当前位置:文档之家› 正弦定理练习题(经典)

正弦定理练习题(经典)

正弦定理练习题(经典)
正弦定理练习题(经典)

正弦定理练习题

1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .26

2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )

A .4 2

B .4 3

C .4 6 D.323

3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

A .1 B.12 C .2 D.14

4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )

A .45°或135° B.135° C.45° D.以上答案都不对

5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于

( ) A. 6 B .2 C. 3 D.2

6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )

A .1∶5∶6

B .6∶5∶1

C .6∶1∶5

D .不确定

7.在△ABC 中,若cos A cos B =b a

,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形

8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3

,则A =________.

9.在△ABC 中,已知a =433

,b =4,A =30°,则sin B =________.

10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.

11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.

12 . 判断满足下列条件的三角形个数

(1)b=39,c=54,?

=120C 有________组解

(2)a=20,b=11,?=30B 有________组解

(3)b=26,c=15,?=30C 有________组解

(4)a=2,b=6,?=30A 有________组解 正弦定理

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )

A. 6

B. 2

C. 3 D .26

a sin A=

b

sin B,求得

b=

a sin B

sin A= 6.

解析:选A.应用正弦定理得:

2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )

A .4 2

B .4 3

C .4 6 D.323

解析:选C.A =45°,由正弦定理得b =a sin B sin A

=4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

A .1 B.12 C .2 D.14

解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°

=1.

4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )

A .45°或135° B.135° C.45° D.以上答案都不对

解析:选C.由正弦定理a

sin A =b sin B 得:sin B =b sin A a =22

,又∵a >b ,∴B <60°,∴B =45°.

5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于

( ) A. 6

B .2 C. 3 D.2 解析:选D.由正弦定理得6sin120°=2sin C

, ∴sin C =12

. 又∵C 为锐角,则C =30°,∴A =30°,

△ABC 为等腰三角形,a =c = 2.

6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )

A .1∶5∶6

B .6∶5∶1

C .6∶1∶5

D .不确定

解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.

7.在△ABC 中,若cos A cos B =b a

,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形

解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A

, sin A cos A =sin B cos B ,∴sin2A =sin2B

即2A =2B 或2A +2B =π,即A =B ,或A +B =π2

. 8.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )

A.32

B.34

C.

3

2

或 3 D.

3

4

3

2

解析:选D.AB

sin C=AC

sin B,求出sin C=

3

2

,∵AB>AC,

∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.

再由S △ABC =12

AB ·AC sin A 可求面积. 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3

,则A =________. 解析:由正弦定理得:a sin A =c sin C

, 所以sin A =a ·sin C c =12

. 又∵a <c ,∴A <C =π3,∴A =π6

. 答案:π6

10.在△ABC 中,已知a =433

,b =4,A =30°,则sin B =________. 解析:由正弦定理得

a sin A =

b sin B ?sin B =b sin A a =4×1

2433=32

. 答案:32

11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,

由a sin A =b sin B 得,a =12×sin30°sin120°

=43, ∴a +c =8 3.

答案:83

12.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.

解析:∵B b C c sin sin =,有B sin 3430sin 2=?,得sinB=13> ∴此三角形无解.

答案:0

一,二,二,无

如有侵权请联系告知删除,感谢你们的配合!

2018年必修五《正弦定理》教案

§1.1.2 正弦定理 一、知识与技能 1会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题 2通过三角函数、正弦定理等多处知识间联系来体现事物之间的普遍联系与辩证统一. 3.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、教学重点与难点: 重点:正弦定理的探索及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【授课类型】:习题拔高课 四、教学过程 一、知识回顾 1正弦定理的内容是什么? 二、例题讲解 例 1试推导在三角形中 A a s i n =B b sin =C c sin =2R 其中R 是外接圆半径. 证明 如图所示,∠A =∠D ∴R CD D a A a 2sin sin === 同理B b sin R 2=,C c sin R 2= ∴ A a sin = B b sin =C c sin =2R a b c O B C A D

例2 在C A a c B b ABC ,,1,60,30和求中,===? 解:∵213 60sin 1sin sin ,sin sin 0=?==∴=b B c C C c B b ,C B C B c b ,,60,0<∴=> 为锐角, 0090,30==∴B C ∴222=+=c b a 例3 C B b a A c ABC ,,2,45,60和求中,===? 解2 3245sin 6sin sin ,sin sin 0=?==∴=a A c C C c A a 0012060,sin 或=∴<

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

必修五正弦定理和余弦定理

必修五第一讲 正弦定理 知识梳理 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C . 2.解三角形:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 题型分析 [例1] 在△ABC 中,已知a [解] A =180°-(B +C )=180°-(60°+75°)=45°.由 b sin B =a sin A 得,b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A = c sin C 得, c =a sin C sin A =8×sin 75°sin 45°=8×2+642 2=4(3+1).∴A =45°,b =46,c =4(3+1). [变式训练]在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 解:∵A =45°,C =30°,∴B =180°-(A +C )=105°.由 a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=10 2. 由 b sin B = c sin C 得b =c sin B sin C =10×sin 105°sin 30°=20sin 75°,∵sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45° =2+64,∴b =20×2+64 =52+5 6. [例2] 在△ABC [解] ∵a sin A =c sin C ,∴sin C =c sin A a =6×sin 45°2=32,∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b = c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. [变式训练]在△ABC 中,若c =6,C =π3 ,a =2,求A ,B ,b . 解:由a sin A =c sin C ,得sin A =a sin C c =22.∴A =π4或A =34π.又∵c >a ,∴C >A ,∴只能取A =π4 , ∴B =π-π3-π4=5π12,b =c sin B sin C =6·sin 5π12sin π3=3+1.

苏教版数学必修五:1.1正弦定理(二)【教师版】

课题:§1.1 正弦定理(二) 总第____课时 班级_______________ 姓名_______________ 【学习目标】 掌握正弦定理的内容及其等价形式;会运用正弦定理、内角和定理与三角形的面积公式解决一些与测量和几何计算与证明有关的实际问题. 【重点难点】 学习重点:正弦定理的等价形式及其基本应用. 学习难点:已知两边和其中一边的对角解三角形时判断解的个数. 【学习过程】 一、自主学习与交流反馈: 问题1:对于任意的三角形若已知两边及夹角怎样求三角形的面积? 问题2:正弦定理还有哪些等价的变形形式? 二、知识建构与应用: 例1 在ΔABC 中,已知 C c B b A a cos cos cos ==,试判断ΔABC 的形状. 例2 在ΔABC 中,AD 是∠BAC 的平分线,如图,用正弦定理证明: DC BD AC AB =. 例 3 某登山队在山脚处测得山顶的仰角为,沿倾斜角为的斜坡前进A B 35?20?1000180?-βαβαD C B A

米后到达处,又测得山顶的仰角为,求山的高度. 例4 判断下列三角形解的情况: (1)已知; (2)已知; (3)已知. 四、巩固练习 D 65?060,12,11 ===B c b 0 110,3,7===A b a 045,9,6===B c b

1.在ΔABC 中,已知,150,3,2o ===C b a 则=?ABC S . 2.在中,_________,sin 23==B A b a 则. 3.在中,若,60,3?==A a 那么的外接圆的周长为____ ____. 4.在中,若,则 . 5. 在中, ______,cos cos 的形状为则ABC B C b c ?=. ABC ?ABC ?ABC ?ABC ?3,600==a A _______sin sin sin =++++C B A c b a ABC ?

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

苏教版高中数学必修五正弦定理教案

第 1 课时: §1.1 正弦定理(1) 【三维目标】: 一、知识与技能 1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程; 2.能解决一些简单的三角形度量问题(会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题);能够运用正弦定理解决一些与测量和几何计算有关的实际问题; 3.通过三角函数、正弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一. 4.在问题解决中,培养学生的自主学习和自主探索能力. 二、过程与方法 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 三、情感、态度与价值观 1.培养学生在方程思想指导下处理解三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 【教学重点与难点】: 重点:正弦定理的探索和证明及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 【学法与教学用具】: 1. 学法:引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C == ,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 2. 教学用具:多媒体、实物投影仪、直尺、计算器 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 1.在直角三角形中的边角关系是怎样的? 2.这种关系在任意三角形中也成立吗? 3.介绍其它的证明方法 二、研探新知 1.正弦定理的推导 (1)在直角三角形中:c a A = sin ,1sin ,sin ==C C B B , 即 =c A a sin ,=c B b sin ,=c C c sin ∴A a sin =B b sin =C c sin 能否推广到斜三角形? (2)斜三角形中 证明一:(等积法,利用三角形的面积转换)在任意斜△ABC 中,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111 sin sin sin 222 ABC S ab C ac B bc A ?= ==,每项

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且 75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

b8版高中数学必修5正弦定理2

本文为自本人珍藏 版权所有 仅供参考 正弦定理 教学目标 (1)要求学生掌握正弦定理及其证明; (2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点 正弦定理的推导及其证明过程. 教学过程 一.问题情境 在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢? 探索1 我们前面学习过直角三角形中的边角关系,在R t A B C ?中,设90C =?,则 sin a A c = , sin b B c = , sin 1C =, 即:sin a c A = , sin b c B = , sin c c C = , sin sin sin a b c A B C = = . 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动 学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学 探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法 1 若C 为锐角(图(1)),过点A 作A D B C ⊥于D ,此时有 sin A D B c = , sin A D C b = ,所以sin sin c B b C =,即sin sin b c B C = .同理可得sin sin a c A C = ,

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

(完整版)必修五;正弦定理与余弦定理

必修五:正弦定理和余弦定理 一:正弦定理 1:定理内容:在一个三角形中,各边的长和它所对角的正弦的比相等,即 R C c B b A a 2sin sin sin ===(R 是三角形外接圆半径) 2:公式变形 (1)R A a C B A c b a 2sin sin sin sin ==++++ (2)?? ???C R c B R b A R a sin 2sin 2sin 2===或R c C R b B R a A 2sin ,2sin ,2sin === (3)?? ???B c C b A c C a A b B a sin sin sin sin sin sin === (4)R abc A bc B ac C ab S ABC 4sin 21sin 21sin 21====? 以下是ABC ?内的边角关系:熟记 (5)B A B A b a >?>?>sin sin (大边对大角) (6)B A B A cos cos (7)?? ???+=+=+=)sin(sin )sin(sin )sin(sin B A C C A B C B A 思考A cos 与)cos(C B +的关系 (8)2 cos 2sin C B A += (9)若AD 是ABC ?的角平分线,则 AC DC AB DB = 思考题: 1:若B A sin sin =,则B A ,有什么关系? 2:若B A 2sin 2sin =,则B A ,有什么关系? 3:若B A cos cos =,则B A ,有什么关系? 4:若2 1sin > A ,则角A 的范围是什么?

解三角形:已知三角形的几个元素,求其他元素的过程叫做解三角形. 例1:已知ABC ?,根据下列条件,解三角形. (1)10,45,60=?=∠?=∠a B A . (2)?=∠==120,4,3A b a . (3)?=∠==30,4,6A b a . (4)?=∠==30,16,8A b a . (5)?=∠==30,4,3A b a . 思考:在已知“边边角”的情况下,如何判断三角形多解的情况 判断方法:(1)用正弦定理:比较正弦值与1的关系 (2)作图法:用已知角所对的高与已知角所对的边长比较. 练习:(1)若?=∠==45,12,6A b a ,则符合条件的ABC ?有几个? (2)若?=∠==30,12,6A b a ,则符合条件的ABC ?有几个? (3)若?=∠==45,12,9A b a ,则符合条件的ABC ?有几个? 例2:根据下列条件,判断三角形形状. (1)C B A 2 22sin sin sin =+. (2)C B A cos sin 2sin = (3)B b A a cos cos = (4)A b B a tan tan 22=

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

人教A版高中数学必修五正弦定理(一)

高中数学学习材料 金戈铁骑整理制作 正弦定理(一) ●作业导航 掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题. 一、选择题(本大题共5小题,每小题3分,共15分) 1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60° D .60°或120° 2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18 C .93 D .18 3 3.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2 D .3∶1∶2 4.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为( ) A .(2,+∞) B .(-∞,0) C .(-2 1,0) D .(2 1,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 二、填空题(本大题共5小题,每小题3分,共15分) 1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 2.在△ABC 中,若b =2c sin B ,则∠C =________. 3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________. 4.已知△ABC 的面积为2 3 ,且b =2,c = 3,则∠A =________. 5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________. 三、解答题(本大题共5小题,每小题6分,共30分) 1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.

高中数学必修5 正弦定理

正弦定理 教学目标 (1)要求学生掌握正弦定理及其证明; (2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. (4)熟记正弦定理 2sin sin sin a b c R A B C ===(R 为ABC ?的外接圆的半径)及其变形形式. 教学过程 一.问题情境 在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢? 探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ?中,设90C =?,则 sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b c A B C ==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动 学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学 探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法 1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin AD C b =,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a c A C =, 所以sin sin sin a b c A B C ==.

高中数学必修五《正弦定理》说课稿

高中数学必修五《正弦定理》说课稿 大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。 一教材分析 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。 根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水 平,制定如下教学目标: 认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理, 培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工 具,将几何问题转化为代数问题。 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间 的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学 生学习的兴趣。 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断 解的个数。 二教法 根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点 三学法: 指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

人教A版高中数学必修五正弦定理教案

1.1.1正弦定理 (一)教学目标 通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 (二)教学重、难点 重点:正弦定理的探索和证明及其基本应用。 难点:已知两边和其中一边的对角解三角形时判断解的个数。 (三)学法: 引导学生首先从直角三角形中揭示边角关系: sin sin sin a b c A B C = = ,接着就一般斜三角形进行 探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。 (四)教学过程 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义, 有 sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === 从而在直角三角形ABC 中,sin sin sin a b c A B C == (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B (图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。 (证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+ 则 ()j AB j AC CB ?=?+

相关主题
文本预览
相关文档 最新文档