当前位置:文档之家› 变形监测的理论与方法(黄声享)

变形监测的理论与方法(黄声享)

挡土墙变形监测方法

挡土墙变形监测方法 在挡土监测目的 1变形监测的首要目的是要掌握变形体的实际性能、状况,为判别其安全提供必要的技术支持。 2通过对该挡土墙进行为期两年的坡顶水平位移和垂直位移的监测,对监测的数据进行统计分析,掌握变形体的实际性状,为判断其安全性提供必要的信息。 3 按照《建筑变形测量规程》,对挡土墙的稳定性做出定性和定量的分析,确保其挡墙的安全使用。 4 在挡墙进行监测的过程中发现异常情况及时向业主和设计单位作报告。水平位移的中误差是应小于每次变形量的1/10~1/20 在挡土墙整个施工过程中,为有效监控挡土墙沉降位移,有必要进行工程监控量测,为挡土墙的施工提供参考依据,其监控量测方法如下:1. 变形监测网,由部分基准点、工作基点和变形观测点构成。监测周期,应根据监测体的变形特征、变形速率、观测精度和工程地质条件等因素综合确定。监测期间,根据变形量的变化情况适当调整。 2. 挡土墙变形监测等级 2.1本标段最高挡土墙类型为扶壁式Ⅱ,墙高为m,此挡土墙工程为一般性的结构物,拟采用监测等级为四等。

3. 变形监测网的设置 变形监测网的网点,宜分为基准点、工作基点和变形观测点。其布设应符合下列要求: 3.1 基准点,应选在变形影响区域外稳固可靠地位置不少3个基准点,选用挡土墙附近一级控制点作为基准点。监测控制点埋设,一般地方埋设青石浇灌混凝土或现场挖坑放入不锈钢测量标志浇灌混凝土,水泥路面凿洞放入不锈钢测量标志,点位必须做到坚固、稳定、通视情况良好、宜于长期保存、便于对监测点的观测。 3.2 工作基点,点位选在比较稳定且方便使用的位置,基准点埋石制作,水平位移基准点采用φ12钢筋,在钢筋顶用钢锯锯出十字线,垂直位移基准点采用φ12钢筋,并将钢筋头打磨成圆弧形,造好标石到现场选点埋设 3.3 变形观测点,设置在每段挡土墙地面以上0.5m处,每段挡土墙设置一个观测点,观测点采用φ12钢筋,并将钢筋头打磨成圆弧形,在圆弧位置上锯十字线,此观测点作为水平位移观测点和垂直位移观测点。在第一段挡土墙浇注拆模后,用电锤在挡墙外侧钻孔10cm深,将制作好的观测点插入钻孔内,并将其固定。顶部监测点埋设在距离挡土墙顶部0.2米左右处,底部监测点埋设在距离挡土墙根部2米左右处,新增监测点采用强力胶贴薄片固定在墙上。监测点用不锈钢测量标志埋设在竣工后的挡土墙上,埋设时要用钢筋插入挡土墙里,浇

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。 钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。终孔验收后,及时进行倒垂孔保护管、

基坑变形监测及变形机理与规律分析研究

基坑变形监测及变形机理与规律分析研究 【摘要】自改革开放以来,我国的经济得到了飞速的发展,与此同时,高层建筑的数量也在不断增加,这就使建筑基坑工程的开挖深度不断加深、施工难度越来越大,由此基坑的变形监测工作显得尤为重要。所以,本文首先对基坑的变形监测进行了概述,然后通过分析基坑变形的原因和机理,最后总结了基坑变形的规律,为正在从事基坑变形监测的工作人员提供一些参考。 【关键词】基坑;变形监测;变形机理;规律分析 1 前言 在经济高速发展的大背景下,在建筑工程当中出现了越来越多的高层建筑,由此也使得建筑的基坑逐渐朝着深开挖、工作面较窄的方向发展。目前,基坑工程的设计、施工和监测被称为保证基坑工程质量安全的三大基本要素,其中基坑工程的监测包含基坑的变形监测、地下水动态检测和应力检测。由于在基坑的开挖过程中,开挖深度越深,土体原有的平衡被破坏的越严重,因此在土的应力发生变化之后,其支护结构也发生变形,这就容易导致建筑的周边地面产生不均匀沉降的现象,并且在这些现象周而复始、相互影响的作用下,严重威胁着整个工程的施工顺利进行,以及周围临近建筑和基础设施的安全。除此之外,建筑基坑的变形与周围的环境、天气情况、基坑的开挖深度以及开挖方法等诸多因素有关,因此只有对其进行变形监测,才能够实时发现基坑在开挖过程中发生的变化,及时对造成的危险进行预防,避免工程事故的发生。鉴于此,基坑的变形监测是基坑工程开挖过程中不可或缺的重要步骤,加强对于基坑的变形监测研究十分重要。 2 基坑的变形监测 2.1 基坑变形监测的重要作用 在改革开放之前,我国建筑的基坑都比较浅,因此基坑技术并没有得到发展,但是近年来,随着高层建筑的不断涌现,深基坑的数量不断增加,因此对于深基坑的变形监测也得到了施工人员的高度重视。尤其是在大型的建筑工程中,很难单纯的从理论上对基坑的数据进行分析预测,只有将理论、经验和检测相互结合,才能够保证工程的顺利实施。因此,开展基坑变形的现场检测具有非常重要的意义,具体分析如下:首先,基坑的变形监测为工程的实施提供了实时的动态信息。由于基坑在开挖过程中常常受到周边环境、天气等因素的影响,其变化无规律可循,所以容易对周围的建筑物和基础设施造成一定的伤害,一旦危险发生则可能会造成不可挽回的损失。鉴于此,这就需要对施工现场的情况进行实时的检测,从而掌

基坑变形监测方案

本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This desig n is mai nly for a deep foun datio n pit duri ng the con struct ion of foun dati on pit deformatio n and cause the deformati on of the surro unding en vir onment monitoring methods and data processing program design and analysis.The main mon itori ng content of the foun dati on pit wall for mon itori ng horiz on tal displaceme nt and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision an alysis. Keyword: Horizontal displacement observation; settlement observation; tilt observati on; two level; polar coord in ates

一种有限变形情况下高聚物本构模型

一种有限变形情况下高聚物本构模型 刘亢,翁国飞 宁波大学工学院,浙江宁波(315211) E-mail :liukang2000@https://www.doczj.com/doc/2617505392.html, 摘 要:本文提出了一种有限变形下的高聚物粘塑性本构模型。认为高聚物网结构节点滑移的应变率和宏观应变率是相关的,同时还假设节点的滑移并不导致能量耗散,因此可以用热力学的方法得到有限变形的本构方程。与传统的有限变形本构理论不同,本文用了一种新的途径来建立本构关系。随后用该本构模型对一种高聚物材料进行剪切变形的数值模拟并与实验结果进行对比和分析。 关键词:本构模型,有限变形,简单剪切 中图分类号:o33; o34; o63 1. 引 言 高聚物通常被看成是一个等效的由交联组成的网状结构。在加载过程中,网结构的节点会相对其初始位置产生滑移。关于如何处理高聚物节点的滑移一直存在许多的争议。本文假设高聚物网结构节点滑移的应变率和宏观应变率是相关的,同时还假设节点的滑移并不导致能量耗散,因此可以用热力学的方法得到有限变形的本构方程。在经典的有限变形本构研究里,有限变形通常被分解成弹性和塑性两部分,这两部分分别通过各自的控制方程来描述。现有的有限弹塑性的率型本构方程一般基于变形率的弹塑性和分解,但是变形率的这种分解与Lee [1]的变形梯度乘积分解并不一致。关于变形的弹塑性分解存在许多争议,至今还没有澄清。本文将提出一种新的方法对高聚物在有限变形下的粘塑性本构关系进行研究。 2. 一种有限变形情况下高聚物本构模型 2.1 高聚物网结构节点滑移方程 由于等效网状结构的变形所导致的节点的滑移是与其无应力下的位置有关的,所以自然可以假设节点滑移变形的变形率 p D 与大变形的变形率D 是成比例关系的[2]。 ()()()P D t t D t φ= (1) 此时的比例系数φ是关于右Cauchy-Green 伸长张量 e C 的第一第二主不变量12,I I 的函数。 方程(1)的优点在于它是线性的,而且包括了一个可调整的函数,并满足了材料的不可压缩性的条件。但是(1)的不足之处是它不满足客观条件。如果考虑到有转动的情况,(1)就不能用于建立p D D 和的关系了。 为了使(1)适用于新的本构模型的计算,我们建议对(1)进行转化。这里我们可以把 变形率D 写成 110ln ln lim n n n t V V D t ++?→?=? (2) 其中 n V 为左伸长张量

变形监测方法

巷道变形监测 一、监测内容 监测工作通常用在不良岩体和受采动影响的巷道中进行。 监测项目分为必测项目、选测项目和增测项目。 必测项目尽可能经济而有效地判断围岩的稳定程度,以指导设计与施工。为适应井下的恶劣条件(包括温度、湿度和很差的操作条件)下工作,故要求仪器简便、坚固耐用、可靠性高。一般为收敛量测、位移变形量测等。 选测项目是对有特殊意义和有代表性的巷道进行补充量测,以求更加深入地掌握围岩与支护的动态,具体指导未开挖区的设计与施工。根据巷道用途、服务年限、断面尺寸、施工方法来选择监测项目,一般实用意义较大的是围岩位移、围岩压力、支护压力的量测。 增测项目用于特殊工程和重大工程项目要求增加补充量测项目,如底鼓量测、地表沉陷量测等。 量测内容及要求见表1。 表1 量测内容及要求 二、巷道监测的要求 (一)掌握设计意图,把巷道监测作为地下工程总体设计的一部分,详细安排进度,使监测结果用于现行工程,用实测结果调整设计。

(二)监测设计之前,应预估巷道的变形与压力值,预估在那一个数量级的范围内,根据围岩类别、工程跨度、工程性质、经费多少明确量测目的,选择量测方法,确定观测计划。 (三)现场观测计划应编入井巷施工计划中,应仔细检查施工对观测的干扰,避免埋设地点难以靠近、埋设仪器遭受破坏,甚至仪器埋设过迟,而达不到监测目的。 (四)监测计划可能延续几年或更长。选择仪器和安设地点时,要考虑长期性和可靠性,应使系统监测方法能互相校验。 (五)培训专业人员,确保仪器埋设准确,掌握仪器性能,能识别仪器的不稳定征兆,才能发现问题并及时处理。 (六)观测人员与资料分析人员不要脱节。 三、监测方法与布点设计 巷道的监测方法和布点参考表2。 表2 巷道监测方法与布点要求

变形监测实验指导书

实验一建筑物的沉降观测 一、实验目的:掌握精密水准测量的方法进行建筑物沉降观测的方法。 二、实验仪器:DS1精密水准仪1台,铟钢尺一对,尺垫一对。 三、实验方法: 1、在1、2号教学楼周围布设观测点和基准点,观测点布设:根据建筑物的大小、荷重、基础形式和地质条件等选定观测点。在建筑物基础压力和震动影响范围以外,选择土质坚固、稳定的地方,埋设3个以上水准点。 2、用精密水准测量方法,先对基准点进行观测,然后通过观测布设在建筑物上的沉降观测点与水准基点之间的高差变化值,来计算建筑物的高程。 1) 本次实验基准点采用一等水准测量,变形点的观测采用二等水准测量方法。一、二等水准测量各项限差规定如下: 2) 每个测段都要布设成偶数站,且采用往返观测;往测对奇数测站采用“后—前—前—后”、对偶数测站采用“前—后—后—前”的观测顺序。返测时的观测顺序与往测相反。

3)每个小组观测一个测段,所有小组的成果进行平差,利用平差后的基准点的高程计算变形点的高程 四、上交资料 个人交实习报告一份。各小组上交观测原始数据一份。平差成果一份,变形点的高程成果一份。 附表:

水准测量观测记录簿 测自至200 年月日时间始时分末时分成像 温度云量风向风速 天气土质太阳方向

实验二建筑物的水平位移观测 一、实验目的:了解视准线的布设方法和观测原理,利用视准线观测点的位移。 二、仪器设备:经纬仪仪等。 三、实验方法: 在1、2号教学楼周围选用已知点作为基准点,并在变形体上布设观测点。用前方交会法观测建筑物的坐标。 实验三视准线测量 一、实验目的:了解视准线的布设方法和观测原理,利用视准线观测点的位移。 二、仪器设备:经纬仪,钢尺等。 三、实验方法: 在地面上选择两基准点,并选择1变形点,写出其实验过程,数据整理,精度分析的过程。 实验四高层建筑物倾斜观测 一、实验目的:了解高层建筑物倾斜观测原理、方法及位移计算过程。 二、仪器设备:经纬仪等等。 三、实验方法: 实验五变形观测的方案设计 一、实验目的:了解以教学楼为例作一个变形观测的方案设计(包括仪器选取、特征点的安置等)。 二、仪器设备:钢钉、铁锤、毛笔、记录本。 三、实验方法 以1号教学楼为例,对其进行监测,时写出变形监测的方案。方案设计的内

边坡、挡墙及路堑开挖监测方案

陡路堤、挡土墙及路堑边坡监测方法 一、填方路基的监测 为及时了解和掌握路基填筑过程中的位移和变形,确保路基填筑的顺利完成和控制不均匀沉降,同时根据测定数据预测稳定时间和工后沉降量,同时利用观测数据监测地表水平位移及隆起情况和侧向变形情况,以确保路堤填筑施工安全和稳定。所以对路基填筑施工进行全过程现场监测非常必要。 1、监测点位布设原则 监测点布设在土路肩、路基中心以及坡脚处,根据边坡的地质情况按照50m间距布设一条横断面且每处高填或陡坡路堤不少于一条监测断面。 监测点位的布设位置应符合如下原则: (1)同一路段不同监测项目的测点布置在同一断面上,这样有利于测点保护,便于集中观测,统一观测频率,更重要的是便于各观测项目数据的综合分析。 (2)测点及观测元件的埋设位置应符合设计要求,且埋设准确、埋设稳定。观测期间对测点采取有效的保护措施,防止施工机械的碰撞,人为因素的破坏,务必使观测数据能连续,确保数据的有效性。 2、监测断面类型及适用条件见下表。 监测断面类型 位移桩埋设位置:设计路基坡脚线向外1m处、5m处各1个,路基填土前埋设。挡墙位移钉埋设:挡墙外侧向内0.2m处,挡土墙施工完毕时埋设。 3、监测频率 沉降观测频率取决于沉降量的大小、加载方法。本项目的路堤填筑采用分级填筑加载的方法,要求施工期每填筑1层应观测一次,若两层填筑间隔较长时,则每7天应观测一次,直到路基施工期结束,沉降稳定,路槽交验结束。

4、判稳条件 路堤在填筑过程中,如沿路堤中线地面沉降速率≥1.0cm/d或水平位移速率≥0.5cm/d,视为不稳定状态出现,应立刻停止填土。当停止填筑后每天仍需进行观测,当连续观测三次沉降量或位移量在规定控制范围之内时,才能继续填筑施工。当填筑至上路床顶面时,连续两个月的观测沉降量每月不超过8mm,确定为沉降稳定,此时方可开始路面施工。 5、埋设要点 沉降板在填土前埋设;沉降板用8mm厚500×500mm的钢板焊接φ40的测杆而成,测杆外套PVC管保护,测杆和套管每节长1.0米,随填土的升高而加长。位移桩采用C30砼预制,断面0.15m×0.15m。长度为2.0m,桩顶预埋钢筋头,钢筋头上锯切十字作为观测点。位移桩埋设深度1.5m,桩周围夯填密实,确保埋设牢固。 (1)填筑路堤前在经监理工程师抽检合格的填前压实层上安装沉降板。每50m一个断面内在两侧路肩内缘和路中心线各设置一块沉降板。 (2)随着填土的增高,测杆和套管亦相应接高,接高后的测杆顶面应略高于套管上口,方便观测时水准尺直接置于测杆顶,若套管高于测杆则无法立尺。 (3)套管上口应加盖封住管口,避免填料物落入管内而影响测杆下沉自由度,套管盖高度应满足封住管口而套管盖不接触测杆的要求,套管盖与套管连接采用螺纹接口对接。 6、观测要点 初始读数:沉降板安装好后即可测取初始读数;观测精度:1.0毫米。 路堤施工监控程序如下所示。

基坑变形监测方案

摘要 本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This design is mainly for a deep foundation pit during the construction of foundation pit deformation and cause the deformation of the surrounding environment monitoring methods and data processing program design and analysis.The main monitoring content of the foundation pit wall for monitoring horizontal displacement and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision analysis. Keyword:Horizontal displacement observation; settlement observation; tilt observation; two level; polar coordinates

变形监测实验报告完整版

编号:TQC/K485变形监测实验报告完整版 Daily description of the work content, achievements, and shortcomings, and finally put forward reasonable suggestions or new direction of efforts, so that the overall process does not deviate from the direction, continue to move towards the established goal. 【适用信息传递/研究经验/相互监督/自我提升等场景】 编写:________________________ 审核:________________________ 时间:________________________ 部门:________________________

变形监测实验报告完整版 下载说明:本报告资料适合用于日常描述工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向,使整体流程的进度信息实现快速共享,并使整体过程不偏离方向,继续朝既定的目标前行。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 1、实验要求: 应用全站仪对科技楼楼顶避雷针进行变形观测 2.实验过程: 首先认真理解前方交会原理,然后利用GPS做静态控制得出控制点坐标,将全站仪架在其中一个控制点A上,另一个控制点B架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,然后置零,转动照准部对准避雷针顶端C,记录角度,然后盘右观测,一站观测两个测回,得出夹角α将全

边坡挡墙变形监测新技术研究

边坡挡墙变形监测新技术研究 2 摘要:三维激光扫描技术的出现,为边坡挡墙变形监测提供了新的监测手段,本文选用在测量领域中使用较广的脉冲式扫描仪,以监测某立交桥的边坡挡墙变形为实例,进行了点云数据采集。根据边坡挡墙变形监测的特点及数据处理的要求,使用机带软件RIEGLVZ-1000进行了点云数据预处理之后,再引入第三方点云处理软件GeomagicStudio和GeomagicQualify,进行了数据处理及变形分析。通过研究,提出了基于三维激光扫描技术的边坡挡墙变形监测新方法。 关键词:三维激光扫描;挡墙;变形监测;点云数据 Abstract: The emergence of three - dimensional laser scanning technology provides a new means to monitor deformation of slope and retaining wall. The paper uses the pulsed scanner which is widely used in measurement, we scan a slope and retaining wall of a bridge which is taking as an example and collect the point cloud data. According to the characteristics and requirements of the slope and retaining wall data processing, we use the RIEGL VZ - 1000 which comes with the machine to finish point cloud data preprocessing, use the third - party point cloud processing software Geomagic Studio and Geomagic Qualify to process data and analysis deformation. After the research, we presented a new method to monitor deformation of slope and retaining wall based on 3D laser scanning technology. Key words:3D laser scanning; slope and retaining wall; deformation monitoring; point cloud data 引言 我国是世界上自然灾害频发的国家之一,而滑坡灾害在我国的自然灾害中占

深基坑变形监测的常见方法及应用

深基坑变形监测的常见方法及应用 本文主要介绍了深基坑的变形监测,分析了深基坑边坡的水平位移和竖向位移的监测方法,阐释了基坑变形监测过程中遇到的各种情况及需要注意的问题。 标签:深基坑;基坑变形监测;水平位移;竖向位移 随着科技的发展和技术的进步,为了解决土地资源日渐减少与城市人口不断增长的矛盾,越来越多的小高层、高层甚至超高层建筑物应运而生。伴随着高层建筑的崛起,深基坑工程也日益发展起来,深基坑的安全问题已经成为基础施工的重中之重。因此深基坑的变形监测也具有更实际更重要的意义。 深基坑工程是指基坑开挖的深度值超过5米(含5米)的基坑(槽)的土方开挖、边坡支护以及降水工程,或者基坑开挖的深度值虽未超过5米,但其地质条件情况、周围环境情况以及地下管线情况等较为复杂,或影响相邻建(构)筑物安全的基坑(槽)的土方开挖、边坡支护以及降水工程。根据规范要求,开挖深度值超过5m、或者开挖深度值虽不超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程变形监测。 基坑监测是指在施工及使用期限内,对深基坑及周边环境实施的检查、监控工作。监测项目主要包括:水平位移监测、竖向位移监测、深层水平位移监测、倾斜监测、裂缝监测、支护结构内力监测、土压力监测、孔隙水压力监测、地下水位监测、锚杆拉力监测、周边已建建筑的沉降监测等。其中基坑边坡的水平位移和竖向位移监测是最常见的基坑变形监测项目,本文就以此二项监测为例做相应的介绍和分析。 1、基坑变形测置点的设置 变形测量点分为基准点、工作基点和变形监测点。 基准点作为该工程的基准和检核点,必须保证其稳定性,每个基坑工程至少应设置3个基准点。当基准点离所测建筑距离较远致使变形测量作业不方便时,宜在稳定的位置设置工作基点。基准点和工作基点应避开交通干道主路、地下管线、仓库推栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀和破坏的地方,并应选设在变形影响范围以外且稳定、易于长期保存的地方。监测期间,应定期检查基准点和工作基点的稳定性。 基坑工程变形监测点是直接反应基坑变形情况的测量点。根据规范要求,基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。为了满足观测条件,应将点位沿基坑周边布置在边坡顶部,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20米,并应保证每条边坡上监测点数不少于3个。监测点宜采用1015cm长,直径20mm的钢筋,固定在边坡顶部,钢筋顶部刻十字花。

挡土墙变形监测方法

挡土墙变形监测方法 在挡土墙整个施工过程中,为有效监控挡土墙沉降位移,有必要进行工程监控量测,为挡土墙的施工提供参考依据,其监控量测方法如下: 1.变形监测网,由部分基准点、工作基点和变形观测点构成。监测周期,应根据监测体的变形特征、变形速率、观测精度和工程地质条件等因素综合确定。监测期间,根据变形量的变化情况适当调整。 2.挡土墙变形监测等级 2.1本标段最高挡土墙类型为扶壁式墙高为7.464m,此挡土墙工程为一般性的结构物,拟采用监测等级为四等。 3.变形监测网的设置变形监测网的网点,宜分为基准点、工作基点和变形观测点。其布设应符合下列要求: 3.1基准点,应选在变形影响区域外稳固可靠地位置不少 3 个基准点,选用挡土墙附近一级控制点作为基准点。 3.2工作基点,点位选在比较稳定且方便使用的位置,基准点埋石 制作,水平位移基准点采用? 12钢筋,在钢筋顶用钢锯锯出十字线, 垂直位移基准点采用? 12钢筋,并将钢筋头打磨成圆弧形,造好标石到现场选点埋设 3.3变形观测点,设置在每段挡土墙地面以上0.5m 处,每段挡土墙设置一个观测点,观测点采用? 12 钢筋,并将钢筋头打磨成圆弧形,在圆弧位置上锯十字线, 此观测点作为水平位移观测点和垂直位移观测点。在第一段挡土墙浇注拆模后, 用电锤在挡墙外侧钻孔10cm

深,将制作好的观测点插入钻孔内,并将其固定 4?每期观测前,对所使用的仪器和设备进行检查、 校正,并做好记录 5?各期的变形监测,应满足下列要求: 1在较短的时间内完成。 2采用相同的观测路线和观测方法。 3使用同一台仪器设备。 4使用同一把观测尺 5观测人员相对固定。 6采用统一基准处理数据 6.为满足监控量测需要,确保监控量测的质量,我部配备测量仪器和设备如下: 序号 器具名称 型号 精度 单位 数量 1 全站仪 拓普康GTS-332N 测角精度为2",测距精度 为 2mm+2ppmD 台 1 2 水准仪 苏州一光DSZ1 每公里往返测量标准偏差土 1mm 台 1 3 双面尺 木板尺3m 1 mm 把 2 7?每期观测结束后,应及时处理观测数据。当数据处理结果出现下列 情况之一时,必须即可通知项目部技术负责人以及相关人员采取相应 措施: 1 变形量达到预警值或接近允许值 观测点埋设示意图 观测点示意图

基坑变形监测方案

佳·5.4克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·5.4克拉项目部 二○一七年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图

一、编制依据 1、佳·5.4克拉基坑开挖图; 2、佳·5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·5.4克拉项目基坑支护结构设计》《佳·5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程±0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为11.77m;西塔筏板厚度为1 500mm,开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q4al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m。

探讨大坝坝体变形监测的技术方法

探讨大坝坝体变形监测的技术方法 发表时间:2020-04-14T01:59:35.586Z 来源:《建筑细部》2019年第21期作者:吴康翔[导读] 通过介绍大坝坝体变形监测的传统测量技术方法和GNSS测量技术方法,说明不同方法的特性和得到大坝坝体变形点坐标数据的过程。以GNSS测量技术方法为例,叙述了某大坝坝体变形监测的周期和采用的具体技术手段,对大坝坝体变形点的坐标数据进行了分析,得到某大坝坝体的变形状态。 吴康翔 深圳市深水水务咨询有限公司 518000 摘要:通过介绍大坝坝体变形监测的传统测量技术方法和GNSS测量技术方法,说明不同方法的特性和得到大坝坝体变形点坐标数据的过程。以GNSS测量技术方法为例,叙述了某大坝坝体变形监测的周期和采用的具体技术手段,对大坝坝体变形点的坐标数据进行了分析,得到某大坝坝体的变形状态。大坝坝体在建设和运营过程中,由于种种不利因素的影响,使得大坝坝体的质量问题受到威胁。为了及时得到大坝坝体的安全现状,需要采用科学的技术手段,对其进行变形监测。通过对变形数据的监测和分析,得出大坝坝体的水平位移量和垂直位移量,来预测大坝坝体的变形趋势,为管理者提供决策依据。从GPS在水库大坝变形监测中的应用特点入手,对其应用特点作了细致的梳理和阐述。接下来,特别地对于GPS技术在大坝变形监测中的精度影响因素作了具体分析。最后,分步骤详细阐述GPS技术在水库大坝监测领域的具体实施方法,并且对GPS技术的未来的发展和趋势。 关键词:大坝变形监测;位移量;监测点 大坝是一种特殊建筑物,其特殊性主要表现在如下3个方面:1.投资及效益的巨大和失事后造成灾难的严重性;2.结构、边界条件及运行环境的复杂性;3.设计、施工、运行维护的经验性、不确定性和涉及内容的广泛性。 以上特殊性说明了要准确了解大坝工作性态,只能通过大坝安全监测来实现,同时也说明了大坝安全监测的重要性。 随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。大坝安全监测重在评价大坝安全,还有校核设计、改进施工和评价大坝安全状况作用。大坝安全监测的浅层意义是为了人们准确掌握大坝性态;深层意义则是为了更好地发挥工程效益、节约工程投资。大坝安全监测不仅为了被监测坝的安全评估,还有利于为今后除险加固工程设计提供原型观测资料。 一、大坝坝体变形监测的技术方法 1.1传统的测量技术方法 在大坝坝体变形监测传统的测量技术方法中,先是在坝体的主轴线周围选择基准点和变形点,共同构成监测点,然后将监测点布设成边角网,借助全站仪周期性观测边角网中的角度和距离,推算变形点的平面坐标,分析出变形点位的水平位移量数值;通过精密水准测量的手段周期性观测大坝变形点,计算出变形点位的垂直位移量数值。根据水平位移量和垂直位移量的大小,最后判断大坝坝体的变形情况。 如图1所示的大坝坝体变形监测边角网,其中K01、K02、K03、K04、K05为基准点,B01、B02、B03为变形点,通过传统的测量技术方法,可以完成大坝坝体变形监测的任务。但是,变形监测传统的测量技术方法,外业观测的工作量大、效率低和成本高,内业数据计算麻烦、处理过程复杂,因此,逐渐被其他的变形监测方法所替代。

现代变形监测重点内容与思考题答案 (2)

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。 2.当实际观测中发现异常情况时,则应及时相应地增加观测次数。 八、简述变形监测的主要技术和数据处理分析的主要内容。

(完整版)深基坑监测方案

************工程 基坑变形监测方案 编制人: 审批人: 施工单位:********************** 2014年10月17日

目录 1、工程概况 (1) 2、监测目的及要求 (1) 3、编制依据 (2) 4、工程地质概要 (2) 5、监测内容 (3) 6、监测频率 (7) 7、测量主要仪器设备 (9) 8、监测工作管理保证监测质量的措施 (9) 9、监测人员配备 (14) 10、监测资料的提交 (14)

基坑变形监测方案 1、工程概况: 1、工程名称:*************** 2、工程地点:***************。 3、建设单位:**************** 4、设计单位:**************** 5、勘察单位:**************** 6、监理单位:***************** 7、施工单位:***************** 8、结构形式:***************** 深基坑支护采用如下方案: 1.1 基坑支护方案 本工程基坑东侧采用钢筋砼排桩支护,北侧采用锚杆加土钉墙支护(详见专项施工方案)。 2、监测目的及要求 2.1.监测目的 在深基坑开挖的施工过程中,基坑内外的土体由原来的静止土压力状态向主动力土压力状态转变,应力状态的改变引起的变形,即使采取支护措施,一定数量的变形总是难以避免的。这些变形包括:深基坑坑内土体的隆起,基坑支护结构以及周围土体的沉降和侧向位移。无论那种位移的量超出了某种容许的范围,都将对基坑支护结构造成危害。因

此,在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体进行综合、系统的监测,才能对工程情况有全面的了解。确保工程顺利进行。 2.2.深基坑工程监测的要求 在深基坑开挖与支护工程中,为满足支护结构及被护土体的稳定性,首先要防止破坏或极限状态发生。破坏或极限状态主要表现为静力平行的丧失,或支护结构的构造产生破坏。在破坏前,往往会在基坑侧向的不同部位上出现较多的变形或变形速率明显增大。支护结构物和被支护土体的过大位移将引起邻近建筑物的倾斜和开裂。如果进行周密的监测控制,无疑有利于采取应急措施,在很大程度上避免或减轻破坏的后果。 3、编制依据: 3.1《建筑基坑工程变形技术规范》(GB50497-2009) 3.2《城市测量规范》(CJJ8-99) 3.3《精密水准测量规范》(GB/T15314-940) 3.4《工程测量规范》(GB 50026-93) 3.5《建筑边坡工程技术规范》(GB50330-2007) 3.6 《建筑基坑支护技术技术规程》(JGJ120-99) 4、工程地质概要: 4.1本基坑地下水属潜水类型,其主要补给来源为大气降水。 4.2拟建场地浅层土层成份复杂,基坑工程正式施工前应对场地内的障碍物作进一步查明并给予清除,以确保围护体和坑内加固等正常施

相关主题
文本预览
相关文档 最新文档