当前位置:文档之家› 步步高2015高三物理(新课标)一轮讲义:4.4万有引力与航天

步步高2015高三物理(新课标)一轮讲义:4.4万有引力与航天

步步高2015高三物理(新课标)一轮讲义:4.4万有引力与航天
步步高2015高三物理(新课标)一轮讲义:4.4万有引力与航天

第4课时 万有引力与航天

考纲解读1.掌握万有引力定律的内容、公式及应用.2.理解环绕速度的含义并会求解.3.了解第二和第三宇宙速度.

1.[对开普勒三定律的理解]火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运

动定律可知( )

A .太阳位于木星运行轨道的中心

B .火星和木星绕太阳运行速度的大小始终相等

C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方

D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C

解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B 错;太阳在这些椭圆的一个焦点上,因此A 错; 在相同时间内,某个确定的行星与太阳连线在相同时间内扫过的面积相等,因此D 错,本题答案为C.

2.[对万有引力定律的理解]关于万有引力公式F =G m 1m 2

r

2,以下说法中正确的是( )

A .公式只适用于星球之间的引力计算,不适用于质量较小的物体

B .当两物体间的距离趋近于0时,万有引力趋近于无穷大

C .两物体间的万有引力也符合牛顿第三定律

D .公式中引力常量G 的值是牛顿规定的 答案 C

解析 万有引力公式F =G m 1m 2

r ,虽然是牛顿由天体的运动规律得出的,但牛顿又将它

推广到了宇宙中的任何物体,适用于计算任何两个质点间的引力.当两个物体间的距离趋近于0时,两个物体就不能视为质点了,万有引力公式不再适用.两物体间的万有引力也符合牛顿第三定律.公式中引力常量G 的值是卡文迪许在实验室里用实验测定的,而不是人为规定的.故正确答案为C.

3.[第一宇宙速度的计算]美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗

类似地球的、可适合居住的行星——“开普勒—22b ”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估

算该行星的第一宇宙速度等于( ) A .3.3×103 m/s B .7.9×103 m/s C .1.2×104 m/s D .1.9×104 m/s 答案 D

解析 由该行星的密度和地球相当可得M 1R 31=M 2

R 32,地球第一宇宙速度v 1=

GM 1

R 1

,该行星的第一宇宙速度v 2=

GM 2

R 2

,联立解得v 2=2.4v 1=1.9×104 m/s ,选项D 正确. 4.[对人造卫星及卫星轨道的考查]a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗

人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图1所示.下列说法中正确的是( )

图1

A .a 、c 的加速度大小相等,且大于b 的加速度

B .b 、c 的角速度大小相等,且小于a 的角速度

C .a 、c 的线速度大小相等,且小于d 的线速度

D .a 、c 存在在P 点相撞的危险 答案 A

解析 由G Mm r 2=m v 2r =mrω2

=mr 4π2T

2=ma ,可知B 、C 、D 错误,A 正确.

一、万有引力定律及其应用

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与

物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:F =Gm 1m 2r 2,G 为引力常量:G =6.67×10-

11 N·m 2/kg 2.

3.适用条件

(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.

(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 二、环绕速度

1.第一宇宙速度又叫环绕速度.

推导过程为:由mg =m v 21R =GMm

R 2得:

v 1=

GM

R

=gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度.

特别提醒 1.两种周期——自转周期和公转周期的不同

2.两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 3.两个半径——天体半径R 和卫星轨道半径r 的不同 三、第二宇宙速度和第三宇宙速度

1.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 2.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.

考点一 天体质量和密度的计算 1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2

r =m 4π2r T

2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表

面的重力加速度). 2.天体质量和密度的计算

(1)利用天体表面的重力加速度g 和天体半径R . 由于G Mm R 2=mg ,故天体质量M =gR 2

G ,

天体密度ρ=M V =M 43

πR 3=3g

4πGR

.

(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .

①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3

GT 2;

②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43

πR 3=3πr 3

GT 2R 3

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,

则天体密度ρ=3π

GT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心

天体的密度.

例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称

出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2

G

B .太阳的质量m 太=4π2L 32

GT 22 C .月球的质量m 月=4π2L 3

1

GT 21

D .可求月球、地球及太阳的密度

解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,

选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32

GT 22,B 项正确.对月球绕地球运动来说,能求地球质量,不知道月球的相关参量及月球的卫星运动参量,无法求出它的质量和密度,C 、D 项错误. 答案 AB

突破训练1 (2012·福建·16)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为

v .假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N .已知引力常量为G ,则这颗行星的质量为( ) A.m v 2GN B.m v 4GN C.N v 2Gm D.N v 4Gm 答案 B

解析 设卫星的质量为m ′

由万有引力提供向心力,得G Mm ′R 2=m ′v 2R ①

m ′v 2

R

=m ′g ②

由已知条件:m 的重力为N 得N =mg ③ 由③得g =N

m ,代入②得:R =m v 2

N

代入①得M =m v 4

GN ,故B 项正确.

考点二 卫星运行参量的比较与运算

1.卫星的各物理量随轨道半径变化的规律

2.极地卫星和近地卫星

(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心.

深化拓展 (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其他量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定. (2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.

例2 “嫦娥四号”,专家称“四号星”,计划在2017年发射升空,它是嫦娥探月工程计

划中嫦娥系列的第四颗人造探月卫星,主要任务是更深层次、更加全面的科学探测月球地貌、资源等方面的信息,完善月球档案资料.已知月球的半径为R ,月球表面的重力加速度为g ,月球的平均密度为ρ,“嫦娥四号”离月球中心的距离为r ,绕月周期为T .根据以上信息下列说法正确的是( ) A .月球的第一宇宙速度为gr B .“嫦娥四号”绕月运行的速度为 gr 2

R

C .万有引力常量可表示为3πr 3ρT 2R

3

D .“嫦娥四号”必须减速运动才能返回地球

解析 根据第一宇宙速度的定义有:mg =m v 2R ,v =gR ,A 错误;根据G Mm

r 2=m v 2r 和

G Mm

R

2=mg 可以得到“嫦娥四号”绕月运行的速度为v = R 2g r ,B 错误;根据G Mm r

2=m 4π2T 2r 和M =ρ43πR 3可以知道万有引力常量可表示为3πr 3

ρT 2R 3,C 正确;“嫦娥四号”必须先加速离开月球,再减速运动才能返回地球,D 错误. 答案 C

突破训练2 2013年6月13日,神州十号与天宫一号成功实现自动交会对接.对接前神州

十号与天宫一号都在各自的轨道上做匀速圆周运动.已知引力常量为G ,下列说法正确的是( )

A .由神州十号运行的周期和轨道半径可以求出地球的质量

B .由神州十号运行的周期可以求出它离地面的高度

C .若神州十号的轨道半径比天宫一号大,则神州十号的周期比天宫一号小

D .漂浮在天宫一号内的宇航员处于平衡状态 答案 A

例3 如图2所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤

道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球半径为R ,则下列比值正确的是( )

图2

A.a 1a 2=r R

B.a 1a 2=(R

r )2C.v 1v 2=r R D.v 1v 2

= R

r

解析 本题中涉及三个物体,其已知量排列如下: 地球同步卫星:轨道半径r ,运行速率v 1,向心加速度a 1; 地球赤道上的物体:轨道半径R ,随地球自转的向心加速度a 2; 近地卫星:轨道半径R ,运行速率v 2.

对于卫星,其共同特点是万有引力提供向心力,有G Mm

r 2=m v 2r ,故v 1v 2

R

r

. 对于同步卫星和地球赤道上的物体,其共同点是角速度相等,有a =ω2r ,故a 1a 2=r

R .

答案 AD

同步卫星的六个“一定”

突破训练3 已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力

常量为G .有关同步卫星,下列表述正确的是( ) A .卫星距地面的高度为 3GMT 2

4π2

B .卫星的运行速度小于第一宇宙速度

C .卫星运行时受到的向心力大小为G Mm

R

2

D .卫星运行的向心加速度小于地球表面的重力加速度 答案 BD

解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 万=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 万=GMm

R 2=mg (R 为地球半

径),设同步卫星离地面高度为h ,则F 万=GMm

(R +h )2=F 向=ma 向

正确.由GMm

(R +h )2=m v 2R +h

得,v =

GM

R +h

< GM R ,B 正确.由GMm (R +h )2

=4π2

m (R +h )

T 2,得R +h = 3GMT 24π2,即h = 3GMT 2

4π2

-R ,A 错误.

考点三 卫星变轨问题分析

当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:

(1)当卫星的速度突然增大时,G Mm r 2

2

r

,即万有引力不足以提供向心力,卫星将做离

心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GM

r

可知其运行速度比原轨道时减小. (2)当卫星的速度突然减小时,G Mm r 2>m v

2

r

,即万有引力大于所需要的向心力,卫星将做

近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GM

r

可知其运行速度比原轨道时增大. 卫星的发射和回收就是利用这一原理.

例4 “嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.如图3所示是绕地

飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道.A 点是2轨道的近地点,B 点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s ,则下列说法中正确的是( )

图3

A .卫星在2轨道经过A 点时的速率一定大于7.7 km/s

B .卫星在2轨道经过B 点时的速率一定小于7.7 km/s

C .卫星在3轨道所具有的机械能小于在2轨道所具有的机械能

D .卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率

解析 卫星在1轨道做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm r 2=m v 21

r

卫星在2轨道A 点做离心运动,则有G Mm r 2

2A

r

,故v 1

轨道B 点做近心运动,则有G Mm r 2B >m v 2

2B r B ,若卫星在经过B 点的圆轨道上运动,则G Mm

r 2

B

=m v 2

B

r B

,由于r v B ,故v 2B

于2轨道的高度,故卫星在3轨道所具有的机械能大于在2轨道所具有的机械能,选项C 错误;卫星在各个轨道上运动时,只有万有引力做功,机械能守恒,在A 点时重力势能最小,动能最大,速率最大,故卫星在3轨道所具有的最大速率大于在2 轨道所具有的最大速率,选项D 错误. 答案 AB

突破训练4 2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落

事件.如图4所示,一块陨石从外太空飞向地球,到A 点刚好进入大气层,之后由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是

( )

图4

A .陨石正减速飞向A 处

B .陨石绕地球运转时角速度渐渐变小

C .陨石绕地球运转时速度渐渐变大

D .进入大气层后,陨石的机械能渐渐变大 答案 C

解析 由于万有引力做功,陨石正加速飞向A 处,选项A 错误.陨石绕地球运转时,

因轨道半径渐渐变小,则角速度渐渐变大,速度渐渐变大,选项B 错误,C 正确.进入大气层后,由于受到空气阻力的作用,陨石的机械能渐渐变小,选项D 错误. 考点四 重力加速度和宇宙速度的求解

1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大

环绕速度.

2.第一宇宙速度的求法:

(1)GMm

R 2=m v 2

1R

,所以v 1=

GM

R

. (2)mg =m v 2

1

R

,所以v 1=gR .

3.第二、第三宇宙速度也都是指发射速度.

例5 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,

终于到达木星周围.此后在t 秒内绕木星运行N 圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N 圈都是绕木星在同一个圆周上运行,其运行速率为v ,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:

图5

(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度.

解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r ,由v =2πr T

可得:r =v T

由题意,T =t

N

联立解得r =v t

2πN

(2)探测器在圆形轨道上运行时,万有引力提供向心力, G mM

r 2=m v 2

r

. 设木星的第一宇宙速度为v 0,有,G m ′M R 2=m ′v 2

R

联立解得:v 0=

r

R

v

由题意可知R =r sin θ

2,解得:v 0=

v

sin

θ2

. 答案 (1)v t

2πN

(2)

v sin

θ2

突破训练5 随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员

登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后回到出发点.已知月球的半径为R ,万有引力常量为G ,则下列说法正确的是( ) A .月球表面的重力加速度为v 0

t

B .月球的质量为2v 0R 2

Gt

C .宇航员在月球表面获得

v 0R

t

的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rt v 0

答案 B

解析 根据竖直上抛运动可得t =2v 0g ,g =2v 0t ,A 项错误;由GMm R 2=mg =m v 2R =m (2π

T )2R

可得:M =2v 0R 2

Gt

,v =

2v 0R

t

,T =2π Rt

2v 0,故B 项正确,C 、D 项错误.

20.双星系统模型问题的分析与计算

绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统模型有以下特点:

图6

(1)各自需要的向心力由彼此间的万有引力相互提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω2

2r 2 (2)两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2

(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2

r 1

(5)双星的运动周期T =2π

L 3

G (m 1+m 2)

(6)双星的总质量公式m 1+m 2=4π2L 3

T 2G

例6 冥王星与其附近的星体卡戎可视为双星系统,它们的质量比约为7∶1,同时绕它们连

线上某点O 做匀速圆周运动.由此可知卡戎绕O 点运动的( ) A .角速度大小约为冥王星的7倍 B .向心力大小约为冥王星的1/7 C .轨道半径约为冥王星的7倍 D .周期与冥王星周期相同 答案 CD

解析 对于双星系统,任意时刻均在同一条直线上,故转动的周期、角速度都相同.彼此给对方的万有引力提供向心力,故向心力大小相同,由m 1ω2r 1=m 2ω2r 2,得r 2r 1=m 1

m 2=

7,故C 、D 项正确.

高考题组

1.(2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线

上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.

n 3

k 2

T B.n 3

k

T C. n 2

k

T D.n k

T 答案 B

解析 双星靠彼此的万有引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L

解得T =2π

L 3

G (m 1+m 2)

当双星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3

Gk (m 1+m 2)

n 3

k

·T 故选项B 正确.

2.(2013·新课标Ⅰ·20)2012年6月18日,神州九号飞船与天宫一号目标飞行器在离地面343

km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气,下面说法正确的是( )

A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间

B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加

C .如不加干预,天宫一号的轨道高度将缓慢降低

D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 答案 BC

解析 地球所有卫星的运行速度都小于第一宇宙速度,故A 错误.轨道处的稀薄大气会对天宫一号产生阻力,不加干预其轨道会缓慢降低,同时由于降低轨道,天宫一号的重力势能一部分转化为动能,故天宫一号的动能可能会增加,B 、C 正确;航天员受到地球引力作用,此时引力充当向心力,产生向心加速度,航天员处于失重状态,D 错误. 3.(2013·新课标Ⅱ·20)目前,在地球周围有许多人造地球卫星绕着它转,其中一些卫星的轨

道可近似为圆,且轨道半径逐渐变小.若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( ) A .卫星的动能逐渐减小

B .由于地球引力做正功,引力势能一定减小

C .由于气体阻力做负功,地球引力做正功,机械能保持不变

D .卫星克服气体阻力做的功小于引力势能的减小 答案 BD

解析 在卫星轨道半径逐渐变小的过程中,地球引力做正功,引力势能减小;气体阻力做负功,机械能逐渐转化为内能,机械能减小,选项B 正确,C 错误.卫星的运动近似看作是匀速圆周运动,根据G Mm

r 2=m v 2r

得v =

GM

r

,所以卫星的速度逐渐增大,动能增大,选项A 错误.减小的引力势能一部分用来克服气体阻力做功,一部分用来增加动能,故D 正确. 模拟题组

4.我校某同学在学习中记录了一些与地球月球有关的数据资料如表中所示,利用这些数据

计算地球表面与月球表面之间的距离s ,则下列运算公式中不正确的是( )

A.v 2g ′

-R -r B.v T

2π-R -r

C. 3g 0R 2T 24π2-R -r

D.ct

2 答案 A

5.为了探测X 星球,某探测飞船先在以该星球中心为圆心,高度为h 的圆轨道上运动,随

后飞船多次变轨,最后围绕该星球做近表面圆周飞行,周期为T .引力常量G 已知.则

( )

A .变轨过程中必须向运动的反方向喷气

B .变轨后与变轨前相比,飞船的机械能增大

C .可以确定该星球的质量

D .可以确定该星球的平均密度 答案 D

6.据报道,嫦娥三号将于近期发射.嫦娥三号接近月球表面的过程可简化为三个阶段:距

离月球表面15 km 时打开反推发动机减速,下降到距月球表面H =100 m 高度时悬停,寻找合适落月点;找到落月点后继续下降,距月球表面h =4 m 时速度再次减为0;此后,关闭所有发动机,使它做自由落体运动落到月球表面.已知嫦娥三号质量为140 kg ,月球表面重力加速度g ′约为1.6 m/s 2,月球半径为R ,引力常量G .求: (1)月球的质量;(用题给字母表示)

(2)嫦娥三号悬停在离月球表面100 m 处时发动机对嫦娥三号的作用力; (3)嫦娥三号从悬停在100 m 处到落至月球表面,发动机对嫦娥三号做的功. 答案 (1)g ′R 2G (2)224 N (3)-21 504 J

解析 (1)在月球表面G Mm

R

2=mg ′

解得:M =g ′R 2

G

(2)因受力平衡,有F =mg ′ 解得:F =224 N

(3)从悬停在高100 m 处到达高4 m 处过程由动能定理 mg ′(H -h )+W 1=0

从高4 m 处释放后嫦娥三号机械能守恒,发动机不做功.W 2=0 解得:W =W 1+W 2=-21 504 J

(限时:30分钟)

?题组1 万有引力定律及应用

1.(2012·新课标全国·21)假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已

知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )

A .1-d R

B .1+d R

C .(R -d R )2

D .(R R -d )2

答案 A

解析 设地球的密度为ρ,地球的质量为M ,根据万有引力定律可知,地球表面的重力加速度g =GM R 2.地球质量可表示为M =4

3πR 3ρ.因质量分布均匀的球壳对壳内物体的引力

为零,所以矿井下以(R -d )为半径的地球的质量为M ′=4

3π(R -d )3ρ,解得M ′=

(R -d R )3M ,则矿井底部的重力加速度g ′=GM ′(R -d )2,则矿井底部的重力加速度和地面处的重力加速度大小之比为g ′g =1-d

R

,选项A 正确.

2.(2013·浙江·18)如图1所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( )

图1

A .地球对一颗卫星的引力大小为GMm

(r -R )2

B .一颗卫星对地球的引力大小为GMm

r 2

C .两颗卫星之间的引力大小为Gm 2

3r

2

D .三颗卫星对地球引力的合力大小为3GMm

r 2

答案 BC

解析 地球对一颗卫星的引力等于一颗卫星对地球的引力,由万有引力定律得其大小为GMm

r 2,故A 错误,B 正确;任意两颗卫星之间的距离L =3r ,则两颗卫星之间的引力大小为Gm 2

3r 2,C 正确;三颗卫星对地球的引力大小相等且三个引力互成120°,其合力为

0,故D 选项错误.

3.2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是

指弹道导弹在大气层外空间依靠惯性飞行的一段.如图2所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )

图2

A .图中E 到D 过程,弹道导弹机械能不断增大

B .图中E 到D 过程,弹道导弹的加速度不断减小

C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆

D .弹道导弹飞行至D 点时速度大于7.9 km/s 答案 BC

解析 弹道导弹从E 到D 靠惯性飞行,只受地球的引力作用,机械能守恒,选项A 错误;弹道导弹从E 到D ,与地心的距离R 增大,万有引力F =G M 地m

R 2减小,弹道导弹的

加速度a =F

m 减小,选项B 正确;由开普勒第一定律知,选项C 正确;D 点在远地点,

弹道导弹的速度最小,由v =

GM

r

可知,D 点到地心的距离r 大于地球的半径R 0,

所以弹道导弹的速度v = GM

r 小于第一宇宙速度v 宇= GM

R 0

=7.9 km/s ,选项D 错误.

?题组2 天体质量和密度的计算

4.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v 贴近行星表面匀速飞行,

测出运动的周期为T ,已知引力常量为G ,则可得( ) A .该行星的半径为v T

B .该行星的平均密度为3π

GT 2

C .无法求出该行星的质量

D .该行星表面的重力加速度为4π2v 2

T 2

答案 AB

解析 由T =2πR v 可得:R =v T 2π,A 正确;由GMm

R 2=m v 2R 可得:M =v 3T 2πG ,C 错误;由M

=43πR 3ρ得:ρ=3πGT 2,B 正确;由GMm

R 2=mg 得:g =2πv T

,D 错误. 5.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某

星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处,已知该星球的半径与地球半径之比R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面重力加速度为g ′,地球的质量为M 地,该星球的质量为M 星.空气阻力不计.则( ) A .g ′∶g =5∶1 B .g ′∶g =1∶5 C .M 星∶M 地=1∶20 D .M 星∶M 地=1∶80 答案 BD

解析 小球以相同的初速度在星球和地球表面做竖直上抛运动,星球上:v 0=g ′·5t 2得,

g ′=2v 05t ,同理地球上的重力加速度g =2v 0

t ;则有g ′∶g =1∶5,所以A 错误,B 正

确.由星球表面的物重近似等于万有引力可得,在星球上取一质量为m 0的物体,则有m 0g ′=G M 星m 0R 2星,得M 星=g ′R 2星G ,同理得:M 地=g ·R 2地

G ,所以M 星∶M 地=1∶80,故C

错误,D 正确.

?题组3 卫星运行参量的分析与计算

6.已知金星绕太阳公转的周期小于木星绕太阳公转的周期,它们绕太阳的公转均可看做匀

速圆周运动,则可判定( )

A .金星到太阳的距离大于木星到太阳的距离

B .金星运动的速度小于木星运动的速度

C .金星的向心加速度大于木星的向心加速度

D .金星的角速度小于木星的角速度 答案 C

解析 由F =GMm R 2=m v 2R =mω2

R =m 4π2R T 2得:R =3GMT 24π2,所以周期大的轨道半径大,

因此A 错;v =

GM R ,所以半径小的线速度大,因此B 错;向心加速度a =GM

R

2,半径小的向心加速度大,因此C 正确;ω=2π

T ,周期小的角速度大,因此D 错.

7.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速

圆周运动,运行的周期为T .若以R 表示月球的半径,则( ) A .卫星运行时的线速度为

2πR

T

B .卫星运行时的向心加速度为4π2(R +h )

T 2

C .月球的第一宇宙速度为2πR (R +h )3

TR

D .物体在月球表面自由下落的加速度为4π2R

T 2

答案 BC

解析 卫星运行时的线速度为v =2π(R +h )

T ,选项A 错误;卫星运行时的向心加速度为

a =ω2

(R +h )=4π2(R +h )T 2,选项B 正确;由GMm (R +h )

2=mω2

(R +h ),ω=2πT ,v 1= GM

R

,联立解得月球的第一宇宙速度为v 1=2πR (R +h )3TR ,选项C 正确;由GMm R 2=mg ,

GMm

(R +h )2=mω2

(R +h ),ω=2π

T ,联立解得物体在月球表面自由下落的加速度为g =4π2(R +h )3T 2R 2

选项D 错误.

8.如图3所示,北京时间2012年10月25日23时33分,中国在西昌卫星发射中心用“长

征三号丙”运载火箭,成功将第16颗北斗导航卫星发射升空并送入预定转移轨道.第16颗北斗导航卫星是一颗地球静止轨道卫星,它将与先期发射的15颗北斗导航卫星组网运行,形成区域服务能力.根据计划,北斗卫星导航系统将于2013年初向亚太大部分地区提供服务.下列关于这颗卫星的说法正确的是( )

图3

A .该卫星正常运行时一定处于赤道正上方,角速度小于地球自转角速度

B .该卫星正常运行时轨道也可以经过地球两极

C .该卫星的速度小于第一宇宙速度

D .如果知道该卫星的周期与轨道半径可以计算出其质量 答案 C

解析 由题意知这是一颗地球同步卫星,所以其轨道一定处于赤道正上方,角速度与地球自转角速度相同,选项A 、B 错误;该卫星高度很大,不是贴近地球表面运行,所以其速度远小于第一宇宙速度,选项C 正确;如果知道该卫星的周期与轨道半径,根据G Mm r 2=mr 4π2

T 2可以计算出地球质量M ,但不能计算出卫星质量,选项D 错误. ?题组4 卫星变轨问题的分析

9.如图4所示,“嫦娥二号”卫星由地面发射后,进入地月转移轨道,经多次变轨最终进

入半径为100 km 、周期为118 min 的工作轨道,开始对月球进行探测,则( )

图4

A .卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小

B .卫星在轨道Ⅲ上经过P 点的速度比在轨道Ⅰ上经过P 点时大

C .卫星在轨道Ⅲ上运动的周期比在轨道Ⅰ上短

D .卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大 答案 ACD

解析 由题图知,r Ⅰ>r Ⅱ>r Ⅲ>r 月

,由万有引力定律、牛顿第二定律得,v =

GM

r

,T =

4π2r 3

GM

,卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小,选项A 正确;卫星在轨道Ⅲ上经过P 点的速度比在轨道Ⅰ上经过P 点时小,选项B 错误;卫星在轨道

Ⅲ上运动周期比在轨道Ⅰ上短,选项C 正确;卫星从轨道Ⅰ运动到轨道Ⅱ要靠人为控制减速实现,故卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上大,选项D 正确.

10.2011年9月29日,中国首个空间实验室“天宫一号”在酒泉卫星发射中心发射升空,

由长征运载火箭将飞船送入近地点为A 、远地点为B 的椭圆轨道上,B 点距离地面高度为h ,地球的中心位于椭圆的一个焦点上.“天宫一号”飞行几周后进行变轨,进入预定圆轨道,如图5所示.已知“天宫一号”在预定圆轨道上飞行n 圈所用时间为t ,万有引力常量为G ,地球半径为R .则下列说法正确的是( )

图5

A .“天宫一号”在椭圆轨道的

B 点的向心加速度大于在预定圆轨道的B 点的向心加速度

B .“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,机械能守恒

C .“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,动能先减小后增大

D .由题中给出的信息可以计算出地球的质量M =4π2n 2(R +h )3Gt 2

答案 BD

解析 在B 点,由GMm

r 2=ma 知,无论在哪个轨道上的B 点,其向心加速度相同,A 项

错;“天宫一号”在椭圆轨道上运行时,其机械能守恒,B 项对;“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,动能一直减小,C 项错;对“天宫一号”在预定圆轨道上运行,有G Mm (R +h )2

=m (R +h )4π2T 2,而T =t

n ,故M =4π2n 2(R +h )3Gt 2,D 项对.

?题组5 双星问题

11.天文学家如果观察到一个星球独自做圆周运动,那么就想到在这个星球附近存在着一个

看不见的星体黑洞.星球与黑洞通过万有引力的作用组成双星,以两者连线上某点为圆心做匀速圆周运动,那么( )

A .它们做圆周运动的角速度与其质量成反比

B .它们做圆周运动的周期与其质量成反比

C .它们做圆周运动的半径与其质量成反比

D .它们所受的向心力与其质量成反比 答案 C

解析 星球与黑洞绕某点做匀速圆周运动,它们之间的万有引力提供向心力,则星球与

黑洞的向心力相等,选项D 错误;星球与黑洞和某点始终共线,说明它们有相同的角速度和周期,选项A 、B 错误;设星球与黑洞的质量、轨道半径分别为m 1、m 2和r 1、r 2,角速度为ω,则有m 1ω2r 1=m 2ω2r 2,解得r 1r 2=m 2

m 1

,选项C 正确.

?题组6 万有引力与航天的综合计算题

12.有一探测卫星在地球赤道正上方绕地球做匀速圆周运动,已知地球质量为M ,地球半

径为R ,万有引力常量为G ,探测卫星绕地球运动的周期为T .求: (1)探测卫星绕地球做匀速圆周运动时的轨道半径; (2)探测卫星绕地球做匀速圆周运动时的速度大小;

(3)在距地球表面高度恰好等于地球半径时,探测卫星上的观测仪器某一时刻能观测到的地球表面赤道的最大弧长.(此探测器观测不受日照影响,不考虑大气对光的折射) 答案 (1) 3GMT 24π2

(2) 32πGM T (3)2πR

3

解析 (1)设卫星质量为m ,卫星绕地球运动的轨道半径为r ,根据万有引力定律和牛顿第二定律得:

G Mm r 2=m 4π2r

T 2,解得r = 3GMT 24π2

(2)设探测卫星绕地球做匀速圆周运动时的速度大小为v , v =2πr T = 32πGM T

(3)设探测卫星在地球赤道上方A 点处,距离地球中心为2R ,探 测卫星上的观测仪器最远能观测到地球赤道上的B 点和C 点, 能观测到赤道上的最大弧长是l BC ,如图所示, cos α=R 2R =12,

则:α=60°

观测到的地球表面赤道的最大弧长l BC =2πR 3

高考物理万有引力与航天专题训练答案

高考物理万有引力与航天专题训练答案 一、高中物理精讲专题测试万有引力与航天 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求: (1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期. 【答案】(1) R=m M M +L, r=m M m +L,(2)()3L G M m + 【解析】 (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+ 两星做圆周运动时的向心力由万有引力提供,则有:22 22244mM G mR Mr L T T ππ== 可得 R M r m = ,又因为L R r =+ 所以可以解得:M R L M m = +,m r L M m =+; (2)根据(1)可以得到:2222244mM M G m R m L L T T M m ππ==?+ 则:()()233 42L L T M m G G m M π= =++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径. 2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ; (3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .

万有引力定律与航天练习题

万有引力定律与航天 练习题 Revised on November 25, 2020

万有引力定律与航天章节练习题 一、选择题 1.如图所示,火星和地球都在围绕太阳旋转,其运行轨道是椭圆,根据开普 勒行星运动定律可知( ) A. 火星绕太阳运动过程中,速率不变 B. 火星绕太阳运行一周的时间比地球的长 C. 地球靠近太阳的过程中,运行速率将减小 D. 火星远离太阳的过程中,它与太阳的连线在相等时间内扫过的面积逐渐增大 2.经国际小行星命名委员会命名的“神舟星”和“杨利伟星”的轨道均处在 火星和木星轨道之间,它们绕太阳沿椭圆轨道运行,其轨道参数如下表。 注:AU 是天文学中的长度单位,1AU=149 597 870 700m (大约是地球到太阳的平均距离)。“神舟星”和“杨利伟星”绕太阳运行的周期分别为T 1和T 2,它们在近日点的加速度分别为a 1和a 2。则下列说法正确的是( ) A. 1212,T T a a >< B. 1212,T T a a << C. 1212,T T a a >> D. 1212,T T a a 3.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“31peg b” 的发现拉开了研究太阳系外行星的序幕。“31peg b”绕其中心恒星做匀速圆周运 动,周期大约为4天,轨道半径约为地球绕太阳运动半径的1 20,该中心恒星 与太阳的质量比约为( ) A. 1 10 B. 1 C. 5 D. 10 4.2013年6月13日,“神舟十号”与“天空一号”成功实施手控交会对接,下列关于“神舟十号”与“天空一号”的分析错误的是( ) A .“天空一号”的发射速度应介于第一宇宙速度与第二宇宙速度之间

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析 一、高中物理精讲专题测试万有引力定律的应用 1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h=12 gt 2 , 解得该星球表面的重力加速度为:g=2h/t 2; (3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2 Mm G R 所以该星球的质量为:M=2 gR G = 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v , 由牛顿第二定律得: 2 2Mm v G m R R = 重力等于万有引力,即mg=2Mm G R , 解得该星球的第一宇宙速度为:v = = 2.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期. (2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?

2021届全国高三高考物理第二轮专题练习之万有引力(新人教)

万有引力与航天 1.某人造卫星运动的轨道可近似看作是以地心为中心的圆。由于阻力作用,人造卫星到地心的距离从r1慢慢变到r2,用E k1、E k2分别表示卫星在这两个轨道上的动能,则() A.r1<r2,E k1<E k2B.r1>r2,E k1<E k2 C.r1>r2,E k1>E k2D.r1<r2,E k1>E k2 2.一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量() A.飞船的轨道半径 B.飞船的的运行速度 C.飞船的运行周期 D.行星的质量 3.已知引力常量G、月球中心到地球中心的距离R和月球绕地球运行的周期T。仅利用这三个数据,可以估算出的物理量有()A.月球的质量 B.地球的质量 C.地球的半径 D.月球绕地球运行速度的大小 4. 据报道,最近在太阳系外发现了首颗“宜居”行星,起质量约为地球质量的6。4倍一个在地球表面重量为600N的人在这个行星表面的

重量将变为960N ,由此可推知,该行星的半径与地球半径之比约为( ) A 0.5 B 2 C 3.2 D 4 5.根据观察,在土星外层有一个环,为了判断环是土星的连续物还是小卫星群。可测出环中各层的线速度V 与该层到土星中心的距离R 之间的关系。下列判断正确的是: A.若V 与R 成正比,则环为连续物; B.若V 2与R 成正比,则环为小卫星群; C.若V 与R 成反比,则环为连续物; D.若V 2与R 成反比,则环为小卫星群。 6.据报道,我国数据中继卫星“天链一号Ol 星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经770赤道上空的同步轨道。关于成功定点后的“天链一号01星”,下列说法正确的是 A. 运行速度大于 7.9 km /s B.离地面高度一定,相对地面静止 C. 绕地球运行的角速度比月球绕地球运行的角速度大 D.向心加速度与静止在赤道上物体的向心加速度大小相等 7.火星的质量和半径分别约为地球的101和2 1 ,地球表面的重力加速度为g ,则火星表面的重力加速度约为 A .0.2g B .0.4g C .2.5g D .5g 8.图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次

备战2021新高考物理-重点专题-万有引力与航天(三)(含解析)

备战2021新高考物理-重点专题-万有引力与航天(三) 一、单选题 1.三颗人造地球卫星绕地球做匀速圆周运动,运行方向如图所示.已知 ,则关于三颗卫星,下列说法错误的是() A.卫星运行线速度关系为 B.卫星轨道半径与运行周期关系为 C.已知万有引力常量G,现测得卫星A的运行周期T A和轨道半径R A,可求地球的平均密度 D.为使A 与B同向对接,可对A适当加速 2.如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是() A.B,C的角速度相等,且小于A的角速度 B.B,C的线速度大小相等,且大于A的线速度 C.B,C的向心加速度相等,且大于A的向心加速度 D.B,C的周期相等,且小于A的周期 3.2020年4月24日,国家航天局宣布,我国行星探测任务命名为“天问”,首次火星探测任务命名为“天问一号”。已知万有引力常量,为计算火星的质量,需要测量的数据是() A.火星表面的重力加速度和火星绕太阳做匀速圆周运动的轨道半径 B.火星绕太阳做匀速圆周运动的轨道半径和火星的公转周期 C.某卫星绕火星做匀速圆周运动的周期和火星的半径 D.某卫星绕火星做匀速圆周运动的轨道半径和公转周期 4.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下面说法中正确的是()

A.g′=0 B.g′= C.F N=0 D.F N= 5.2019年11月23日8时55分,我国在西昌卫星发射中心用“长征三号“乙运载火箭,以“一箭双星”方式成功发射第50、51颗北斗导航卫星。两颗卫星均属于中圆轨道(MEO)卫星,是我国的“北斗三号”系统的组网卫星。这两颗卫星的中圆轨道(MEO)是一种周期为12小时,轨道面与赤道平面夹角为60°的圆轨道。是经过GPS和GLONASS运行证明性能优良的全球导航卫星轨道。关于这两颗卫星,下列说法正确的是() A.这两颗卫星的动能一定相同 B.这两颗卫星绕地心运动的角速度是长城随地球自转角速度的4倍 C.这两颗卫星的轨道半径是同步卫星轨道半径的 D.其中一颗卫星每天会经过赤道正上方2次 6.如图所示,a、b、c是地球大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相等且小于c的质量,则下列判断错误的是() A.b所需向心力最小 B.b、c周期相等,且大于a的周期 C.b、c向心加速度大小相等,且大于a的向心加速度 D.b、c线速度大小相等,且小于a的线速度 7.将地球看成质量均匀的球体,假如地球自转速度增大,下列说法中正确的是() A.放在赤道地面上的物体所受的万有引力增大 B.放在两极地面上的物体所受的重力增大 C.放在赤道地面上的物体随地球自转所需的向心力增大 D.放在赤道地面上的物体所受的重力增大 8.太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是() A.2年 B.4年 C.8年 D.10年 9.若将八大行星绕太阳运行的轨迹可粗略地认为是圆,各星球半径和轨道半径如下表所示:从表中所列数据可以估算出海王星的公转周期最接近( )

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试万有引力定律的应用 1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G . (1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1; (3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由. 【答案】(1)2π=T ω;(2)2 3124GMT h R π (3)h 1= h 2 【解析】 【分析】 (1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】 (1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2 1 212π=()()()Mm G m R h R h T ++ 解得:2 312 =4π GMT h R

(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2 2 22 2=()()()Mm G m R h R h T π++ 解得:2 322 =4GMT h R π - 因此h 1= h 2. 故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π - (3)h 1= h 2 【点睛】 对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量. 2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8) (1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度. 【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】 (1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a = 又有:sin cos mg mg ma θμθ+= 解得:2 7.5m/s g = (2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有: 2 mv mg R =

高三物理万有引力练习

高三物理磁场专项练习 姓名:___________班级:___________考号:___________ 一、解答题 1.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收。一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁 场中的运动半径R0=0.08m,若粒子重力不计、比荷q m =108C/kg、不计粒子间的相互作用力及电场的边缘效应。 sin53°=0.8,cos53°=0.6。 (1)求粒子的发射速度v的大小; (2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η。 2.如图,平面直角坐标系中,在,y>0及y<-3 2 L区域存在场强大小相同,方向相反均平行于y轴的匀强电 场,在-3 2 L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒 子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(3 2 L,0)进入 磁场。在磁场中的运转半径R=5 2 L(不计粒子重力),求: (1)粒子到达P2点时的速度大小和方向; (2)E B ; (3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期。3.如图所示,左侧正方形区域ABCD有竖直方向的匀强电场和垂直纸面方向的磁场,右侧正方形区域CEFG 有电场,一质量为m,带电量为+q的小球,从距A点正上方高为L的O点静止释放进入左侧正方形区域后做匀速圆周运动,从C点水平进入右侧正方形区域CEFG.已知正方形区域的边长均为L,重力加速度为g,求:(1)左侧正方形区域的电场强度E1和磁场的磁感应强度B; (2)若在右侧正方形区域内加竖直向下的匀强电场,能使小球恰好从F点飞出,求该电场场强E2的大小;(3)若在右侧正方形区域内加水平向左的匀强电场,场强大小为3 kmg E q (k为正整数),试求小球飞出该区域的位置到G点的距离. 4.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B和B(B的大小未知),第二象限和第三象限内存在沿﹣y方向的匀强电场,x轴上有一点P,其坐标为(L,0)。现使一个电量大小为q、质量为m的带正电粒子从坐标(﹣2a,a)处以沿+x方向的初速度v0出发,该粒子恰好能经原点进入y轴右侧并在随后经过了点P,不计粒子的重力。 (1)求粒子经过原点时的速度; (2)求磁感应强度B的所有可能取值 (3)求粒子从出发直至到达P点经历时间的所有可能取值。

万有引力与航天专题

A O 万有引力与航天专题 1.【2012?湖北联考】经长期观测发现,A 行星运行的轨道半径为R 0,周期为T 0但其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离.如图所示,天文学家认为形成这种现象的原因可能是A 行星外侧 还存在着一颗未知行星B ,则行星B 运动轨道半径为( ) A . 030002()2t R R t T =- B .T t t R R -=000 C . 3 20000)(T t t R R -= D .300200T t t R R -= 2.【2012?北京朝阳期末】2011年12月美国宇航局发布声明宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、可适合居住的行星。该行星被命名为开普勒一22b (Kepler 一22b ),距离地球约600光年之遥,体积是地球的2.4倍。这是目前被证实的从大小和运行轨道来说最接近地球形态的行星,它每290天环绕着一颗类似于太阳的恒星运转一圈。若行星开普勒一22b 绕恒星做圆运动的轨道半径可测量,万有引力常量G 已知。根据以上数据可以估算的物理量有( ) A.行星的质量 B .行星的密度 C .恒星的质量 D .恒星的密度 3.【2012?江西联考】如右图,三个质点a 、b 、c 质量分别为m 1、m 2、 M (M>> m 1,M>> m 2)。在c 的万有引力作用下,a 、b 在同一平面内 绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a ∶T b =1∶k ; 从图示位置开始,在b 运动一周的过程中,则 ( ) A .a 、b 距离最近的次数为k 次 B .a 、b 距离最近的次数为k+1次 C .a 、b 、c 共线的次数为2k D .a 、b 、c 共线的次数为2k-2 4.【2012?安徽期末】2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全

必修二万有引力与航天知识点总结完整版

第六章 万有引力与航天知识点总结 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11N ·m 2/kg 2 ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1. 地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力: 在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。 地球表面的物体所受到的向心力f 的大小不超过重力的0. 35%,因此在计算中可以认为万有引力和重 力大小相等。如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小, 就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰 好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即21)('h R Gm g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2. 绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向=mg ∴g =a 向=G ·M /R 2 122 m m F G r =2 R Mm G mg =

高考物理万有引力定律知识点总结-学生版

万有引力定律知识点总结 一.开普勒行星运动规律: 行星轨道视为圆处理 则3 2r K T =(K 只与中心天体质量M 有关) 二、万有引力定律 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G 2 21r m m ,其中2 211/1067.6kg m N G ??=-,叫做引力常量。 (3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离. 三.万有引力定律的应用 (1).万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h ) G M m R h m ()+=2 V R h m R hm T R h 22 2 224()()()+=+=+ωπ 人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r GM v = ,r 越大,v 越小;3 r GM = ω,r 越大,ω越小;GM r T 3 24π= ,r 越大,T 越大; 2 n GM a r = , r 越大,n a 越小。 (2)、用万有引力定律求中心星球的质量和密度 求质量:①天体表面任意放一物体重力近似等于万有引力:mg = G M m R 2 →2 gR M G = M ,半径为R ,环绕星球质量为m ,线速 度为v ,公转周期为T ,两星球相距r ,由万有引力定律有:2 222? ? ? ??==T mr r mv r GMm π,可得出中心天 体的质量:23 2 2 4GT r G r v M π== 求密度: 34/3M M V R ρπ== 地面物体的重力加速度:mg = G M m R 2 高空物体的重力加速度:mg ‘‘ = G 2 )(h R Mm + 黄金替换式: 即mg R Mm G =2 从而得出2 gR GM = (g 是表面的重力加速度) 四、三种宇宙速度

高考物理万有引力专题练习

万有引力专题训练 一、 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律 可知( ) A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行的速度大小始终相等 C.火星与木星公转周期之比的平方等于它们的轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 2.某行星沿椭圆轨道运动,近日点离太阳中心距离为a ,远日点离太阳 心距离为b ,该行星过近日点时的速率为a v ,则过远日点时速率b v 为( ) A. a bv a B.a v b a C.b av a D.a v a b 3.人造卫星A 、B 绕地球做匀速圆周运动,A 卫星的运行周期为3小时, A 的轨道半径为B 的轨道半径的1/4,则B 卫星运行的周期大约是( ) A.12小时 B.24小时 C.36小时 D.48小时 4.如图,0表示地球,P 表示一个绕地球沿椭圆轨道做逆时针方向运动的人造 卫星,AB 为长轴,CD 为短轴.在卫星绕地球运动一周的时间内,从A 到B 的时间为AB t ,同理,从B 到A 、从C 到D 、从D 到C 的时间分别为DC CD BA t t t 、、,下列关系式正确的是( ) A. AB t >BA t B.AB t DC t D. CD t

二、 1.关于万有引力定律的建立,下列说法中正确的是( ) A.卡文迪许仅根据牛顿第三定律推出了行星与太阳间引力大小跟行星与太阳间距离的平方成反比的关系 B.“月—地检验”表明物体在地球上受到地球对它的引力是它在月球上受到月球对它的引力的60倍 C.“月—地检验”表明地面物体所受地球的引力与月球所受地球的引力遵从同样的规律 D.引力常量G 的大小是牛顿根据大量实验数据得出的 2. 设地球自转周期为T,质量为M,引力常量为G.假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比 为( ) A.32224R GMT GMT π- B.32224R GMT GMT π+ C.23224GMT R GMT π- D.23224GMT R GMT π+ 3.关于万有引力定律公式2 21r m m G F =,以下说法中正确的是( ) A.公式只适用于星体之间的引力计算,不适用于质量较小的物体 B.当两物体间的距离趋近于零时,万有引力趋近于无穷大 C.两物体间的万有引力也符合牛顿第三定律 D.公式中引力常量G 的值是牛顿规定的 4.下列说法中符合物理史实的是( ) A.伽利略发现了行星的运动规律,开普勒发现了万有引力定律 B.哥白尼创立了“地心说”,“地心说”是错误的,“日心说”是正确的,太阳是宇宙的中心 C.牛顿首次在实验室里较准确地测出了引力常量 D.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律 5.(多选)宇宙中存在着由四颗星组成的孤立星系如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( ) A.每颗小星受到的万有引力为(2 3+9)F B.每颗小星受到的万有引力为(3+9)F C.母星的质量是每颗小星质量的3倍

万有引力与航天公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二. 1.2/三.1. 2.1687⑴.⑵.⑶.a. b.当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c.认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物 体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的 性质无关,与周期及有无其它物体无关. (5)引力常数G :

①大小:kg m N G 2 2 11 /67.610??=-,由英国科学家卡文迪许利用扭秤测出 ②意义: 表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 1011 67.6-? 四.两条思路:即解决天体运动的两种方法 1.万有引力提供向心力:F F 向万=即:22 2224n Mm v F G ma m mr mr r r T πω=====万 2.天体对其表面物体的万有引力近似等于重力: 即2gR GM =(又叫黄金代换式) 注意: 五.1.a.c. 2.3.方法一:根据转动天体运动周期T 、转动半径r 和中心天体半径R 计算: R T r G 3 2 33πρ= (适合于有行星、卫星转动的中心天体) 方法二:根据中心天体半径R 和其表面的重力加速度g 计算: GR g πρ43=(适合于没有行星、卫星转动的天体) 4.计算第一宇宙速度(环绕速度) 简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略r ≈R 方法一。根据中心天体质量M 和半径R 计算: 由→=R m Mm G v R 2 2 R GM v =

(完整版)高中物理万有引力部分知识点总结

高中物理——万有引力与航天 知识点总结 一、开普勒行星运动定律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。 3.适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但

此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。 三、万有引力定律的应用 1.解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式: F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM. 2.天体质量和密度的估算 通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3). (1)若已知天体的半径R,则天体的密度 ρ=V(M)=πR3(4)=GT2R3(3πr3) (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π) 可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度. 3.人造卫星 (1)研究人造卫星的基本方法

万有引力与航天重点知识归纳

r G Mm = mg ? g = GM ;在地球表面高度为 h 处: (R + h) 2 (R + h) 2 Mm = mg ? g = = 4 , r 万有引力与航天重点知识归纳 考点一、万有引力定律 1. 开普勒行星运动定律 (1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: a 3 T 2 = k 。其中 k 值与太阳有关,与行星无关。 (4)推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星 旋转时, a 3 = k ,但 k 值不同,k 与行星有关,与卫星无关。 T 2 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为 v 与ω不变,行星或卫星做匀速圆周运动; ③ R 3 = k ,R ——轨道半径。 T 2 2. 万有引力定律 (1)内容:万有引力 F 与 m 1m 2 成正比,与 r 2 成反比。 (2)公式: F = G m 1m 2 ,G 叫万有引力常量, G = 6.67 ? 10 -11 N ? m 2 / k g 2 。 r 2 (3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体, 指两球心间的距离;③一个均匀 球体和球外一个质点,r 指质点到球心间的距离。 (4)两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力 mg ,另一个是 物体随地球自转所需的向心力 f ,如图所示。 ①在赤道上,F=F 向+mg ,即 mg = G Mm - m ω 2 R ; R 2 ②在两极 F=mg ,即 G Mm = mg ;故纬度越大,重力加速度越大。 R 2 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上, R 2 R 2 G GM ,所以 g = h h h R 2 (R + h ) 2 g ,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法: G Mm = mr ( 2π ) 2 ? M = 4π 2 r 3 ,再根据 r 2 T GT 2 V M 3πr 3 π R 3 , ρ = ? ρ = 3 V GT 2 R 3 ,当 r=R 时, ρ = 3π GT 2 2.g 、R 法: G Mm = mg ? M = R 2 g R 2 G ,再根据V = 4 πR 3 ρ = M ? ρ = 3g 3 V 4πGR 3.v 、r 法: G Mm = m v 2 ? M = rv 2 r 2 r G 4.v 、T 法: G Mm = m v 2 , G Mm = mr ( 2π ) 2 ? M = v 3 T r 2 r 2 T 2πG

高考物理万有引力定律专题复习(整理)

考点 1 周期T 、线速度v 、加速度a 与轨道半径r 关系 ①由=2r Mm G r v m 2得=v _____________,所以r 越大,v _______ ②由=2r Mm G r m 2ω 得ω=_______,所以r 越大,ω_______ ③ 越大所以得由 r 22r Mm G a ma r Mm == ④由=2r Mm G r T m 2 )2(π得T=_____,所以r 越大,T _______ 例1.我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T 。若以R 表示月球的半径,则 A .卫星运行时的向心加速度为2 2π4T R B 。卫星运行时的线速度为 T R π2 C .物体在月球表面自由下落的加速度为22π4T R D .月球的第一宇宙速 度为TR h R R 3 )π2+( 考点2 求中心天体的质量M 与密度 (1) 天体质量M 密度ρ的估算

测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由 =2r Mm G r T m 2 )2(π得2324GT r M π= ; =ρ303 4R M V M π==3023 3R GT r π(0R 为中心天体的半径)。 例2.一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .12 4π3G ρ?? ??? B .12 34πG ρ?? ? ?? C .12 πG ρ?? ??? D .1 2 3π G ρ?? ??? 考点3 三大宇宙速度 1.第一宇宙速度:约为s ,是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度.(又称环绕速度或最小发射速度) 2.第二宇宙速度:约为s ,当物体的速度等于或大于s 时,卫星就会脱离地球吸引,不再绕地球运动.(又称脱离速度) 3.第三宇宙速度:约为s ,当物体的速度等于或大于s 时,就会脱离太阳的束缚,飞到太阳系以外的宇宙空间去.(逃逸速度) 补充:第一宇宙速度的理解和推导 1.由于在人造卫星的发射过程中,火箭要克服地球的引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越

万有引力与航天专题复习

万有引力与航天专题 复习 Revised on November 25, 2020

万有引力与航天 一、行星的运动 1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 推论:近日点速度比较快,远日点速度比较慢。 ③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等。 即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。 推广:对围绕同一中心天体运动的行星或卫星,上式均成立。K 取决于中心天体的质量 例1. 据报道,美国计划从2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球沿椭圆轨道运行时,在近地点A 的速率 (填“大于”“小于”或“等于”)在远地点B 的速率。 例2、宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( ) 年 年 年 年 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正 比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 例3.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力恒量) (2)计算重力加速度 3 2a k T =2Mm F G r =1122 6.6710/G N m kg -=??12 2m m F G r =2R Mm G mg =

相关主题
文本预览
相关文档 最新文档