-Mn、Ti-Fe、Ti-Co、Ti-Ni、Ti-Cu、Ti-Si、Ti-Bi、Ti-W、Ti-H。 Ti-Cr系中,形成的Ti2Cr化合物有两种同素异晶形式,其固溶体以δ和γ表示。Cr属于β稳定元素,在α钛中的溶解度不超过%。Cr含量大于9%时,通过淬火可将β相固定到室温。Cr可以使钛合金有好的室温塑性并有高的强度,同时可保证有高的热处理强化效应。 Ti-W系中,会产生偏析转变:β′?α + β′′。偏析反应温度较高,Ti-W系的热稳定性比Ti-Cr合金高的多。W在α钛中的溶解度不高。W含量大于25%时,通过淬火可将β相固定到室温。 氢降低钛的同素异晶转变温度,形成共析反应,从而使β固溶体分解而形成α相和钛的氢化物,在共析温度下氢在α钛中的溶解度为%。氢组成间隙型固溶体,属于有害杂质,会引起钛合金的氢脆。在非合金化钛和以α组织为基的单相钛合金中,氢脆的主要原因是脆性氢化物相的析出,急剧降低断裂强度。在两相合金中,不形成氢化物,但形成氢的过饱和固溶体区,在低速变形时引起脆性断裂。在β相含量小的合金中,这两种产生联合作用。纯钛和近α组织的钛合金

金属材料学复习思考题2016.5

金属材料学复习思考题 (2016.05) 第一章钢的合金化原理 1-1名词解释 (1)合金元素;(2)微合金化元素;(3)奥氏体稳定化元素;(4)铁素体稳定化元素;(5)杂质元素;(6)原位析出;(7)异位析出;(8)晶界偏聚(内吸附);(9)二次硬化;(10)二次淬火;(11)回火脆性;(12)回火稳定性 1-2 合金元素中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? C相图的S、E点有什么影响?这种影响意味着什么? 1-3简述合金元素对Fe-Fe 3 1-4 为何需要提高钢的淬透性?哪些元素能显著提高钢的淬透性?(作业) 1-5 能明显提高钢回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?(作业) 1-6合金钢中V,Cr,Mo,Mn等所形成的碳化物基本类型及其相对稳定性。 1-7试解释含Mn和碳稍高的钢容易过热,而含Si的钢淬火温度应稍高,且冷作硬化率较高,不利于冷加工变形加工?(作业) 1-8 V/Nb/Ti、Mo/W、Cr、Ni、Mn、Si、B等对过冷奥氏体P转变影响的作用机制。 1-9合金元素对马氏体转变有何影响? 1-10如何利用合金元素来消除或预防第一次、第二次回火脆性? 1-11如何理解二次硬化与二次淬火两个概念的异同之处? 1-12钢有哪些强化机制?如何提高钢的韧性?(作业) 1-13 为什么合金化基本原则是“复合加入”?试举两例说明复合加入的作用机理?(作业) 1-14 合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?(作业) 1-15 40Cr、40CrNi、40CrNiMo钢,其油淬临界淬透性直径分别为25~30 mm、40~60mm和60~100mm,试解释淬透性成倍增大的现象。(作业) 1-16在相同成分的粗晶粒和细晶粒钢中,偏聚元素的偏聚程度有什么不同?(作业)

氟化物对纯钛及钛合金的腐蚀作用

氟化物对纯钛及钛合金的腐蚀作用 近年来,钛和钛合金广泛应用于口腔领域,是最常用的口腔材料之一。钛由于与氧具有很高的亲和力,拼在其表面形成了一层紧密而稳定的氧化膜而具有出色的耐腐蚀性。有研究表明氟离子在酸性环境下能破坏这层氧化膜,从而削弱钛的抗腐蚀能力。目前,含氟牙膏、正畸凝胶等含氟牙膏产品大量应用于口腔。钛及钛合金暴露于含氟的复杂口腔坏境中。在此情况下,钛及其合金的腐蚀行为受到氟化物本身浓度、环境酸碱度、口腔中蛋白质和钛合金的成分以及种植体材料表面微形貌等方面的影响。 1.氟化物腐蚀原理 钛材料良好的抗腐蚀性只要是由表面薄二致密稳定的氧化 膜产生,这层氧化膜在破坏后能在含氧环境中迅速形成。这使得氧化膜的破坏和修复(再钝化)维持在一个稳定的状态,保护内部的钛元素不被继续氧化。但有报道发现,钛表面氧化膜在氢氟酸溶液中会出现溶解。目前普遍认为氟化物对钛及钛合金的腐蚀原理是口腔中溶解的氟化物和氢离子结合形成氟化氢。氟化氢能优先吸附于钛表面氧化膜的某些点上,排挤掉氧原子,然后和氧化膜中的太离子结合形成可溶性氟化物,使钛发生点蚀。反应方

程如下: Ti2O3+6HF=2TiF3+3H2O, TiO2+4HF=TiF4+2H2O, TiO2+2HF=H2O+TiOF2. 表面氧化膜破坏发生多孔性改变后,导致深部钛的暴露。钛是一种活性很高的金属,在含氢或析氢腐蚀环境中会持续吸收氢,在钛晶面生成TiH2,促进腐蚀的进程,甚至形成微裂纹,最终导致钛材料修复失败。 2.氟化物腐蚀影响因素 2.1氟化物的浓度 口腔中氟化物主要来源于含氟牙膏和漱口水等口腔保健品,其浓度范围1000~10000Ppm不等,使用这些保健产品会导致口腔局部氟离子浓度增高。有研究发现在酸性溶液中,氟离子浓度达到30ppm时,钛表面的氧化膜即可出现破坏,说明低浓度的氟离子就减弱了钛材料的抗腐蚀性能。 (1)高浓度氟溶液对钛表面的腐蚀作用在弱酸环境中就能进行。Her-Hsiung Huang 溶液中能检测到更高的钛离子溶出量,这也间接说明了钛在酸蚀化电阻下降明显,抗腐蚀性能下降。马长柏等 (3)发现腐蚀产生的点状凹陷的分布范围和深度均随氟离

工程结构钢的合金化原理

一、工程结构钢的合金化原理 1、低碳:由于低温韧性、焊接性和冷成型性能的要求高,其碳质量分数一般不超过0.25%。 2、加入以锰为主的合金元素,起固溶强化作用,提高钢的强度和韧性。 3、加入铌、钛或钒等辅加元素,起弥散强化作用,提高钢的强度和韧性。 4、加入少量铜(<0.4%)和磷(0.1%左右)等,可提高抗腐蚀性能。 二、调质钢合金化特点 1、中碳,碳质量分数一般在0.25%~0.50%之间,以0.4%居多。碳量过低,不易淬硬,回火后强度不够;碳量过高则韧性不够。 2、加入提高淬透性的元素,如Cr、Mn、Ni、Si、B等。 3、加入防止第二类回火脆性的元素,如Mo、W等。 三、轴承钢的合金化特点 1、高碳,为了保证轴承钢的高硬度、高耐磨性和高强度,碳质量分数应较高,一般为0.95%~1.10%。 2、铬为基本合金元素,铬含量为0.40%~1.65%。铬能提高淬透性,并与基体金属形成合金渗碳体(Fe,Cr)3C,呈细密、均匀分布,从而提高钢的耐磨性,特别是疲劳强度。 3、加入硅、锰、钒等提高淬透性 四、渗碳钢的合金化特点 (1)碳质量分数一般在0.10%~0.25%之间,以保证零件心部有足够的塑性和韧性。 (2)加入提高淬透性的合金元素,常加入Cr、Ni、Mn等,以提高经热处理后心部的强度和韧性。Cr还能细化碳化物、提高渗碳层的耐磨性,Ni则对渗碳层和心部的韧性非常有利。 (3)加入阻碍奥氏体晶粒长大的元素,主要加入少量强碳化物形成元素Ti、V、W、Mo等,形成稳定的合金碳化物。除了能阻止渗碳时奥氏体晶粒长大外,还能增加渗碳层硬度,提高耐磨性。 五、氮化钢的合金化特点 1、低碳 2、铬、钼、锰可使钢获得足够的淬透性。 3、钼及钒能使钢在500~580℃之间长时间保温时保持强度。为了防止或减轻钢发生回火脆化,往往须要在氮化钢中加入0.2~0.5%钼。 六、弹簧钢的合金化特点 1、中、高碳。一般为0.50%~0.70%。碳质量分数过低,强度不足。碳质量分数过高时,塑性、韧性降低,疲劳抗力也下降。 2、加入以Si、Mn为主的提高淬透性的元素。 七、耐磨钢的合金化特点 1、高碳:保证钢的耐磨性和强度。其碳质量分数不超过1.4%。 2、高锰:提高钢的加工硬化率及良好的韧性。 3、一定量的硅:硅可改善钢水的流动性,并起固溶强化的作用。 八、高速钢的合金化主要特点 1、工作温度可达500~600℃,有很高的热硬性(593℃HRC>55)。 3、高碳(0.70~1.10%C),保证硬度和耐磨性。 4、加入较多的钨、钼、钒、铬等元素。钨、钼、可产生“二次硬化”以保证热硬性,同时较多的碳化物可显著地提高耐磨性。 九、热作模具钢的合金化特点 1、中碳(0.30~0.50%C)范围 2、加入铬、硅、锰等提高淬透性,铬和硅还能提高抗氧化和抗烧蚀性。 3、镍可提高钢的韧性,并与铬、钼一起提高耐热疲劳性能。 4、钨、钼、钒可产生二次硬化效果,钼还能防止第二类回火脆性、提高高温硬度和回火稳定性。

相关主题
文本预览
相关文档 最新文档