当前位置:文档之家› 15研究微生物的基本方法

15研究微生物的基本方法

15研究微生物的基本方法
15研究微生物的基本方法

第5章研究微生物的基本方法

随着现代医学及相关科学技术的发展,各学科相互交叉和渗透,医学微生物学检验技术已深入到细胞、分子和基因水平,许多新技术、新方法已在临床微生物实验室得到广泛应用。医学微生物学实验室的基本任务之一是利用微生物学检验技术,准确、快速检验和鉴定临床标本中的微生物,并对引起感染的微生物进行耐药性监测,为临床对感染性疾病诊断、治疗、流行病学调查及研究等提供科学依据。

第一节显微镜观察

由于细菌个体微小,肉眼不能看到,必须借助显微镜的放大才能看到。一般形态和结构可用光学显微镜观察,其内部的超微结构则需用电子显微镜才能看清楚。常用显微镜有如下几种。

1.普通光学显微镜

采用自然光或灯光为光源,其波长约为0.4μm。显微镜的分辨率为波长的二分之一,即0.2μm,而肉眼可见的最小形象为0.2mm。故用油(浸)镜放大1 000倍,能将0.2μm的微粒放大成肉眼可见的0.2mm。普通光学显微镜可用于细菌、放线菌和真菌等的观察。

2.暗视野显微镜

常用于观察不染色微生物形态和运动。在普通显微镜安装暗视野聚光器后,光线不能从中间直接透入,视野呈暗色,当标本接受从聚光器边缘斜射光后可发生散射,因此可在暗视野背景下观察到光亮的微生物如细菌或螺旋体等。

3.相差显微镜

相差显微镜利用相差板的光珊作用,改变直射光的光位相和振幅,将光相的差异转换为光强度差。在相差显微镜下,当光线透过不染色标本时,由于标本不同部位的密度不一致而引起光相的差异,可观察到微生物形态、内部结构和运动方式等。

4.荧光显微镜

荧光显微镜与普通光学显微镜基本相同,主要区别在于光源、滤光片和聚光器。目前大多数使用的是落射光装置,常用高压汞灯作为光源,可发出紫外光或蓝紫光。滤光片有激发滤光片和吸收滤光片二种。用蓝光的荧光显微镜除可用一般明视野聚光器外,也可用暗视野聚光器,以加强荧光与背景的对比。本法适用于对荧光色素染色或与荧光抗体结合的细菌的检测或鉴定。

5.电子显微镜

用电子流作为光源,波长与可见光相比差几万倍,大大提高了分辨力,并用磁性电圈作为光学放大系统,放大倍数可达数万倍或几十万倍,常用于病毒颗粒和细菌超微结构的观察。

8.2制片和染色

一. 非染色标本

非染色标本一般可用于观察细菌形态、动力及运动情况。细菌未染色时无色透明,在显微镜下主要靠细菌的折光率与周围环境的不同来进行观察。有鞭毛的细菌运动活泼,无鞭毛的细菌则呈不规则布朗运动。梅毒苍白密螺旋体、钩端螺旋体、弯曲杆菌等的活菌各有特征

鲜明的形态和运动方式,具有诊断意义。常用的方法有压滴法、悬滴法和毛细管法等。

1.悬滴法

在洁净凹玻片的凹孔四周涂上凡士林,用接种环取一环菌悬液放在盖玻片中央,再将凹玻片的凹孔对准盖玻片中央的液滴并盖上,然后迅速翻转,轻压盖玻片,使其与凹孔边缘的凡士林粘紧封闭后置高倍镜下(或暗视野)观察。

2.压滴法

用接种环取一环菌悬液置于洁净玻片的中央,在菌悬液上轻轻盖上一盖玻片,注意避免产生气泡并防止菌悬液外溢,静止数秒钟后置高倍镜下明视野(或暗视野)观察。

3.毛细管法

主要用于厌养菌动力的检查。通常选用60~70mm长。0.5~1.0mm孔径的毛细管虹吸厌养菌悬液后,用火焰将毛细管两端熔封。并用塑胶纸将毛细管固定在载玻片上,置高倍镜下暗视野观察。

二、染色标本检查

细菌标本经染色后,由于细菌与周围环境间在颜色上形成鲜明对比,故在普通光学显微镜下可清楚地观察到细菌的形态特征(如细菌的大小、形状、排列等)和某些特殊结构(如荚膜、鞭毛、芽孢等),并可根据染色反应性对细菌加以分类鉴定。

(一)细菌染色的一般程序

细菌染色的一般程序是:涂片(干燥)—固定—染色(媒染)—(脱色)—(复染)。

1.涂片制备

血液、分泌物、排泄物、穿刺液和液体培养物,直接在载玻片上作薄膜涂片;尸检或感染动物组织,病变局部涂抹采样的棉拭子直接涂片。固体培养基上的菌落或菌苔的制片,先用接种环取一环生理盐水置载玻片中央,再用无菌接种环取少量的培养物在生理盐水中磨匀,涂布成1cm2大小的涂面,置室温下自然干燥或远火慢慢烘干。

2.固定

目的是杀死细菌,凝固细菌蛋白及结构,便于染色;促使细菌粘附在载玻片上,避免在水洗过程中被水冲掉;改变细菌对染料的通透性,有利于菌细胞内结构的染色。通常用火焰加热固定,将已干燥的涂片在火焰中迅速通过3次,以手背皮肤接触玻片不烫为佳。

3.染色

根据检验目的不同,选择不同的染色方法进行染色。染色时滴加染液,以复盖标本为度。

4.媒染

凡能增强染料和被染物的亲和力,使染料固定于被染物及能引起细胞膜通透性改变的物质,称媒染剂。常用的有明矾、鞣酸、金属盐和碘等,也有用加热法促进着色。媒染剂可用于初染与复染之间,也可用于固定之后或含于固定液、染色中。

5.脱色

凡能使已着色的被染物脱去颜色的化学试剂称为脱色剂。常用乙醇、丙酮等作为脱色剂。脱色剂可以查出细菌与染料结合的稳定程度,作为鉴别染色之用。

6.复染

已脱色处理的细菌或其结构常以复染液作复染以便于观察。复染液与初染液的颜色不同而成一鲜明对比。复染不宜太强,以免掩盖初染的颜色。

(二)常用染色法

1. 单染色法

只用一种染料染色。由于大多数细菌胞浆内含有酸性物质,可与碱性染料结合,故常用吕氏美蓝、结晶紫和稀释石碳酸复红等染液。此法可观察细菌的大小、形态与排列,不能显示细菌的结构与染色特性。

2.复染色法

用两种或两种以上不同染料可将细菌染成不同的颜色,除可观察细菌的大小、形态与排列外,还反应出细菌染色特性,具有鉴别细菌种类的价值。常用的有革兰染色法和抗酸染色法。

(1)革兰染色:①细菌涂片经火焰固定,加结晶紫染液染1min,清水冲去染液。②加碘液媒染 1min,水洗,甩干。③用95%乙醇脱色,轻轻摇动约30s,至无紫色洗落为止,水洗,甩干。④加稀释石碳酸复红或沙黄染液数滴进行复染,约30s,水洗。⑤干后显微镜下镜检观察结果,革兰阳性菌染成紫色,革兰阴性菌为红色。

(2)抗酸染色:萋-尼 (Ziehl-Neelse)抗酸染色法:①细菌涂片经火焰固定,加石炭酸复红溶液,徐徐加热至有蒸气出现,切不可沸腾。染液因蒸发减少时,应随时补充,防止染液蒸干。持续染5min(奴卡菌需要加长时间),水洗,甩干。②滴加3%盐酸乙醇脱色,不时摇动玻片至无红色脱落为止,水洗,甩干。③加吕氏美蓝复染液数滴复染1min,水洗。④干后显微镜下镜检观察结果,抗酸杆菌染成红色,非抗酸杆菌为蓝色。

金胺O-罗丹明B染色法:①细菌涂片固定后加第1液30~90s。②弃去第1液后加第2

液染15min。③用第3液脱色1~2min,水洗。④滴加第4液染30s,水洗,⑤干后置荧光显微镜下镜检观察结果在淡蓝色背景下,抗酸杆菌呈红色,其它细菌和细胞呈蓝色。

3.特殊染色法

(1)鞭毛染色(改良Ryu法):①玻片的处理将新载玻片浸泡在95%乙醇中。临用时取出,以干净纱布擦干。②在玻片上滴蒸馏水1滴。③挑取培养物少许,轻触蒸馏水滴顶部,仅允许极少量细菌进入水滴,不可搅动,以免鞭毛脱落。④置35℃孵箱自然干燥,不能用火焰固定,滴加鞭毛染液染1~2 min轻轻水洗。⑤干后显微镜镜检观察结果鞭毛和菌体呈紫色。

(2)异染颗粒染色(阿尔培托法):①细菌涂片经火焰固定,加甲液染色3~5min。水洗。

②滴加乙液,染1min。水洗。③干后显微镜镜检观察结果菌体呈绿色,异染颗粒呈蓝黑色,用于白喉棒状杆菌染色。

(3)荚膜染色:①奥尔特荚膜染色法:将已固定的细菌涂片滴加3%沙黄染液,用火焰加温染色,持续3min,冷却后水洗,待干镜检。结果:菌体呈褐色,荚膜呈黄色,此法主要用于碳疽芽胞杆菌。②Hiss氏硫酸铜法:染液:第一液为结晶紫乙醇饱和液5ml加蒸馏水95ml 的混合液;第二液为20%硫酸铜水溶液。方法:细菌涂片自然干燥,乙醇固定。滴加第一液,微加热染1min。再用第二液将涂片上的染液洗去,勿再水洗,倾去硫酸铜液,以吸水

纸吸干镜检。结果:菌体及背景呈紫色,荚膜呈鲜蓝色或不着色。

(4)芽胞染色:染液:第一液为萋-纳氏石炭酸复红液,第二液为95%乙醇,第三液为碱性美蓝液。方法:将已固定的细菌涂片滴加第一液,微加热染5min,冷却后水洗。用第二液脱色2min,水洗。加第三液复染1min,水洗,待干镜检。结果:菌体呈蓝色,芽胞呈红色。

4.负染色法

背景着色而菌体本身不着色的染色为负染色法。最常见的是墨汁负染色法,用来观察真菌及细菌荚膜等。在标本涂片处滴加染液,混合后加上盖玻片(勿产生气泡),轻压。在低倍镜下寻找有荚膜的菌细胞,转高倍镜或油镜确认,如新型隐球菌可见宽厚透亮的荚膜,背景为黑色。

5.荧光染色法

经荧光素染色的细菌,或荧光素标记的荧光抗体与相应抗原的细菌、病毒结合形成的复合物,在荧光显微镜下发出荧光。

8.3 微生物接种和培养

大多数细菌均可以通过人工方法培养,而衣原体和病毒的分离培养往往需要活组织、鸡胚、特殊细胞株及动物接种。只有将微生物培养出来才能对它进行研究、鉴定和应用。

一、接种与分离方法

根据待检标本的性质、培养目的和所用培养基的种类,采用不同的接种方法。

1.平板划线分离培养法

对混有多种细菌的临床标本,采用划线分离和培养,使原来混杂在一起的细菌沿划线在琼脂平板表面分离,得到分散的单个菌落,以获得纯种。临床送检的标本如痰、咽试子、泌尿生殖道的分泌物和粪便等细菌检验均需要借助琼脂平板划线分离目的菌。平板划线分离法通常有两种方法:

(1)分区划线分离法:此法常用于含菌量较多的标本如痰、泌尿生殖道的分泌物和粪便或混合细菌的分离。先用接种环挑取标本涂布于琼脂平板1区(占培养基总面积的1/4)并作数条划线,再于2、3、4区依次划线。每划完一个区域,均将接种环烧灼灭菌1次,冷后再划下一区域,每一区域的划线均与上一区域的划线交接1~3次。一个成功分区划线的平板,培养后分别观察1区形成菌苔,2区菌落连成线,3区和4区可分离到单个菌落。

(2)连续划线分离法:此法常用于含菌量不多的标本或培养物中的细菌分离培养。方法是先将接种物在琼脂平板上1/5处轻轻涂抹,然后再用接种环或拭子在平板表面曲线连续划线接种,直至划满琼脂平板表面。

2.琼脂斜面接种法

主要用于菌落的移种,以获得纯种进行鉴定和保存菌种等。用接种环(针)挑取单个菌落或培养物,从培养基斜面底部向上划一条直线,然后再从底部沿直线向上曲折连续划线,直至斜面近顶端处止。生化鉴定培养基斜面接种,用接种针挑取待鉴定细菌的菌落,从斜面中央垂直刺入底部,抽出后在斜面上由下至上曲折划线接种。

3.穿刺接种法

此法多用于半固体培养基或双糖铁、明胶等具有高层的培养基接种,半固体培养基的穿

刺接种可用于观察细菌的动力。接种时用接种针挑取菌落,由培养基中央垂直刺入至距管底0.4cm处,再沿穿刺线退出接种针。双糖铁等有高层及斜面之分的培养基,穿刺高层部分,退出接种针后直接划线接种斜面部分。

4.液体培养基接种法

用于各种液体培养基如肉汤、蛋白胨水、糖发酵管等的接种。用接种环挑取单个菌落,倾斜液体培养管,在液面与管壁交界处研磨接种物(以试管直立后液体淹没接种物为准)。此接种法应避免接种环与液体过多接触,更不应在液体中混匀、搅拌,以免形成气溶胶,造成实验室污染。

5.倾注平板法

本法主要用于饮水、饮料、牛乳和尿液等标本中的细菌计数。取纯培养物的稀释或原标本1ml至无菌培养皿内,再将已融化并冷却至45~50℃左右的琼脂培养基15~20ml倾注入该无菌培养皿内,混匀,待凝固后置37℃培养,长出菌落后进行菌落计数,以求出每毫升标本中所含菌数。先数6个方格(每格为1cm2)中菌落数,求出每格的平均菌落数,并算出平皿直径,然后按下列公式计数,求出每毫升标本中的细菌数。

全平板菌落数=每方格的平均菌落数×лr2

每ml标本中的细菌数=全平板菌落数×稀释倍数

6.涂布接种法

本法多用于纸片扩散法药敏试验的细菌接种。将一定量或适量的菌液加到琼脂培养基表面,然后用灭菌的L型玻璃棒或棉拭子于不同的角度反复涂布,使被接种液均匀分布于琼脂表面,然后贴上药敏纸片,或直接培养,本法经培养后细菌形成菌苔。

二、细菌的培养方法

根据不同的标本及不同的培养目的,可选用不同的培养方法。通常把细菌的培养方法分为需氧培养、二氧化碳培养、微需氧培养和厌氧培养四种。

1.需氧培养

是指需氧菌或兼性厌氧菌在有氧条件下的培养,将已接种好的平板、斜面、液体培养基等在空气中置35℃孵育箱内孵育18~24h,无特殊要求的细菌均可生长。少数生长缓慢的细菌需要培养3-7d甚至1个月才能生长。为使孵育箱内保持一定的湿度,可在其内放置一杯水。对培养时间较长的培养基,接种后应将试管口塞好棉塞或硅胶塞后用石蜡-凡士林封固,以防培养基干裂。

2.二氧化碳培养

某些细菌,如肺炎链球菌、淋病奈瑟菌、脑膜炎奈瑟菌、布鲁氏菌和流感嗜血杆菌等的培养,特别是在初次分离时,须在5%~10 %二氧化碳环境中培养才能生长。常用的培养法如下。

(1)二氧化碳培养箱法:二氧化碳孵箱能自动调节二氧化碳的含量、温度和湿度,培养物置于孵育箱内阁,孵育一定时间后可直接观察生长结果。

(2)烛缸培养法:取有盖磨口标本缸或玻璃干燥器,将接种好的培养基放入缸内,点燃蜡烛后放在缸内稍高于培养物的位置上,缸盖或缸口均涂以凡士林,加盖密闭。因缸内蜡烛

燃烧氧逐渐减少,数分钟后蜡烛自行熄灭,此时容器内二氧化碳含量约占5%~10%。将缸置于35℃普通孵育箱内孵育。

(3)气袋法:选用无毒透明的塑料袋,将已接种标本的培养皿放入袋内,尽量祛除袋内空气后将开口处折叠并用弹簧夹夹紧袋口。使袋呈密闭状态,执断袋内已置的二氧化碳产气管(安瓿)产生二氧化碳,数分钟内就可达到需要的二氧化碳培养环境,置于35℃孵育箱内孵育。

(4)化学法:常用碳酸氢钠-盐酸法。按每升容积称取碳酸氢钠0.4g与浓盐酸0.35ml 比例,分别置容器内,连同容器置于玻璃缸内,盖紧密封,倾斜缸位使盐酸与碳酸氢钠接触而生成二氧化碳。于35℃孵育箱内孵育。

3.微需氧培养

微需氧菌培养在大气中及绝对无氧环境中均不能生长,在含有5%-6% 氧气,5%-10%二氧化碳和85%氮气的气体环境中才可生长,将标本接种到培养基上,置于上述气体环境中,35℃进行培养即微需氧培养法。

4.厌氧培养

厌氧菌对氧敏感,培养过程中需造成低氧化还原电势的厌氧环境。厌氧培养常用的方法有:物理法、化学法、生物法。如厌氧罐培养法、气袋法、厌氧手套箱法、需氧菌共生厌氧法等。

三、细菌在培养基上生长特性

1.固体培养基

标本或液体培养物划线接种到固体培养基表面后,单个细菌经分裂繁殖可形成一个肉眼可见的细菌集团,称为菌落(colony)。

(1)菌落的形态特征:大小、形状(露滴状、圆形、菜花样、不规则等)、突起或扁平、凹陷、边缘(光滑、波形、锯齿状、卷发状等)、颜色(红色、灰白色、黑色、绿色、无色、黄色等)、表面(光滑、粗糙等)、透明度(不透明、半透明、透明等)和粘度等。据细菌菌落表面特征不同,可将菌落分为3型:①光滑型菌落(S型菌落):菌落表面光滑、湿润、边缘整齐,新分离的细菌大多呈光滑型菌落。②粗糙型菌落(R型菌落):菌落表面粗糙、干燥、呈皱纹或颗粒状,边缘大多不整齐。R型菌落多为S型细菌变异失去菌体表面多糖或蛋白质形成。R型细菌抗原不完整,毒力和抗吞噬能力都比S型细菌弱。但也有少数细菌新分离的毒力株就是R型,如炭疽孢杆菌、结核分枝菌等。③粘液型菌落(M型菌落):菌落粘稠、有光泽、似水珠样。多见于厚荚膜或丰富粘液层的细菌、结核杆菌等。

(2)菌落溶血特征:菌落溶血有下列3种情况。①α溶血:又称草绿色溶血,菌落周围培养基出现1~2mm的草绿色环,为高铁血红蛋白所致;②β溶血:又称完全溶血,菌落周围形成一个完全清晰透明的溶血环,是细菌产生的溶血素使红细胞完全溶解所致;③γ溶血:即不溶血,菌落周围的培养基没有变化,红细胞没有溶解或缺损。

(3)色素:有些细菌产生水溶性色素,使菌落和周围的培养基出现绿色、金黄色、白色、橙色、柠檬色等颜色,产生的色素有水溶性或脂溶性。

(4)气味:某些细菌在培养基中生长繁殖后可产生特殊气味,如铜绿假单胞菌(生姜气味)、

变形杆菌(巧克力烧焦的臭味)、厌氧梭菌(腐败的恶臭味)、白色假丝酵母菌(酵母味)和放线菌(泥土味)等。

2.液体培养基

细菌在液体培养基中有3种生长现象:大多数细菌在液体培养基生长繁殖后呈均匀混浊;少数链状排列的细菌如链球菌、炭疽芽胞杆菌等则呈沉淀生长;枯草芽胞杆菌、结核分枝杆菌和铜绿假单胞菌等专性需氧菌一般呈表面生长,常形成菌膜。

3.半固体培养基

半固体培养基主要用于细菌动力试验,有鞭毛的细菌除了沿穿刺线生长外,在穿刺线两侧也可见羽毛状或云雾状混浊生长。无鞭毛的细菌只能沿穿刺线呈明显的线状生长,穿刺线两边的培养基仍然澄清透明,为动力试验阴性。

常见的微生物检测方法

常见的微生物检测 方法

摘要:微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常见的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 概述: 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其它生物的生长,微生物的个体生长在科研上有一定困难,一般情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长一般指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同

时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和她们的生长抑制紧密相关。因此有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,因此测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,能够从其重量,体积,密度,浓度,做指标来进行衡量。 生长量测定法 体积测量法:又称测菌丝浓度法。 经过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法:

微生物的接种技术

1目的 1.1学习掌握微生物的几种接种技术 1.2建立无菌操作的概念,掌握无菌操作的基本环节 2实验说明 将微生物的培养物或含有微生物的样品移植到培养基上的操作技术称之为接种。接种是微生物实验及科学研究中的一项最基本的操作技术。无论微生物的分离、培养、纯化或鉴定以及有关微生物的形态观察及生理研究都必须进行接种。接种的关键是要严格的进行无菌操作,如操作不慎引起污染,则实验结果就不可靠,影响下一步工作的进行。 3实验器材 3.1器械和用品 酒精灯,玻璃铅笔,火柴,试管架、接种环、接种针、接种钩、滴管、移液管、三角型接种棒等接种工具。 3.2菌种和培养基 菌种: 大肠杆菌(Escherichia coli),金黄色葡萄球菌(Staphyloccus aureus)。 培养基: 普通琼脂斜面和平板,营养肉汤,普通琼脂高层(直立柱)。 4实验流程 斜面接种法→液体接种法→固体接种法→穿刺接种法。 5操作步骤

5.1斜面接种法 斜面接种法主要用于接种纯菌,使其增殖后用以鉴定或保存菌种。 通常先从平板培养基上挑取分离的单个菌落,或挑取斜面,肉汤中的纯培养物接种到斜面培养基上。操作应在无菌室、接种柜或超净工作台上进行,先点燃酒精灯。 将菌种斜面培养基(简称菌种管)与待接种的新鲜斜面培养基(简称接种管)持在左手拇指、食指、中指及无名指之间,菌种管在前,接种管在后,斜面向上管口对齐,应斜持试管呈45~0度角,并能清楚地看到两个试管的斜面,注意不要持成水平,以免管底凝集水浸湿培养基表面。以右手在火焰旁转动两管棉塞,使其松动,以便接种时易于取出。右手持接种环柄,将接种环垂直放在火焰上灼烧。镍铬丝部分(环和丝)必须烧红,以达到灭菌目的,然后将除手柄部分的金属杆全用火焰灼烧一遍,尤其是接镍铬丝的螺口部分,要彻底灼烧以免灭菌不彻底。用右手的小指和手掌之间及无名指和小指之间拨出试管棉塞,将试管口在火焰上通过,以杀灭可能沾污的微生物。棉塞应始终夹在手中如掉落应更换无菌棉塞。 将灼烧灭菌的接种环插入菌种管内,先接触无菌苔生长的培养基上,待冷却后再从斜面上刮取少许菌苔取出,接种环不能通过火焰,应在火焰旁迅速插入接种管。在试管中由下往上做S形划线。接种完毕,接种环应通过火焰抽出管口,并迅速塞上棉塞。再重新仔细灼烧接种环后,放回原处,并塞紧棉塞。将接种管贴好标签或用玻璃铅笔划好标记后再放入试管架,即可进行培养。 5.2液体接种法 多用于增菌液进行增菌培养,也可用纯培养菌接种液体培养基进行生化试验,其操作方法与注意事项与斜面接种法基本相同,仅将不同点介绍如下: 由斜面培养物接种至液体培养基: 用接种环从斜面上沾取少许菌苔,接至液体培养基时应在管内靠近液面试管壁上将菌苔轻轻研磨并轻轻振荡,或将接种环在液体内振摇几次即可。如接种霉菌菌种时,若用接种环不易挑起培养物时,可用接种钩或接种铲进行。

15研究微生物的基本方法范文

研究微生物的基本方法 随着现代医学及相关科学技术的发展,各学科相互交叉和渗透,医学微生物学检验技术已深入到细胞、分子和基因水平,许多新技术、新方法已在临床微生物实验室得到广泛应用。医学微生物学实验室的基本任务之一是利用微生物学检验技术,准确、快速检验和鉴定临床标本中的微生物,并对引起感染的微生物进行耐药性监测,为临床对感染性疾病诊断、治疗、流行病学调查及研究等提供科学依据。 第一节显微镜观察 由于细菌个体微小,肉眼不能看到,必须借助显微镜的放大才能看到。一般形态和结构可用光学显微镜观察,其内部的超微结构则需用电子显微镜才能看清楚。常用显微镜有如下几种。 1.普通光学显微镜 采用自然光或灯光为光源,其波长约为0.4μm。显微镜的分辨率为波长的二分之一,即0.2μm,而肉眼可见的最小形象为0.2mm。故用油(浸)镜放大1 000倍,能将0.2μm的微粒放大成肉眼可见的0.2mm。普通光学显微镜可用于细菌、放线菌和真菌等的观察。 2.暗视野显微镜 常用于观察不染色微生物形态和运动。在普通显微镜安装暗视野聚光器后,光线不能从中间直接透入,视野呈暗色,当标本接受从聚光器边缘斜射光后可发生散射,因此可在暗视野背景下观察到光亮的微生物如细菌或螺旋体等。 3.相差显微镜 相差显微镜利用相差板的光珊作用,改变直射光的光位相和振幅,将光相的差异转换为光强度差。在相差显微镜下,当光线透过不染色标本时,由于标

本不同部位的密度不一致而引起光相的差异,可观察到微生物形态、内部结构和运动方式等。 4.荧光显微镜 荧光显微镜与普通光学显微镜基本相同,主要区别在于光源、滤光片和聚光器。目前大多数使用的是落射光装置,常用高压汞灯作为光源,可发出紫外光或蓝紫光。滤光片有激发滤光片和吸收滤光片二种。用蓝光的荧光显微镜除可用一般明视野聚光器外,也可用暗视野聚光器,以加强荧光与背景的对比。本法适用于对荧光色素染色或与荧光抗体结合的细菌的检测或鉴定。 5.电子显微镜 用电子流作为光源,波长与可见光相比差几万倍,大大提高了分辨力,并用磁性电圈作为光学放大系统,放大倍数可达数万倍或几十万倍,常用于病毒颗粒和细菌超微结构的观察。 8.2制片和染色 一. 非染色标本 非染色标本一般可用于观察细菌形态、动力及运动情况。细菌未染色时无色透明,在显微镜下主要靠细菌的折光率与周围环境的不同来进行观察。有鞭毛的细菌运动活泼,无鞭毛的细菌则呈不规则布朗运动。梅毒苍白密螺旋体、钩端螺旋体、弯曲杆菌等的活菌各有特征鲜明的形态和运动方式,具有诊断意义。常用的方法有压滴法、悬滴法和毛细管法等。 1.悬滴法 在洁净凹玻片的凹孔四周涂上凡士林,用接种环取一环菌悬液放在盖玻片中央,再将凹玻片的凹孔对准盖玻片中央的液滴并盖上,然后迅速翻转,轻压盖玻片,使其与凹孔边缘的凡士林粘紧封闭后置高倍镜下(或暗视野)观察。

(完整版)微生物的接种技术

微生物的接种技术 1 目的 1.1学习掌握微生物的几种接种技术 1.2 建立无菌操作的概念,掌握无菌操作的基本环节 2 实验说明 将微生物的培养物或含有微生物的样品移植到培养基上的操作技术称之为接种。接种是微生物实验及科学研究中的一项最基本的操作技术。无论微生物的分离、培养、纯化或鉴定以及有关微生物的形态观察及生理研究都必须进行接种。接种的关键是要严格的进行无菌操作,如操作不慎引起污染,则实验结果就不可靠,影响下一步工作的进行。 3 实验器材 3.1 器械和用品 酒精灯,玻璃铅笔,火柴,试管架、接种环、接种针、接种钩、滴管、移液管、三角型接种棒等接种工具。 3.2 菌种和培养基 菌种:大肠杆菌(Escherichia coli),金黄色葡萄球菌(Staphylococcus aureus)。 培养基:普通琼脂斜面和平板,营养肉汤,普通琼脂高层(直立柱)。 4 实验流程 斜面接种法→液体接种法→固体接种法→穿刺接种法。 5 操作步骤 5.1 斜面接种法 斜面接种法主要用于接种纯菌,使其增殖后用以鉴定或保存菌种。 通常先从平板培养基上挑取分离的单个菌落,或挑取斜面,肉汤中的纯培养物接种到斜面培养基上。操作应在无菌室、接种柜或超净工作台上进行,先点燃酒精灯。 将菌种斜面培养基(简称菌种管)与待接种的新鲜斜面培养基(简称接种管)持在左手拇指、食指、中指及无名指之间,菌种管在前,接种管在后,斜面向上管口对齐,应斜持试管呈45~0度角,并能清楚地看到两个试管的斜面,注意不要持成水平,以免管底凝集水浸湿培养基表面。以右手在火焰旁转动两管棉塞,使其松动,以便接种时易于取出。

右手持接种环柄,将接种环垂直放在火焰上灼烧。镍铬丝部分(环和丝)必须烧红,以达到灭菌目的,然后将除手柄部分的金属杆全用火焰灼烧一遍,尤其是接镍铬丝的螺口部分,要彻底灼烧以免灭菌不彻底。用右手的小指和手掌之间及无名指和小指之间拨出试管棉塞,将试管口在火焰上通过,以杀灭可能沾污的微生物。棉塞应始终夹在手中如掉落应更换无菌棉塞。 将灼烧灭菌的接种环插入菌种管内,先接触无菌苔生长的培养基上,待冷却后再从斜面上刮取少许菌苔取出,接种环不能通过火焰,应在火焰旁迅速插入接种管。在试管中由下往上做S形划线。接种完毕,接种环应通过火焰抽出管口,并迅速塞上棉塞。再重新仔细灼烧接种环后,放回原处,并塞紧棉塞。将接种管贴好标签或用玻璃铅笔划好标记后再放入试管架,即可进行培养。 5.2 液体接种法 多用于增菌液进行增菌培养,也可用纯培养菌接种液体培养基进行生化试验,其操作方法与注意事项与斜面接种法基本相同,仅将不同点介绍如下: 由斜面培养物接种至液体培养基:用接种环从斜面上沾取少许菌苔,接至液体培养基时应在管内靠近液面试管壁上将菌苔轻轻研磨并轻轻振荡,或将接种环在液体内振摇几次即可。如接种霉菌菌种时,若用接种环不易挑起培养物时,可用接种钩或接种铲进行。 由液体培养物接种液体培养基时,可用接种环或接种针沾取少许液体移至新液体培养基即可。也可根据需要用吸管、滴管或注射器吸取培养液移至新液体培养基即可(图4-5)。 接种液体培养物时应特别注意勿使菌液溅在工作台上或其他器皿上,以免造成污染。如有溅污,可用酒精棉球灼烧灭菌后,再用消毒液擦净。凡吸过菌液的吸管或滴管,应立即放入盛有消毒液的容器内。 5.3 固体接种法 普通斜面和平板接种均属于固体接种,斜面接种法已讲了,不再赘述。固体接种的另一种形式是接种固体曲料,进行固体发酵。按所用菌种或种子菌来源不同可分为: 用菌液接种固体料,包括用菌苔刮洗制成的菌悬液和直接培养的种子发酵液。接种时按无菌操作将菌液直接倒入固体料中,搅拌均匀。但要注意接种所用水容量要计算在固体料总加水量之内,否则会使接种后含水量加大,影响培养效果。 用固体种子接种固体料。包括用孢子粉、菌丝孢子混合种子菌或其他固体培养的种子菌。将种子菌于无菌条件下直接倒入无菌的固体料中即可,但必须充分搅拌使之混合均匀。一般是先把种子菌和少部分固体料混匀后再拌大堆料。

微生物学专业硕士研究生培养实施方案

微生物学硕士研究生培养方案 一、培养目标 在思想品德、业务水平、工作能力等方面达到较高要求,成为从事微生物科研、教学、技术推广和管理工作的高层次人才。 1、思想素质上。要求较好地掌握马克思主义、毛泽东思想和邓小平理论,拥护党的基本路线,热爱祖国、献身农业,遵纪守法,品德高尚,爱岗敬业,治学严谨,具有强烈的开拓意识,创新精神及组织协作的科学作风,积极服务于社会主义现代化建设。 2、业务素质上。掌握本学科坚实的基础理论,系统的专门知识和熟练的实验操作技术。具有较强的社会实践能力,以及分析和解决问题的能力,了解所从事研究方向的国内外发展动态,有较强的独立从事教学、科研、技术推广和管理工作的能力,能用外语较熟练地参阅专业外文资料,具有初步的听、说、写能力,能通过论文的发表阐明研究工作的进展及成果。 3、身体健康。 二、研究方向 1、应用微生物学 2、微生物分子生物学 三、学习年限 全日制攻读硕士学位研究生的学习年限一般为 2.5 —3年,可根据实际情况允许提前或延 期毕业。非全日制攻读硕士学位的学习年限一般不超过4年。 四、培养方式 1、实行导师负责制。以导师为主建立研究生指导小组,由导师和指导小组全面负责研究生培养工作,制定培养计划,对论文进行全面指导。 2、研究生入学半年后在导师和指导小组的指导下确定培养计划。结合自身和本学科发展需要以及研究领域所需的知识结构,确定选修课程,鼓励跨学科选修。 3、研究生在导师和指导小组指导下,积极参加各种学术活动、教学实践和社会实践。 4、学习课程考核。公共课及专业基础课以笔试为主,专业课采用笔试和专题报告相结合的方式,重点考核对专业知识的把握程度及其基础理论分析实际问题的能力。 5、研究生入学后第四个学期进行中期考核。由学科点有关教师组成的考核小组对研究生的课程学习情况、毕业论文的准备(开题报告)和进展情况以及对本学科国内外最新研究动态的了解掌握情况等进行综合检查和考核,对考核不合格或完成学业确有困难者,劝其退学或作肄业处理。其中对成绩优秀的硕士研究生优先考虑作为提前攻读博士学位的人选。 五、课程设置

微生物研究技术与方法 重点大全要点

第一章绪论 课程主要内容: 1、微生物学研究技术发展 2、微生物材料的准备 3、微生物研究中的物理化学方法基础 4、微生物的观察与微生物分析法 5、细胞破碎方法及亚细胞物质分离 6、微生物育种技术 7、固相化技术与生物传感器 8、免疫学技术 9、微生物学研究的分子生物学技术 微生物学研究技术发展: 微生物学是整个生物学中第一门具有一套自己独特操作技术的学科,其技术的发展主要包括: 1、显微镜术和制片染色技术 2、消毒灭菌技术和无菌操作技术 3、纯种分离和克隆化技术 4、合成培养基技术;选择性和鉴别性培养技术 5、突变型标记和筛选技术;深层液体培养技术 6、菌种保藏技术 7、原生质体制备和融合技术 8、各种DNA重组技术等 第二章微生物材料的准备 第一节灭菌、消毒、除菌与无菌操作 掌握知识要点: 原理、方法、生物活性物质的除菌 无菌操作:意识、个人卫生、环境卫生、灭菌、接种等操作、保存 一、几个基本概念 控制害菌的措施: 1)杀灭法: ○1灭菌:彻底杀灭(杀菌、溶菌)——一切微生物 ○2消毒:部分杀灭——仅杀灭病原菌 2)抑制法: ○1防腐:抑制霉腐微生物 ○2化疗:抑制宿主体内的病原菌 1、灭菌:采用强烈的理化因素使任何物体内外部的一切微生物永远丧失其生长繁殖能力的 措施。例如:高温灭菌、辐射灭菌等。 2、消毒:消除毒害,即传染源、致病菌。一种采用较温和的理化因素,仅杀死物体表面或 内部一部分对人体或动、植物有害的病原菌,而对被消毒的对象基本无害的措施。例如:

常用的对皮肤、水果、饮用水进行药剂消毒的方法 对啤酒、牛奶、果汁和酱油等进行消毒处理的巴氏消毒法 1)巴氏消毒法(pasteurization) 2)煮沸消毒法 采用在100℃下煮沸数分钟的方法,一般用于饮用水的消毒。 3、防腐:利用某种理化因素完全抑制霉腐微生物的生长繁殖,即通过抑菌作用防止食品、生物制品等对象发生霉腐的措施。 防腐的方法: ①低温:利用4℃以下的各种低温(0,-20,-70,-196℃)保藏食物、生化试剂、 生物制品或菌种等。 ②缺氧:可采用抽真空、充氮或二氧化碳、加入除氧剂等方法来有效防止食品和粮食 等的霉腐、变质而达到保鲜的目的。 除氧剂的种类很多,是由主要原料铁粉再加上一定量的辅料和填充剂制成,对糕点等含水量较高的新鲜食品有良好的保鲜功能。 ③干燥:采用晒干、烘干或红外线干燥等方法对粮食、食品等进行干燥保藏,是最常 见的防止霉腐的方法; 在密封条件下,用生石灰、无水氯化钙、无氧化二磷、氢氧化钾(或钠)或硅胶等作为吸湿剂,也可很好的达到食品、药品和器材等长期防霉腐的目的。 ④高渗:通过盐腌和糖渍等高渗措施来保存食物,是在民间早就流传的有效防霉腐的 方法。 ⑤高酸度:在我国和韩国等具有悠久历史的泡菜,就是利用乳酸菌的厌氧发酵使新鲜 蔬菜产生大量乳酸,借这种高酸度而达到抑制杂菌和防霉腐的目的。 ⑥高醇度:用白酒或黄酒保存食品,在我国有悠久传统,如:醉蟹、醉麸、醉笋和黄 泥螺等产品,都是特色风味食品。 ⑦加防腐剂:在有些食品、调味品、饮料、果汁或工业器材中,可加入适量的防腐剂 或防霉剂来达到防霉腐的目的,如: 用苯甲酸来使酱油防腐; 用尼泊金作墨汁防腐剂; 用山梨酸、脱氢醋酸作化妆品防腐剂; 用二甲基延胡索酸(DMF)作食品、饲料的防腐剂。 4、化疗——化学治疗 利用具有高度选择毒力即对病原菌具高度毒力而对宿主基本无毒的化学物质来抑制宿主体内病原微生物的生长繁殖,借以达到治疗该宿主传染病的一种措施。 用于化学治疗目的的化学物质称化学治疗剂,包括磺胺类等化学合成药物、抗生素、生物药物素和若干中草药中有效成分等。 要点: 1.灭菌:利用物理、化学方法杀死物体表面、内部全部的微生物。 2.消毒:杀死物体表面或内部有害微生物或使其钝化,使致病微生物不致病。 3.除菌:利用物理方法除去物体表面的微生物。

土壤微生物群落多样性研究方法及进展_1

第27卷增刊V ol 127,Sup 1广西农业生物科学Journal o f Guangx i A g ric 1and Biol 1Science 2008年6月June,2008 收稿日期:20080122。 基金项目:广西大学博士启动基金项目(X05119)。 作者简介:姚晓华(广西大学副教授,博士;E -mail:x hy ao@g xu 1edu 1cn 。文章编号:10083464(2008)增008405 土壤微生物群落多样性研究方法及进展 姚晓华 (广西大学农学院,广西南宁530005) 摘要:微生物多样性是指群落中的微生物种群类型和数量、种的丰度和均度以及种的分布情况。研究 土壤微生物群落多样性的方法包括传统的以生化技术为基础的方法(直接平板计数、单碳源利用模式等) 和以现代分子生物技术为基础的方法(从土壤中提取DN A ,进行G+C%含量的分析,或杂交分析,或进 行PCR,产物再进行D GGE/T GG E 等分析)。现代生物技术与传统微生物研究方法的结合使用,为更全面 地理解土壤微生物群落的多样性和生态功能提供了良好的前景。 关键词:微生物多样性;生化技术;分子生物学技术;DN A 中图分类号:.Q 938115 文献标识码:A Advancement of methods in studying soil microbial diversity YAO Xiao -hua (Co llege of Ag ricultur e,G uangx i U niv ersit y,N anning 530005,China) Abstract:Species div ersity consist o f species richness,the total number of species,species ev enness,and the distribution of species 1Methods to measure microbial diversity in so il can be categ orized into tw o g roups:biochemica-l based techniques and m olecular -based techniques 1The fo rmer techniques include plate counts,sole carbon so urce utilizatio n patterns,fatty acid methy l ester analysis,and et al 1The latter techniques include G +C%,DNA reassociation,DNA -DNA hy br idization,DGGE/TGGC,and et al 1Ov er all,the best w ay to study soil microbial diversity w o uld be to use a variety of tests w ith differ ent endpoints and degr ees o f r esolutio n to o btain the bro adest picture possible and the most inform ation r eg ar ding the microbial co mmunity 1 Key words:microbial diversity;biochem ica-l based techniques,mo lecular -based techniques,DNA 微生物多样性研究是微生物生态学最重要的研究内容之一。微生物在土壤中普遍存在,对环境条件的变化反应敏捷,它能较早地预测土壤养分及环境质量的变化过程,被认为是最有潜力的敏感性生物指标之一[1] 。但土壤微生物的种类庞大,使得有关微生物区系的分析工作十分耗时费力。因此,微生物群落结构的研究主要通过微生物生态学的方法来完成,即通过描述微生物群落的稳定性、微生物群落生态学机理以及自然或人为干扰对群落产生的影响,揭示土壤质量与微生物数量和活性之间的关系。利用分子生物学技术和研究策略,揭示自然界各种环境中(尤其是极端环境)微生物多样性的真实水平及其物种组成,是微生物生态学各项研究的基础和核心,是重新认识复杂的微生物世界的开端。

微生物学教程(第二版周德庆)复习思考题答案+微生物学练习题

微生物学教程(第二版周德庆)复习思考题答案+微 生物学练习题 微生物学复习思考题 绪论 1、什么叫微生物?微生物包括哪些类群? 微生物是一切肉眼看不见或者看不清的微小生物的总称。包括属于原核类的细菌(真细菌和古生菌)、放线菌、蓝细菌(旧称蓝绿藻或蓝藻)、支原体、立克次氏体、衣原体;属于真核类的真菌(酵母菌、霉菌和蕈菌)、原生动物和显微藻类;以及属于非细胞类的病毒和亚病毒(类病毒、拟病毒和阮病毒)。 2、了解五界系统、六界系统、三域学说及其发展,说明微生物在生物界中的地位。五界系统:动物界、植物界、原生生物界(包括原生动物、单细胞藻类和粘菌等)、真菌界和原核生物界(包括细菌蓝细菌等)。 六界系统:1949年Jahn提出包括后生动物界、后生植物界、真菌界、原生生物界、原核生物界和病毒界;1977年我国学者王大耜提出动物界、植物界、原生生物界(包括原生动物、单细胞藻类和粘菌等)、真菌界和原核生物界(包括细菌蓝细菌等)、病毒界;1996年美国的P.H.Raven提出包括动物界、植物界、原生生物界、真菌界、真细菌界和古细菌界。 三域学说:细菌域、古细菌域、真核生物域。 3、了解微生物学的发展史,明确微生物学研究的对象和任务。 整个微生物学发展史是一部逐步克服认识微生物的重要障碍,不断探究它们生命活动规律,并开发利用有益微生物和控制、消灭有害微生物的历史。它分为:史前期、初创期、奠基期、发展期、成熟期。 对象:在细胞、分子或群体水平上研究微生物的形态结构、生理

代谢、遗传变异、生态分布和分类进化等生命活动基本规律。 任务:发掘、利用、改善和保护有益微生物,控制、消灭或改造有害微生物,为人类社会的进步服务。 4、微生物的五大共性(特点)是什么?表示微生物细胞大小的单位是什么? 一、体积小,面积大;二、吸收多,转化快;三、生长旺,繁殖快;四、适应强,易变异;五、分布广,种类多。表示微生物细胞大小的单位是nm或μm。5、微生物有哪些重要性? ①微生物是占地球面积70%以上的海洋和其他水体中光合生产力的基础;②是一切食物链的重要环节;③是污水处理中的重要角色; ④是生态农业中的重要环节;⑤是自然界重要元素循环的重要推动着; ⑥是环境污染和检测的重要指示生物。 微生物还和医疗保健、工业发展有着重大关系,对生命科学基础理论研究有重大贡献。 第一章原核微生物 1、什么叫原核微生物?原核微生物主要包括哪些类群?原核细胞有何主要特点? 原核生物即广义的细菌,指一大类细胞核无核膜包裹,只存在称作核区的裸露DNA的原始单细胞生物,包括真细菌和古生菌两大类群。原核细胞无核膜包围的细胞核,不进行有丝分裂。 2、细菌基本形态有哪些?举出各形态类型的菌例,细菌形态和大小受哪些因素的影响? 1 细菌的基本形态有球状、螺旋状、杆状三大类。球状:金黄色葡萄球菌、乳酸链球菌;杆 状:大肠杆菌、枯草芽孢杆菌;螺旋状:霍乱弧菌、迂回螺菌、梅毒螺旋体。 细菌形态和大小因菌种而异,一般在初龄阶段和生长条件适宜时,细菌形态正常、整齐,

微生物接种方法

微生物接种 1、平板倾注法 1)、以无菌操作,将检样25g(或25ml)剪碎放于含有225ml灭菌生理盐水的广口瓶内(瓶内置有适量玻璃珠)或灭菌研钵内,经充分振摇或研磨用成1:10的均匀稀释液。 2)、用1.0ml灭菌吸管吸取1:10稀释液1.0ml,沿管壁徐徐注入含有9.0ml灭菌生理盐水的试管内(注意吸管尖端不要触及管内液面),振摇试管混合均匀,作成1:100的稀释液。 3)、另取1.0ml灭菌吸管,按上述操作作10倍稀释,如此每递增稀释一次,即换1支1.0ml 吸管。 4)、根据食品卫生要求或对标本污染程度的估计,选择2-3个适宜稀释度,分别作10倍递增稀释的同时,即以吸取该稀释液的吸管移1.0ml稀释液于灭菌平皿内,每个稀释度作两个平皿。 5)、稀释液移入平皿后应及时将凉至46℃营养琼脂(可放于46×1℃水浴保温)注入平皿约15ml,并移动平皿使混合均匀。同时将营养琼脂培养基倾入加有1.0ml灭菌生理盐水的平皿内作空白对照。 6)、待稀释液入平皿后,翻转平板,置36×1℃温箱内培养24±2h(肉、水产品、乳和蛋品为48±2h)取出,计算平板内菌落数,乘以稀释倍数,即得每克(或ml)样品所含菌落总数。 2、平板表面涂布法 将营养琼脂制成平板,经50℃l一2小时或35℃18—20小时干燥后,于其上滴加检样稀释液0.2ml,用L捧涂布于整个平板的表面,放置片刻(约lO分钟),将平板翻转,移至36±1℃温箱内培养24±2小时(水产品用30℃培养48±2小时),取出,按前述方式进行菌落计数,然后乘以5(由O.2m1换算为1m1),再乘以样品稀释的倍数,即得每g或m1 检样所含菌落数。此法较上述倾注法为优,因菌落生长在表面,便于识别和检查其形态,虽检样中带有食品颗粒也不会发生混淆,同时还可使细菌不必遭受融化琼脂的热力,不致因此而使菌细胞受到损伤而不生长,从而可避免由于检验操作中的不良因素而使检样中细菌菌落数降低。但是本法取样量较倾注法为少(仅倾注法的五分之一),代表性将受到一定的影响。 3、平板表面点滴法与涂布法相似。所不同者,只是用标定好的微量吸管或注射器针头按滴(使每滴相当于0.025mi)将检样稀释液滴加于琼脂平板上固定的区域(预先在平板背面用标记笔划成四个区域),每个区域滴1滴,每个稀释度滴两个区域,作为平行试验。滴加后,将平板放平片刻(约5~10分钟),然后翻转平板,如前移入温箱内培养6~8小时后进行计数,将所得菌落数乘以40(由o.025ml换算为1ml),再乘以样品稀释的倍.数,即得每g 或ml检样所含菌落数。李兆普等利用此方法,与倾注法进行对比试验,经过六种食品,1536

武汉大学《微生物学》考试知识点汇总

考试复习重点资料(最新版) 资料见第二页 封 面 第1页

武汉大学《微生物学》考研重点复习笔记 第一章 1.巴斯德的工作 (1)发现并证实发酵是由微生物引起的 (2)彻底否定了“自然发生”学说 (3)免疫学——预防接种 (4)其他贡献:巴斯德消毒法等 2.柯赫的工作 (1)微生物学基本操作技术方面的贡献 a)细菌纯培养方法的建立 b)配制培养基 c)流动蒸汽灭菌 d)染色观察和显微摄影 (2)对病原细菌的研究作出了突出的贡献: a)具体证实了炭疽病菌是炭疽病的病原菌。 b)发现了肺结核病的病原菌 c)证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则 1在每一病例中都出现这种微生物; 2要从寄主分离出这样的微生物并在培养基中培养出来; 3用这种微生物的纯培养接种健康而敏感的寄主,同样的疾病会重复发生; 4从试验发病的寄主中能再度分离培养出这种微生物来。

微生物的类群及特点:个体小、结构简、胃口大、食谱广、繁殖快、易培养、数量大、分布广、种类多、级界宽、变异易、抗性强、休眠长、起源早、发现晚、。 第三章 特殊细胞壁的细菌:某些分枝杆菌和诺卡氏菌的细胞壁主要由一类被称为霉菌酸(Mycolic acid)的枝链羟基脂质组成,后者被认为与这些细菌感染能力有关。由磷脂分子形成的双分子膜中加入甾醇类物质可以提高膜的稳定性: 真核生物细胞膜中一般含有胆固醇等甾醇,含量为5%-25%。 原核生物与真核生物的最大区别就是其细胞膜中一般不含胆固醇,而是含有hopanoid(藿烷类化合物)。 硫粒:很多化能自养菌在进行产能代谢或生物合成时,常涉及对还原性的硫化物如H2S,硫代硫酸盐等的氧化。 在环境中还原性硫素丰富时,常在细胞内以折光性很强的硫粒的形式积累硫元素。当环境中环境中还原性硫缺乏时,可被细菌重新利用。 微生物储藏物的特点及生理功能: 1)不同微生物其储藏性内含物不同。例如厌气性梭状芽孢杆菌只含PHB,大肠杆菌只储藏糖原,但有些光合细菌二者兼有。 2)微生物合理利用营养物质的一种调节方式。当环境中缺乏能源而碳源丰富时,细胞内就储藏较多的碳源类内含物,甚至达到细胞干重的50%,如果把这样的细胞移入有氮的培养基时,这些储藏物将被作为碳源和能源而用于合成反应。 3)储藏物以多聚体的形式存在,有利于维持细胞内环境的平衡,避免不适合的pH,渗透压等的危害。例如羟基丁酸分子呈酸性,而当其聚合成聚-β-羟丁酸

微生物培养方法

微生物的培养方法 实验目的:学习掌握无菌操作技术;学习接种方法;学习常用的分离、纯化菌种的方法。 一、接种 将微生物接到适于它生长繁殖的人工培养基上或活的生物体内的过程叫做接种。 1、接种工具和方法 在实验室用得最多的接种工具是接种环、接种针。由于接种要求或方法的不同,接种针的针尖部常做成不同的形状,有刀形、耙形等之分。有时滴管、吸管也可作为接种工具进行液体接种。在固体培养基表面要将菌液均匀涂布时,需要用到涂布棒。(图1) 图1 接种和分离工具 1.接种针 2.接种环 3.接种钩 4.5.玻璃涂棒 6.接种圈 7.接种锄 8.小解剖刀 常用的接种方法有以下几种: 1)划线接种这是最常用的接种方法。即在固体培养基表面作来回直线形的移动,就可达到接种的作用。常用的接种工具有接种环,接种针等。在斜面接种和平板划线中就常用此法。 2)三点接种在研究霉菌形态时常用此法。此法即把少量的微生物接种在平板表面上,成等边三角形的三点,让它各自独立形成菌落后,来观察、研究它们的形态。除三点外,也有一点或多点进行接种的。 3)穿刺接种在保藏厌氧菌种或研究微生物的动力时常采用此法。做穿刺接种时,用的接种工具是接种针。用的培养基一般是半固体培养基。它的做法是:用接种针蘸取少量的菌种,沿半固体培养基中心向管底作直线穿刺,如某细菌具有鞭毛而能运动,则在穿刺线周围能够生长。

4)浇混接种该法是将待接的微生物先放入培养皿中,然后再倒入冷却至45°C左右的固体培养基,迅速轻轻摇匀,这样菌液就达到稀释的目的。待平板凝固之后,置合适温度下培养,就可长出单个的微生物菌落。 5)涂布接种与浇混接种略有不同,就是先倒好平板,让其凝固,然后再将菌液倒入平板上面,迅速用涂布棒在表面作来回左右的涂布,让菌液均匀分布,就可长出单个的微生物的菌落。 6)液体接种从固体培养基中将菌洗下,倒入液体培养基中,或者从液体培养物中,用移液管将菌液接至液体培养基中,或从液体培养物中将菌液移至固体培养基中,都可称为液体接种。 7)注射接种该法是用注射的方法将待接的微生物转接至活的生物体内,如人或其它动物中,常见的疫苗预防接种,就是用注射接种,接入人体,来预防某些疾病。 8)活体接种活体接种是专门用于培养病毒或其它病原微生物的一种方法,因为病毒必须接种于活的生物体内才能生长繁殖。所用的活体可以是整个动物;也可以是某个离体活组织,例如猴肾等;也可以是发育的鸡胚。接种的方式是注射,也可以是拌料喂养。 2、无菌操作 培养基经高压灭菌后,用经过灭菌的工具(如接种针和吸管等)在无菌条件下接种含菌材料(如样品、菌苔或菌悬液等)于培养基上,这个过程叫做无菌接种操作。在实验室检验中的各种接种必须是无菌操作。 实验台面不论是什么材料,一律要求光滑、水平。光滑是便于用消毒剂擦洗;水平是倒琼脂培养基时利于培养皿内平板的厚度保持一致。在实验台上方,空气流动应缓慢,杂菌应尽量减少,其周围杂菌也应越少越好。为此,必须清扫室内,关闭实验室的门窗,并用消毒剂进行空气消毒处理,尽可能地减少杂菌的数量。 空气中的杂菌在气流小的情况下,随着灰尘落下,所以接种时,打开培养皿的时间应尽量短。用于接种的器具必须经干热或火焰等灭菌。接种环的火焰灭菌方法:通常接种环在火焰上充分烧红(接种柄,一边转动一边慢慢地来回通过火焰三次),冷却,先接触一下培养基,待接种环冷却到室温后,方可用它来挑取含菌材料或菌体,迅速地接种到新的培养基上。(图2)然后,将接种环从柄部至环端逐渐通过火焰灭菌,复原。不要直接烧环,以免残留在接种环上的菌体爆溅而污染空间。平板接种时,通常把平板的面倾斜,把培养皿的盖打开一小部分进行接种。在向培养皿内倒培养基或接种时,试管口或瓶壁外面不要接触底皿边,试管或瓶口应倾斜一下在火焰上通过。

土壤微生物研究方法

Pedobiologia50(2006)275—280 ?Corresponding author.Tel.:+14062434254. E-mail addresses:philip@https://www.doczj.com/doc/263282853.html,(P.W.Ramsey), matthias@https://www.doczj.com/doc/263282853.html,(M.C.Rillig),kevinferis@https://www.doczj.com/doc/263282853.html, (K.P.Feris),bill.holben@https://www.doczj.com/doc/263282853.html,(W.E.Holben), jim.gannon@https://www.doczj.com/doc/263282853.html,(J.E.Gannon).

treatment effects(Widmer et al.,2001;Ritchie et al.,2000).The relative power of each to elucidate treatment effects has rarely been com-pared.In one study,PLFA was demonstrated to be more sensitive than CLPP and a PCR-based method (guanine plus cytosine ratio)to changes in MCS across a gradient of grassland management inten-sities(Grayston et al.,2004).In another study,the ability of PLFA and a molecular method,length heterogeneity PCR(LH-PCR),to resolve the effects of tillage and ground cover on MCS were compared using discriminant analysis(Dierksen et al.,2002). In that study,the inclusion of molecular data into the discriminant analysis did not improve predic-tive power of the analysis above that which was achieved using PLFA data alone.This study raises the hypothesis that using a polyphasic approach to detect change in MCS is no more useful than PLFA data alone.Here,we tested this hypothesis by searching for studies that used PLFA in conjunction with CLPP or PCR-based methods in order to evaluate the question:Has CLPP or a PCR-based method been used to detect a treatment effect on MCS that was not also detectable by PLFA? Searches of the Web of Science and CSA Illumina databases with various combinations of the words PLFA,FAME,CLPP,fatty acids,T-RFLP,Biolog s, DNA,PCR,16s,rDNA,DGGE,TGGE,gel electro-phoresis,soil,community structure,and polyphasic returned53studies that used PLFA in conjunction with CLPP or PCR-based methods to identify treatment effects on MCS.While not exhaustive, the highest impact factor soils journals were among the journals included(see references in Table1). Therefore,the sample should represent the current state of knowledge.Papers in which PCR-based methods were used to track speci?c populations either by DGGE band excision and sequencing or by the use of primer sets speci?c to phylogenetic groups were not considered to be demonstrations of change in MCS unless including a general test of signi?cant difference(or correlation)at the total community level. No studies were found where CLPP or PCR-based analyses were used to differentiate a treatment effect on soil MCS that was not also identi?ed by PLF A of the same samples.Conversely,in14of32 studies(44%),PLF A differentiated treatments that were not resolved by CLPP analysis of the same samples.In5of25studies(20%),PLF A differentiated treatments that were not resolved by a PCR-based method.These studies are arranged categorically in T able1.In the?ve studies where PCR-based methods were unable to detect differences detected by PLF A,the speci?c PCR-based methods used were LH-PCR,DGGE(twice),RISA,and DNA RAPD(Dierk-sen et al.,2002;Thirup et al.,2003;Leckie et al., 2004;Ritz et al.,2004;Suhadolc et al.,2004).If the MCS changes detected by PLFA are real in all cases, our analysis implies that studies using only CLPP or a PCR-based method incur a type II error rate of approximately44%and20%,respectively. Of the three general strategies for detecting MCS changes,PCR-based methods are used in a higher proportion of studies than PLFA or CLPP(Fig.1), probably because PCR-based methods offer the greatest potential for characterization of under-lying population level changes.However,the power of PCR-based methods to resolve treatment effects on the total soil microbial community may be limited compared to PLFA because less statistically relevant information can be gained from pattern analysis of PCR-generated?ngerprint patterns than from PLFA pro?les.One explanation of this is that in a typical DGGE analysis,20–50detectable and quanti?able bands may vary in intensity by one or two orders of magnitude(due to detection and imaging limitations),while in a typical PLFA pro?le more than70continuous variables(PLFA peaks)can be detected in concentrations ranging over at least 3orders of magnitude.Further,quantitative estimates of population densities gleaned from community level analyses must be considered carefully due to so-called‘‘PCR bias’’introduced by the exponential ampli?cation of DNA targets. Rarefaction analysis of molecular data allows estimates of relative population abundance within a sample(e.g.Basiliko et al.,2003).Still,quanti-?cation of change in the abundance of individual populations requires support from additional ana-lyses,such as species/group speci?c quantitative PCR(Yu et al.,2005). CLPP produces large numbers of continuous variables and so should be highly sensitive to change in MCS.However,CLPP requires growth of microbes on carbon substrates in microtiter plates (i.e.metabolism).Many organisms present in soil will not grow in the wells and,conversely,organ-isms growing in the wells may not have been active in the soil.Also,not all substrates catabolized by soil microbes are represented.Thus,CLPP probably loses sensitivity due to a bias toward under-representing metabolic diversity. It hence appears that PLFA offers the most powerful approach to demonstrating change in MCS,and that monophasic studies relying on CLPP or PCR-based methods are prone to high type II error rates.On the other hand,PLFA offers limited insight into changes in speci?c microbial popula-tions.While certain PLFAs can be used as biomar-kers for speci?c populations(White and Ringelberg, 1998),the resolution of population level change P.W.Ramsey et al. 276

相关主题
文本预览
相关文档 最新文档