当前位置:文档之家› 新型混凝土防水剂的研究_朱华雄

新型混凝土防水剂的研究_朱华雄

新型混凝土防水剂的研究_朱华雄
新型混凝土防水剂的研究_朱华雄

疲劳与环境作用下混凝土的耐久性研究进展

疲劳与环境作用下混凝土的耐久性研究进展 发表时间:2019-06-06T16:00:10.553Z 来源:《建筑学研究前沿》2019年3期作者:周艳霞1 谢波1 [导读] 桥梁、公路、海洋平台等混凝土结构在实际服役环境中经历着荷载与环境共同作用。 中核新能核工业工程有限责任公司山西太原 030012 摘要:桥梁、公路、海洋平台等混凝土结构在实际服役环境中经历着荷载与环境共同作用。对疲劳荷载加载方式、疲劳荷载对混凝土碳化及氯离子侵蚀的影响进行了总结与分析,并指出需要进一步研究和探索的问题。 关键词:混凝土;疲劳荷载;碳化;氯离子 Review Progress on Durability of Concrete under Fatigue and Environment Zhou yanxia1,Xie bo1 (CNNC Xinneng Nuclear Engineering Co.,Ltd,Taiyuan 030012,China) Abstract:Concrete structures such as bridges,highways,and offshore platforms experience the combined effects of loads and the environment in the actual service environment.This paper summarizes and analyzes the loading methods of fatigue,the effects of fatigue load on carbonation of concrete and chloride ion erosion,and points out issues that need further research and exploration. Key words:concrete;fatigue load;carbonation;chloride ion 引言 近年来,随着我国城市化进程的不断推进及现代化不断发展,高铁、地铁、机场、道路、桥梁等工程建设迎来了高峰期。混凝土结构因其取材容易、性能稳定、耐火性能好等诸多优点而被广泛地应用上述工程。在实际服役过程中,此类混凝土结构不仅经历着环境作用(空气中CO2碳化作用、腐蚀性离子侵蚀、冻融作用等),同时还经历着循环往复的交通运输荷载(即疲劳荷载),在诸多作用下混凝土耐久性问题变得越来越突出。 在疲劳荷载作用下,混凝土内部微裂缝不断萌生、扩展、汇合,直至混凝土试件失稳破坏。混凝土碳化及氯离子侵蚀均是CO2、Cl-1通过混凝土孔隙、裂缝进入内部并发生作用。处于海洋环境、除冰盐环境中的混凝土结构,在混凝土碳化、氯离子侵蚀与疲劳荷载耦合作用下,混凝土结构的耐久性性能会加剧劣化,直接关系到混凝土结构能否满足正常使用要求、能否达到预定的服役年限,甚至影响建筑结构的安全性[1]。 鉴于公路、铁路、桥梁等混凝土结构在疲劳荷载和环境共同作用下,将导致混凝土结构耐久性退化和过早劣化,将造成严重的安全隐患和巨大的经济损失。本文将着重论述疲劳荷载与环境作用下混凝土的耐久性研究现状,并讨论需要进一步研究和探索的问题。 1.疲劳荷载的加载方式 疲劳荷载可按照不同的方式进行加载,获得不同疲劳损伤程度混凝土试件用于研究。 宋玉普[2,3]等通过自行改造的MTS疲劳试验机实现混凝土在定侧压下等幅和变幅抗压疲劳。杨健辉[4]等通过大连理工大学研制的大型三轴试验机实现混凝土试件在双向侧压作用下受拉疲劳。吕培印[5]基于室内试验,设计了在等幅和变幅疲劳荷载作用下混凝土的轴拉疲劳试验。易成[6]、石小平[7]、王晶[8]利用三分点加载的方式实现混凝土试件弯曲疲劳。 2.疲劳荷载对混凝土碳化的影响 混凝土碳化是大气环境中的CO2气体通过混凝土内部孔隙、裂缝与混凝土中水化物发生化学反应的过程。疲劳荷载作用会造成混凝土内部产生更多的裂缝,促使裂缝和孔隙贯穿连通,为环境中CO2提供更多通道向混凝土内部扩散,所以疲劳荷载大小和形式一定会影响混凝土碳化性能。到目前为止,国内外学者对疲劳荷载作用下混凝土碳化性能研究已取得不少成果。 胡刚等[9]通过对使用年限不同的实际工程结构在疲劳荷载作用下,对其耐久性性能退化问题进行了调查研究,研究了在疲劳荷载作用下混凝土碳化性能随时间变化的规律,结果表明,疲劳荷载加速了CO2在混凝土中的扩散能力,加快了混凝土碳化速率,同时也加剧了混凝土中钢筋锈蚀的程度。蒋金洋等[10]研究了疲劳荷载作用下超高程泵送钢纤维混凝土碳化性能,研究结果表明,疲劳荷载对混凝土碳化性能劣化存在临界值,一旦疲劳循环次数超过相应的临界值,SFRC试件的抗碳化性能就会随着疲劳次数的增加而降低。王晶等[8]研究了不同疲劳损伤度混凝土的耐久性性能变化规律,综合分析了疲劳损伤对相对动弹模、混凝土碳化深度、空气渗透性、裂缝等多方面的影响,研究结果表明,混凝土碳化深度随疲劳损伤度的增大而增大。 3.疲劳荷载对氯离子侵蚀的影响 在实际工程中,处于海洋环境中或除冰盐环境中的混凝土结构,研究疲劳荷载作用下混凝土氯离子侵蚀性能具有重大的实际工程意义和理论研究价值。到目前为止,国内外学者对疲劳荷载作用下混凝土氯离子侵蚀性能已开展了不少研究。 张武满等[13]研究了在抗压疲劳荷载作用下,GGBFS和SF对混凝土氯离子渗透性影响。分析表明,氯离子渗透速率随应力水平增高而增大;GGBFS掺量不大于30%、SF掺量不大于10%时,可有效抑制氯离子在混凝土中的渗透性速率。 李炜等[14]采用轴向压缩疲劳加载方式,通过控制应力水平、加载循环次数,确定不同疲劳损伤度混凝土试件,研究了疲劳荷载对混凝土中氯离子扩散系数的影响。研究表明,混凝土中氯离子扩散系数随疲劳损伤的增加而增大,该规律在高应力水平下更为明显,但未给出定量表达式。 孙培华[15]通过轴向压缩进行疲劳加载,对不同疲劳损伤程度混凝土进行了氯离子侵蚀试验。结果表明,在疲劳荷载下,氯离子的侵蚀速率和侵蚀深度明显提高,特别当疲劳荷载水平超过0.6fu时,氯离子的侵蚀速率和侵蚀深度显著提高。不足的是该研究未建立考虑疲劳荷载影响的氯离子扩散模型。 Saito等[16]研究了循环压缩荷载对混凝土氯离子侵蚀性能影响。分析得出,当循环压缩荷载水平大于60%时,混凝土中氯离子侵蚀速度显著增大;氯离子侵蚀速率随混凝土残余应变的增大而增大;但未提出定量公式。Xi等[17]利用微观监测方法,研究了轴心抗压疲劳与氯离子扩散交互作用下混凝土的氯离子传输性能,也得出了与Saito等[16]一致的结论。 Xiang等[18]利用数值模拟和可靠性分析方法,研究了不同疲劳损伤度混凝土氯离子扩散速率随时间变化规律,得出了以疲劳损伤度为

混凝土试验室记录表

商品混凝土和构件厂试验室用表

目录 原材料试验报告及原始记录 一、水泥物理力学性能试验报告及原始记录 (1) 二、砂试验报告及原始记录 (3) 三、石试验报告及原始记录 (5) 四、掺合料试验报告及原始记录 (7) 五、轻细集料试验报告及原始记录 (10) 六、轻粗集料试验报告及原始记录 (12) 七、混凝土外加剂(早强剂、减水剂)试验报告及原始记录 (14) 八、混凝土外加剂(防水剂)试验报告及原始记录 (17) 九、混凝土外加剂(泵送剂)试验报告及原始记录 (20) 十、混凝土外加剂(膨胀剂)试验报告及原始记录 (23) 十一、混凝土外加剂(防冻剂)试验报告及原始记录 (26) 十二、混凝土外加剂(引气剂)试验报告及原始记录 (29) 十三、混凝土外加剂(缓凝剂)试验报告及原始记录 (32)

十四、砌筑砂浆外加剂(增塑剂)试验报告及原始记录 (35) 十五、混凝土外加剂匀质性试验报告及原始记录 (38) 十六、混凝土外加剂对水泥的适应性试验原始记录 (40) 混凝土、砂浆强度验报告及原始记录 一、混凝土配合比试验报告及原始记录 (41) 二、砂浆配合比试验报告及原始记录 (45) 三、混凝土抗渗试验报告及原始记录 (47) 四、混凝土抗压试验报告及原始记录 (49) 五、混凝土抗折试验报告及原始记录 (51) 六、混凝土抗冻融试验报告及原始记录 (53) 七、混凝土抗收缩试验报告及原始记录 (56) 八、砂浆抗压试验报告及原始记录 (58) 九、混凝土开盘鉴定 (60) 十、混凝土配合比通知单 (60) 温湿度记录 一、天气及砂石含水率记录 (61) 二、标准养护室温、湿度记录 (62) 三、水泥养护箱温、湿度记录 (63) 四、冬季施工测温记录 (64)

混凝土的耐久性研究

混凝土的耐久性研究 摘要:随着城市化建设力度加快,混凝土以价格低廉、性能优越在基础设施中成为了首选的施工材料,具有用量大、用途广等特点。对于混凝土结构,它的耐久性是施工质量以及安全的重要保障[1]。碳化、钢筋腐蚀、冻融及碱-骨料反应等构成混凝土耐久性的主要内容, 而耐久性与强度作为混凝土的两个重要指标,在施工与设计中,受各种因素影响,对混凝土耐久性的重视力度明显缺乏。针对这种情况,为了促进混凝土施工持续发展,必须在环境保护与基础设施上,提高混凝土施工的耐久性。本文从混凝土的抗冻性、混凝土的碳化、碱集料反应、耐磨性、钢筋锈蚀等5个方面对混凝土耐久性影响因素改善措施等方面进行了深度研究和探索,通过从结构形式、原材料、细节构造、工艺措施等方面进行综合对比,从施工、设计与维修上提升施工质量。 关键词:混凝土耐久性;抗冻性;碳化;钢筋锈蚀;碱骨料反应; Abstract:LiFePO4is an important cathode material for lithium-ion batteries. Regardless of the biphasic reaction between the insulating end members, Li x FePO4, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid-state electrochemical reactions in which the Li concen-trations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long-range ordering at metastable intermediate eutectic composition of Li2/3FePO4has now been discovered and its superstructure determined, which reflected predomi-nant polaron crystallization at the Fe sites followed by Li+redistribution to optimize the Li Fe interactions. Keywords: cathode material; LiFePO4; lithium ion battery; metastable mesophase; Li2 / 3FePO4; solid material

浅谈钢筋混凝土桥梁的耐久性

浅谈钢筋混凝土桥梁的耐久性 摘要:在进行桥梁结构设计初期,就需要结合桥梁所处地理位置、周围环境及 实际运行环境对桥梁结构的耐久性进行合理设计。对于建设施工过程中可能影响 桥梁耐久性的隐患因素采取合理的预防措施,力求在设计初期就能考虑到所有可 能出现的问题。并采取有效的预防措施,以提高钢筋混凝土桥梁的耐久性。 关键词:钢筋混凝土;桥梁;耐久性 1钢筋混凝土桥梁结构的耐久性分析及其重要性 随着科学技术的发展,钢筋、混凝土材料也得到了快速发展。钢筋混凝土结 构的建筑发展历史远低于木质结构和钢制结构的建筑。19世纪中期,随着钢筋和混凝土材料的发展,钢筋混凝土结构也迅速发展起来;到了19世纪下半叶,法 国设计建筑了第一座钢筋混凝土结构桥梁,随之越来越多的钢筋混凝土结构桥梁 逐渐问世,呈现在人们的视野范围内。据科学数据调研发现,截止到2007年底 世界上钢筋混凝土桥梁总数超过57万座,桥梁建设已慢慢演变为基础设施工程 建设的重要环节。由美国土木工程师学会2003年底发布的混凝土桥梁相关研究 报告可以发现,世界上有1/4的钢筋混凝土桥梁耐久性不达标,严重影响了桥梁 的后期运营寿命[1]。国内外相关工程研究人员对不同桥梁的耐久性进行比较分析 发现,桥梁结构的构件损坏均由桥梁耐久性差引起。通过对近些年钢筋混凝土桥 梁事故原因分析,钢筋腐蚀、结构机械磨损、桥梁冻融循环及混凝土碳化均是导 致桥梁事故的主要原因,而引起这些桥梁故障的最终因素是桥梁耐久性差。 2影响桥梁耐久性的因素分析 影响桥梁耐久性的因素十分复杂,不考虑洪水、地震、超载及船舶的撞击, 主要取决于以下三方面因素:一,混凝土材料、钢材的自身特性;若想保证桥梁 的耐久性好一些,首先,一定要保证混凝土材料以及钢材的质量是绝对高的,然 而就目前我国桥梁事业的施工现状来看,很多建设单位存在以次充好的现象,进 而导致材料的质量不是很高,严重影响了桥梁的耐久性;二,桥梁结构所处的环境;我们都知道,任何物体都符合热胀冷缩的原理,针对于桥梁也是一样,而在 桥梁发生热胀冷缩的过程中,桥梁的结构会发生改变,结构改变了,桥梁的耐久 性自然就会降低,尤其是在北方地区,北方的天气冬夏温差比较大,冬天问题特 别低,桥梁发生缩变,而夏天天气比较炎热,桥梁开始胀裂,这也是为什么桥面 很容易存在裂缝的原因;三,桥梁结构的使用条件与防护措施。部分地区由于建 筑行业比较发达,因此每天都会有大量的货车从桥梁上经过,长时间下来,桥梁 的耐力自然就会降低很多,加上部分地区针对于桥梁的保护缺乏一定的意识,进 而导致桥梁只被使用却不被保护的现象,久而久之,问题自然也就应运而生了。 3钢筋混凝土桥梁耐久性改善措施 3.1确保混凝土灌注的密实性 提升混凝土灌注的密实性是提升钢筋混凝土桥梁耐久性的重要措施之一,可 以从水灰比、骨料及振捣工艺三方面入手,如精确把控水灰比,认真检查骨料质 量以及严格按照规范进行混凝土振捣等,提升混凝土密实度。 3.2提升混凝土和钢筋间的黏附力 为保证混凝土各项性能指标满足施工需求,避免坍塌程度太大,需严格按照 设计规范进行钢筋布设,混凝土振捣要充分,尽可能降低混凝土和钢筋间的缝隙。 3.3保证碱一集料反应工艺满足建设需求 为保障碱一集料反应工艺满足工程设计需求,需从以下方面入手:当混凝土

【混凝土】结构耐久性研究现状

混凝土结构耐久性研究现状 由于钢筋混凝土结构结合了钢筋抗拉与混凝土抗压的优点,表现出良好的受力性能,成为应用最普遍最广泛的结构形式,近年对水工结构、港工结构、桥梁结构、建筑结构的大量工程调查显示,钢筋混凝土结构表现出了严重的耐久性问题,许多既有钢筋混凝土结构工程往往达不到设计使用年限就需要进行加固修复,其中耐久性的降低是一大影响因素。钢筋混凝土结构耐久性问题的日益突出,引起了世界各国对加强钢筋混凝土结构耐久性研究的重视。 耐久性是指在确定的环境和维修、使用条件下,构件在设计使用年限内保持适用性、安全性的能力。钢筋混凝土结构在其使用过程中经常会受到各种各样的腐蚀和损伤,降低了构件的耐久性和结构的可靠度,导致工程的实际使用寿命往往短于设计使用年限。 影响耐久性的因素,混凝土的碳化,钢筋锈蚀,混凝土的冻融,碱-骨料反应等。 我国在钢筋混凝土耐久性问题上尚缺少全国性的系统资料,但从一些调查资料和发表的有关文献来看,钢筋混凝土耐久性问题也是极其严重的。中国建筑科学研究院的调查表明,我国现役工业建筑物损坏严重,其结构的使用寿命一般不能保证50年,多数在25-30年左右就必须进行大修或加固。1994年铁路部门的统计表明,我国铁路存在有病害的钢筋混凝土桥2675座,其中的722座发生裂损;仅使用20年的北京西直门立交桥,由于长期在冬季使用化冰盐,部分梁柱锈蚀严重,现己拆除重建。从发达国家所取得的经验来看,钢筋混凝土耐久性问题造成的损失己是惊人的。美国标准局(NBS)1975年的调查表明,美国每年因腐蚀造成的各种损失为700多亿美元,蚀破坏的修复费,1998年度就需要2500亿美元。英国为解决海洋环境下钢筋混凝土结构的腐蚀与防护问题和修复已损伤的钢筋混凝土结构,每年耗资将近200亿英镑,而日本引以为自豪的新干线,在运行10年后也出现大面积的混凝土开裂、剥蚀现象,日本运输省曾检查了其103座混凝土港口码头,发现使用20年以上的都有大量的顺筋裂缝,目前日本每年用于房屋结构维修的费用就达400亿日元。 混凝土结构耐久性降低首先起源于材料性能劣化,继而引起混凝土构件强度、刚度衰减,最后影响整个结构安全。由于客观条件,很多研究基于一般假设,如先钢筋锈蚀后加载试验,忽略荷载对混凝土力学性能劣化影响。在实际工程中绝大多数混凝土结构经受荷载和环境因素同时作用,混凝土在承受荷载时,混凝土本身力学性能退化;同时对钢筋保护作用降低,加速钢筋锈蚀,有效钢筋截面面积减小致使构件承载力降低,钢筋与混凝土黏结性能退化使得钢筋塑性不能充分发挥,降低结构延性。混凝土结构经受荷载和环境因素共同作用,荷载与环境等各因素产生的交互作用使得实际服役混凝土结构破坏过程复杂。研究荷载与环境综合作用下混凝土结构耐久性问题对实际工程更具有意义。 混凝土结构在荷载与一般大气环境综合作用下,荷载对混凝土碳化影响不容忽视,混凝土碳化与荷载大小(应力水平)和荷载形式(拉、压应力)等有关。当荷载应力抑制混凝土内部微裂缝发展时,混凝土碳化减缓; 而当荷载应力扩展混凝土内部微裂缝时,混凝土碳化加速。 荷载与特定大气环境( 如人工气候环境、盐雾大气环境、海洋大气环境等) 综合作用下构件耐久性研究成果甚少。张俊芝等试验研究了人工气候环境下承受荷载作用混凝土梁受压

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施 混凝土耐久性是指混凝土构件在长期使用条件下抵抗各种破坏因素作用而保持其原有性能的性质。近年来,随着混凝土技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。 标签:混凝土耐久性;主要因素;提高措施 1.影响混凝土耐久性的主要因素 1.1混凝土的抗渗性 混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。在钢筋混凝土中、由于水分与空气的渗透、会引起钢筋的锈蚀。钢筋的锈蚀导致其体积增大、造成钢筋周围的混凝土保护层的开裂与剥落、使钢筋混凝土结构失去其耐久性。渗透性对混凝土的抗冻性也有重要的影响。因为渗透性决定了混凝土可能为水饱和的程度。渗透性高的混凝土、其内部孔隙为水分充满、在水的冰冻压力作用下、混凝土内部结构更易于产生损伤与破坏。因此可以说、混凝土的抗渗性是其耐久性的第一道防线。混凝土与其微观结构的劣化和侵蚀性介质的传输有关、混凝土的渗透性取决于其自身的微结构和饱和水程度、是决定混凝土性能劣化的关键因素。因此可能通过检测混凝土的渗透性来评估其耐久性。 1.2混凝土的抗冻性 混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。这些因素包括:水分迁移路径的距离、混凝土的孔结构、混凝土的饱和度、混凝土的抗拉强度以及冷却速度等。提高混凝土的抗冻性可以采用以下措施; (1)引气:这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。一般说来、混凝土的抗冻性随着阴气量的增加而增加。而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。 (2)控制水灰比:水泥石内的大孔隙量与水灰比和水化程度有关。一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。由于表面张力的原因、大孔隙内的水比小孔隙内的水更易于結冰、因此、在同等条件下、水灰比大的水泥石内可结冰的水更多、发生冻融破坏的几率更大。 (3)降低饱和度:混凝土的饱和度对冻融破坏有很大的影响、干燥的或部分干燥的混凝土不容易受到冻融破坏。一般存在一个临界饱和度、当混凝土的含

普通混凝土耐久性研究

摘要 从上个世纪中期,混凝土结构因耐久性不良造成过早失效及崩塌破坏的事故在国内外都屡见不鲜,世界各国为此付出的代价十分沉重。由于工程安全因素更由于耗费巨资的经济因素,混凝土结构日益突出的耐久性问题,越来越受到世界各国学术界和工程界的广泛重视。提高混凝土的耐久性,对节约资源、能源及资金均有重大的意义。 通过阅读大量关于混凝土耐久性方面的文献资料,总结了国内外混凝土结构的耐久性状况和研究动态,明确了混凝土结构耐久性的意义和重要性。 本论文探讨了混凝土的腐蚀类型和腐蚀机理,包括了混凝土基材水泥的腐蚀类型和机理,钢筋的锈蚀机理和混凝土结构的腐蚀机理,总结了混凝土耐腐蚀性能的主要影响因素以及它与抗渗性能和抗冻性能之间的关系;讨论了原材料的选择,包括水泥品种、集料性质、拌合及养护用水的水质情况、外加剂的种类和掺合料对混凝土耐腐蚀性能的影响。 关键词:混凝土;耐久性;耐腐蚀性

目录 一、绪论 (2) (一)混凝土耐久性的含义 (2) (二)国内外混凝土耐久性研究动态 (2) 二、混凝土的腐蚀类型和腐蚀机理 (3) (一)腐蚀 (3) (二)水泥类材料的腐蚀机理 (3) (三)混凝土的耐腐蚀性与抗渗性和抗冻性之间的关系 (5) 三、原材料对混凝土耐腐蚀性能的影响 (5) (一)水泥 (5) (二)集料 (6) 四、普通混凝土高性能化 (6) (一)提高性能的技术途径 (6) (二)提高混凝土耐久性 (7) 五、结论与展望 (8) (一)结论 (8) (二)展望 (8)

普通混凝土耐久性研究 一、绪论 从19世纪20年代波特兰水泥价而成为土建工程中不可缺少的材料,广泛用于桥梁、大坝、高速公路、工业与民用建筑等结构中。据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,并且随着逐步增长的城市化建设,年消耗量在不断增长。 混凝土材料经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。但是近四五十年来,混凝土结构因材质劣化造成过早失效以及崩塌破坏的事故在国内外都屡见不鲜,并有愈演愈烈之势。这些混凝土工程的过早破坏,其原因不是强度不够,而是由于混凝土耐久性不良所造成。 (一)混凝土耐久性的含义 所谓的混凝土耐久性,是指其抵抗环境介质的作用,并长期保持良好的使用性能和外观完整性,从而维持混凝土结构的安全和正常使用的能力。 影响混凝土结构耐久性的因素很多,可分为内在因素和外在因素两大类。内在因素是指混凝土结构抵御环境的能力,由结构的设计形状和构造形式、选用的水泥和骨料的种类、外加剂的品种,钢筋保护层的厚度和直径的大小、混凝土的水灰比、浇注和养护的施工工艺等多种因素所决定。外在因素是环境对混凝土结构的物理和化学作用,包括干湿和冻融循环、碳化、化学介质侵蚀、磨损破坏等诸多方面,不同环境对混凝土结构耐久性的影响程度不尽相同,外在因素是通过内在因素而起作用的混凝土耐久性具体包括抗渗、抗冻、耐腐蚀、碳化、碱骨料反应及混凝土中的钢筋锈蚀等性能。虽然混凝土在遭受压力水、冰冻或侵蚀作用时的破坏过程各不相同,但影响因素却有许多相同之处。混凝土的密实度是最为关键的因素,其次是材料的性质、施工质量等。 (二)国内外混凝土耐久性研究动态 混凝土结构耐久性问题的日益突出,引起了世界各国学术机构、学者和工程技术人员对加强钢筋混凝土结构耐久性研究的重视,表现在各种结构耐久性学术

砂浆、混凝土防水剂

1 主题内容与适用范围 本标准规定了砂浆、混凝土防水剂的术语、分类、技术要求、试验方法、检验规则、 包装及贮存。 本标准适用于砂浆和混凝土防水剂。 2 引用标准 GB 178 水泥强度试验用标准砂 GB 751 水泥胶砂干缩试验方法 GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 2419 水泥胶砂流动度测定方法 GB 8076 混凝土外加剂 GB 8077 混凝土外加剂匀质性试验方法 JC 475 混凝土防冻剂 GBJ 82 普通混凝土长期性能及耐久性试验方法 3 术语 3 1 砂浆、混凝土防水剂 能降低砂浆、混凝土在静水压力下的透水性的外加剂。 3 2 基准混凝土(砂浆)

按照本标准规定的试验方法配制的不掺防水剂的混凝土(砂浆)。 3 3 受检混凝土(砂浆) 按照本标准规定的试验方法配制的掺防水剂的混凝土(砂浆)。 4 分类 防止剂可分为无机质、有机质及复合防剂。 5 技术要求 5 1 匀质性 匀质性应符合表1的规定 表1 _____________________________________________________________________ __________ 试验项目指标 含固量液体防水剂:应在生产厂控制值相对量的3%之内 含水量粉状防水剂:应在生产厂控制值相对量的5%之内 密度液体防水剂:应在生产厂控制值的±0 02之内 氯离子含量应在生产厂控制值相对量的5%之内 水泥净浆流动度应不小于生产厂控制值的95% 细度孔径≤0 32mm,筛余≤15%

_____________________________________________________________________ _________ 5 2 受检砂浆的性能 受检砂浆的性能应符合表2的规定。 表2 试验项目性能指标 一等品合格品 安全性合格合格 凝结时间初凝,min 不早于 45 45 终凝,h 不迟于 10 10 7d 100 95 抗压强度比,% 28d 90 85 不小于 90在 85 80 透水压力比,% 不小于 300 200 48h吸水量比,% 不小于 65 75 90d收缩率比,% 不大于 110 120 _____________________________________________________________________ _________ 注:除凝结时间、安全性为受检净浆的试验结果外,表中所列数据均为受检砂浆与基准 砂浆的比值。 5 3 受检混凝土的性能 受检混凝土的性能应符合表3的规定。 表3

混凝土耐久性研究论文.

网络高等教育 本科生毕业论文(设计) 题目:混凝土桥梁耐久性研究 学习中心: 层次:专科起点本科 专业: 年级:年秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 结合现代环境中的混凝土桥梁的耐久性研究的最新发展,首先介绍了混凝土结构破坏机理,其次结合工程实际讨论了耐久性设计中的关键问题,包括耐久性区段划分、保护层厚度、高性能混凝土、施工质量控制、耐久性措施、健康监测等。 关键词:混凝土桥梁;耐久性设计;高性能混凝土

目录 内容摘要 (1) 引言 (4) 1 绪论 (5) 1.1 混凝土耐久性的概念 (5) 1.2 混凝土耐久性对桥梁结构的重要性 (5) 1.3 本文主要研究内容及意义 (5) 2.1混凝土冻融循环 (7) 2.2.1影响因素 (7) 2.1.2 破坏机理 (7) 2.2 混凝土碳化 (8) 2.2.1 影响因素 (8) 2.2.2 破坏机理 (8) 2.3 混凝土渗透破坏 (10) 2.3.1 影响因素 (10) 2.3.2 破坏机理 (10) 2.4 碱骨料反应 (10) 2.4.1 影响因素 (10) 2.4.2 破坏机理 (11) 2.5 钢筋锈蚀 (11) 2.5.1 影响因素 (11) 2.5.2 破坏机理 (12) 2.6 化学侵蚀 (12) 2.6.1 影响因素 (12) 2.6.1 破坏机理 (12) 3 混凝土桥梁耐久性改善措施 (14) 3.1 选材方面 (14) 3.2 结构设计方面 (14) 3.3 施工方面 (15)

4 案例分析 (16) 4.1 工程概况 (16) 4.2 存在问题 (16) 4.3 改善措施 (17) 4 结论与建议 (18) 参考文献 (19)

混凝土结构耐久性研究

混凝土结构耐久性 1.1 混凝土结构耐久性问题的重要性 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,且一直被认为是一种非常耐久性的结构形式,其应用范围非常广泛。 然而,从混凝土应用于建筑工程至今的150年间,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限。这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的。特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,尤其是钢筋的锈蚀而造成结构的早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。耐久性失效是导致混凝土结构在正常使用状态下失效的最主要原因。 国内外统计资料表明,由于混凝土结构耐久性病害而导致的损失是巨大的,并且耐久性问题越来越严重。结构耐久性造成的损失大大超过了人们的估计。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。 因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。 正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。 图1-1 混凝土结构耐久性研究框架 ?????????????????????????????????????????????????耐久性评估耐久性设计结构层次构件承载力的变化粘结性能衰退模型混凝土锈胀开裂模型构件层次钢筋锈蚀碱-集料反应冻融破坏氯盐腐蚀混凝土碳化材料层次工业环境土壤环境海洋环境大气环境环境层次混凝土结构耐久性

各类防水剂配方

各类防水剂配方 2008-10-30 11:27 防水剂是能提高沙浆、混凝土防水性(或阻止吸水)或抗渗性而起防水作用的外加剂。它包括抗渗剂和防潮剂。抗渗剂能减少孔隙和填塞毛细通道,用以降低混凝土在静水压力下的透水性,氢氧化铝(或铁)、明矾、重铬酸钾(或钠),以及一些超细材料都可用作抗渗剂。防潮剂能堵塞浅层毛细孔,在混凝土表面形成憎水层,从而降低混凝上毛细吸水透水性。皂类金属盐如钙、钠、铵硬脂酸盐和油酸盐等;硬蜡酸悬浮液、硬脂酸丁脂,以及某些石油产品都可用作防潮剂。 松香酸钠加气防水剂 配方(公斤):松香1,氢氧化钠溶液(比重1.12~1.16)1.25,水5。 制法:将松香粉碎后过0.3~0.5厘米筛,然后加入煮沸的氢氧化钠溶液中,待松全部溶解后煮沸0.5~1小时,然后慢慢冷却至80~90℃,再加入60~70℃热水,配成5%浓度的松香酸钠溶液。 松香酸钠加气防水混凝土施工配合比如下(公斤/米3): 400号水泥340,砂640,碎石(5~40毫米)1210,水170,松香酸钠加入量为水泥重量的0.05%,氯化钙(10%)加入量为水泥重量0.075%。 松香酸钠入混凝土中,能产生大量细小封闭稳定气泡减少透水通路,达到防渗目的。 氢氧化铝密实防水剂 配方(%):氯化铝5,氯化钙15,盐酸(比重1.19)0.5,水79.5。 将配制的溶液稀释至5~10%浓度即可使用。在混凝土中的掺量为水泥重量的1.5~3%。将它掺入混凝土中能生成一种胶状悬浮颗粒,填充混凝土中微小的孔隙和堵塞毛细通路,有效地提高了混凝土的密实性和不透水性,其抗渗标号可达15~35公斤/厘米2。 氯化铁密实防水剂 配方(公斤):硫铁矿渣1,盐酸(比重大于1.15)2~3,铁屑0.2~0.3。 制法:将硫酸铁矿渣干燥到含水量不于2%,并除去油污,再与铁屑(占盐酸重量的5~10%)倒入盐酸中,每隔半小时搅拌一次,连续3小时,当澄清液的比重不小于400克/升,二氯化铁和三氯化铁的含量不小于400克/升,二氯化铁与三氯化铁之比为1 :1~1.3即为合格。配好的液体加入10%工业硫酸铝即为氯化铁防水剂。 氯化铁防水混凝土施工配比(重量比)如下: (一)(二) 水泥观音 1 1 砂 2.5 1.9 碎石(5~40毫米) 4.7 2.66 水0.6 0.46 氯化铁0.015 0.02 三乙醇胺防水剂 配方:三乙醇胺1,氯化钠水溶液(比重1.3)43。 拌合混凝土时,每袋水泥(50公斤)随水一次加入1.3公斤上述混合液即可。

混凝土结构耐久性设计方法与寿命预测研究进展_金伟良

文章编号:1000-6869(2007)01-0007-07 混凝土结构耐久性设计方法与寿命预测研究进展 金伟良,吕清芳,赵羽习,干伟忠 (浙江大学结构工程研究所,浙江杭州310027) 摘要:由混凝土结构耐久性定义入手,首先评述现有的混凝土结构耐久性设计方法,提出耐久性设计的发展应结合结构全生命周期成本(SLCC)的理念;其次总结了结构耐久性的评估和寿命预测方法的研究现状,认为耐久性的评估与寿命预测需要研究确立反映结构使用寿命的耐久性指标,并建立基于动态评估方法的寿命评估体系;最后提出上述方面发展领域尚待解决的一些基本问题,包括:界定给定环境和使用要求下的混凝土结构耐久性失效极限状态;确定表征材料与结构耐久特征的指标与参数;建立耐久性动态检测数据分析理论等。关键词:混凝土结构;耐久性;结构全生命周期成本(S LCC);综述中图分类号:TU375 文献标识码:A Research progress on the durability design and life prediction of concrete structures JI N Weiliang,L B Qingfang,ZHAO Yuxi,GAN Weizhong (Department of Civil Engineering,Zhejiang University,Hangzhou 310027,China) Abstract:This paper starts with the definition of concrete -struc tural durability.Then it presents that durability design method should be combined with the theory of Structural Life -Cycle C ost(SLC C)based on the survey of the recent durability design theories.Moreover,the current situation of evaluation and life prediction of durable concre te structures are summarized,which makes it necessary to determine a durability index reflecting service life and a dynamic life -assessment https://www.doczj.com/doc/2710365742.html,st,several basic problems in this domain are brought forth,including definition of durability limit state for c oncrete structures under given environmental condition and usage require ment,determination of inde xes and parameters representing the durability characters of materials as well as structures and establishment of theory for analysis of durability dynamic detection data.Keywords:concrete structure;durability;structural life -cycle cost(SLCC);summary 基金项目:国家自然科学基金重点项目/氯盐侵蚀环境的混凝 土结构耐久性设计与评估基础理论研究0(50538070) 资助。 作者简介:金伟良(1961) ),男,浙江大学结构工程研究所所 长,教授。 收稿日期:2006年8月 0 概述 混凝土结构是目前使用最为广泛的结构形式,由于混凝土结构材料自身和使用环境的特点,使混凝土 结构不可避免地存在耐久性问题。自混凝土结构问世 以来,大量的混凝土结构提前失效大多源于混凝土结构耐久性的不足。当前欧美等发达国家每年用于已有工程的维修费用都已占到当年土建费用总支出的1/2以上。我国在役以混凝土为主体的结构在数量上居于绝对支配地位,混凝土结构耐久性问题更加突出,存在着/南锈北冻0的耐久性破坏特征。5中国腐蚀调查报告6[1]指出,建筑部门的腐蚀年损失约为1000亿人民币,其经济损失以及对社会安定性的冲击力之大不言而喻。 随着我国东部地区经济的持续增长和西部大开发发展战略的实施,我国正以前所未有的巨大投资进行 7 第28卷第1期建 筑 结 构 学 报 Vol 128,No 112007年2月 Journal of Building Structures Feb 12007

清水混凝土耐久性研究的现状及展望

清水混凝土耐久性研究的现状及展望摘要:分析了国内学者对清水混凝土耐久性的研究进展,从影响耐久性的各个因素着手分别介绍了抗渗透性、抗腐蚀性、抗碳化性、抗冻融性能和抗风化抗污染性能的作用机理,从工程角度上提出了一些改善清水混凝土耐久性的措施。针对当前研究的不足之处,展望了其广阔的应用前景和发展优势,指出了其进一步研究发展的方向。 关键词:清水混凝土耐久性研究现状作用机理工程措施发展方向 [abstract]:the study on durability of as-cast finish concrete has some preliminary results. analyzed the influencing factor of the durability and taken some engineering measures to improve the durability of as-cast finish concrete, including permeability assistance, carbonization assistance, corrosivity assistance, freezing-thawing resisting performance, weather resistance and so on. at last, thinking about the current shortage on the study, previewed application prospect and pointed out the further development direction. [key words]:as-cast finish concrete/bare concrete; durability 中图分类号:tu528.38 文献标识码:a 文章编号:

特密斯(TMS)复合(膨胀、泵送)混凝土防水剂应用技术示范文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月 特密斯(TMS)复合(膨胀、泵送)混凝土防水剂应用技术示范文本

方案文书样本 QCT/FS-ZH-GZ-K634特密斯(TMS)复合(膨胀、泵送)混 凝土防水剂应用技术示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 分类20xx年科技成果推广转化指南项目 完成单位南京军区后勤部新技术开发研究所江苏镇江特密斯混凝土外加剂厂 鉴定单位江苏省计经委 鉴定日期1992-11-01 鉴定结果 简要说明推荐部门:江苏省建委 该成果具有防水、增强、提高砼塌落度等多种功能,能明显改善砼的抗渗性能,起到微膨胀补偿砼收缩,减少砼裂缝开展的作用,属高效复合泵送外加剂。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion 第2页/总2页

浅谈钢筋混凝土桥梁的耐久性

浅谈钢筋混凝土桥梁的耐久性 发表时间:2018-07-04T13:39:42.010Z 来源:《建筑学研究前沿》2018年第5期作者:丁洁 [导读] 随着科学技术的发展,钢筋、混凝土材料也得到了快速发展。钢筋混凝土结构的建筑发展历史远低于木质结构和钢制结构的建筑。浙江科欣工程设计咨询有限公司浙江杭州 310000 摘要:在进行桥梁结构设计初期,就需要结合桥梁所处地理位置、周围环境及实际运行环境对桥梁结构的耐久性进行合理设计。对于建设施工过程中可能影响桥梁耐久性的隐患因素采取合理的预防措施,力求在设计初期就能考虑到所有可能出现的问题。并采取有效的预防措施,以提高钢筋混凝土桥梁的耐久性。 关键词:钢筋混凝土;桥梁;耐久性 1钢筋混凝土桥梁结构的耐久性分析及其重要性 随着科学技术的发展,钢筋、混凝土材料也得到了快速发展。钢筋混凝土结构的建筑发展历史远低于木质结构和钢制结构的建筑。19世纪中期,随着钢筋和混凝土材料的发展,钢筋混凝土结构也迅速发展起来;到了19世纪下半叶,法国设计建筑了第一座钢筋混凝土结构桥梁,随之越来越多的钢筋混凝土结构桥梁逐渐问世,呈现在人们的视野范围内。据科学数据调研发现,截止到2007年底世界上钢筋混凝土桥梁总数超过57万座,桥梁建设已慢慢演变为基础设施工程建设的重要环节。由美国土木工程师学会2003年底发布的混凝土桥梁相关研究报告可以发现,世界上有1/4的钢筋混凝土桥梁耐久性不达标,严重影响了桥梁的后期运营寿命[1]。国内外相关工程研究人员对不同桥梁的耐久性进行比较分析发现,桥梁结构的构件损坏均由桥梁耐久性差引起。通过对近些年钢筋混凝土桥梁事故原因分析,钢筋腐蚀、结构机械磨损、桥梁冻融循环及混凝土碳化均是导致桥梁事故的主要原因,而引起这些桥梁故障的最终因素是桥梁耐久性差。 2影响桥梁耐久性的因素分析 影响桥梁耐久性的因素十分复杂,不考虑洪水、地震、超载及船舶的撞击,主要取决于以下三方面因素:一,混凝土材料、钢材的自身特性;若想保证桥梁的耐久性好一些,首先,一定要保证混凝土材料以及钢材的质量是绝对高的,然而就目前我国桥梁事业的施工现状来看,很多建设单位存在以次充好的现象,进而导致材料的质量不是很高,严重影响了桥梁的耐久性;二,桥梁结构所处的环境;我们都知道,任何物体都符合热胀冷缩的原理,针对于桥梁也是一样,而在桥梁发生热胀冷缩的过程中,桥梁的结构会发生改变,结构改变了,桥梁的耐久性自然就会降低,尤其是在北方地区,北方的天气冬夏温差比较大,冬天问题特别低,桥梁发生缩变,而夏天天气比较炎热,桥梁开始胀裂,这也是为什么桥面很容易存在裂缝的原因;三,桥梁结构的使用条件与防护措施。部分地区由于建筑行业比较发达,因此每天都会有大量的货车从桥梁上经过,长时间下来,桥梁的耐力自然就会降低很多,加上部分地区针对于桥梁的保护缺乏一定的意识,进而导致桥梁只被使用却不被保护的现象,久而久之,问题自然也就应运而生了。 3钢筋混凝土桥梁耐久性改善措施 3.1确保混凝土灌注的密实性 提升混凝土灌注的密实性是提升钢筋混凝土桥梁耐久性的重要措施之一,可以从水灰比、骨料及振捣工艺三方面入手,如精确把控水灰比,认真检查骨料质量以及严格按照规范进行混凝土振捣等,提升混凝土密实度。 3.2提升混凝土和钢筋间的黏附力 为保证混凝土各项性能指标满足施工需求,避免坍塌程度太大,需严格按照设计规范进行钢筋布设,混凝土振捣要充分,尽可能降低混凝土和钢筋间的缝隙。 3.3保证碱一集料反应工艺满足建设需求 为保障碱一集料反应工艺满足工程设计需求,需从以下方面入手:当混凝土施工过程中含钾、钠离子较多的混凝土添加剂在使用前需进行试验,以保证不影响混凝土施工质量;对于预应力混凝土原材料不得含有海砂,若必不可少时需先进行海砂淡化处理,降低氯离子含量不超过万分之二;实际施工中,水泥中碱含量不得超过0.6%。 3.4做好钢筋防锈蚀工作 为防止钢筋表面锈蚀,可从几方面入手:适当增设钢筋保护层厚度,钢筋材料可选取非金属材质,涂刷防护层于钢筋表面位置,采用阴极保护措施等。 3.5采取保护措施以及修复措施 当地应该结合地区的实际情况采取因地制宜的措施,针对于不同的地区的桥梁采用不同的保护方法,例如,针对于那些建筑行业比较发达,桥梁使用比较频繁且大都呈现超负荷现象的地区来说,可以适当地增加混凝土的厚度以及钢筋的数量;而针对于北方地区这种冷热变化比较大的地区,则是要改善桥梁的结构以及密度,进而实现耐久性的提升;针对于那些已经产生的桥梁问题,要及时进行修复,以保证问题不会恶化或者是深化,全面改善桥梁问题; 3.6提高桥梁防水功能 无论是钢筋的腐蚀还是混凝土的钝化,究其原因,都是因为水的进入,因此,若想改善桥梁的病害问题,最有效的方法就是实现防水功能的提升。例如,在设计上,相关的设计人员可以实现技术要求的控制以及提升,要采取一定的措施,加强铰缝连接,避免单板受力,从而保证桥面防水层整体性不被破坏,提升桥面的防水功能,改善桥梁的病害问题。。 3.7采取合理措施对梁体裂纹进行维护和保养 桥梁建设完成后,要定期对桥梁结构梁体开展检查维护,一经发现问题马上采取措施进行处理。此外,还需要定期检测桥梁排水情况,确保排水通畅,杜绝长时间积水引起桥梁结构损坏。 3.8关注行车环境及天气等环境因素对桥梁造成影响 在进行桥梁结构线路设计时需关注行车环境和天气情况,确保桥梁正常桥上线路设计,也应该将行车环境和天气条件对梁体产生影响考虑在内;要确保桥梁的正常运营期间来往行车不受影响;同时,桥梁的长期运行情况受天气条件影响很严重。此外,需实地开展桥体结构的检查,避免桥身损坏出现裂缝,影响运行。 结束语 近几年来,随着我国交通事业的不断发展,桥梁建设力度逐渐加大,城市桥梁和公路桥梁的负荷也越来越重,造成混凝土结构桥梁的

相关主题
文本预览
相关文档 最新文档