当前位置:文档之家› 煤矿井下泵房自动排水系统说明

煤矿井下泵房自动排水系统说明

煤矿井下泵房自动排水系统说明
煤矿井下泵房自动排水系统说明

煤矿井下泵房排水智能控制系统说明

井下排水是确保煤矿安全生产的重要环节,也是用电大户,确保其稳定可靠地运行,对矿井的安全生产有着重大意义。徐州兆恒工控科技有限公司的泵房排水智能控制系统,实现了对井下排水装备的自动控制和能效优化,不仅能提高水泵的工作效率和可靠性,也大大减轻了工作人员的劳动强度,为智慧矿山建设提供保障。

1、主要功能

1. 实现井下水泵的自动控制、远程手动控制、就地一键式启动,并保留原有的按步骤手动操作启停水泵。

2. 根据水仓水位和峰谷供电时机,在无人值守的情况下,按能效较优化方式轮换启停水泵。

3. 通过地面监控室计算机远程控制水泵的启停;能够显示并记录排水系统的各种参数和设备的运行状态:包括水池水位、水泵出水口的压力、吸水管真空度、电动阀的位置、电机的工作电流、重要位置的温度等。所有数据能够存储于数据库,并进行数据分析,评估排水设备的健康状况。

4. 通过就地操作箱控制水泵的启停;并能在就地操作箱的触摸屏上显示水泵的各种参数。

5. 本系统能够把有关数据和图形传送到局域网,实现信息的共享。

2、系统组成及构件

徐州兆恒工控科技有限公司的泵房排水智能控制系统主要由智能控制系统、语音系统、视频智能识别系统及用户平台组成。系统信号传输依托于矿井现有以太网络。控制系统采用西门子PLC及Wincc编程平台;视频智能识别系统选用海康高清机芯;语音系统具备开车预警、故障语音提示、语音对讲功能。视频系统和智能控制系统均具有网络发布接口,无论是集控室用户、矿调度用户、internet 用户都可以通过不同的用户权限登陆访问视频数据和控制数据界面。

系统由PLC读取现场传感器数据包括射流负压、出口压力、电机温度、电机振动、水仓液位、阀门到位、电机智能综保数据,按照预先设定的控制方法实现

自动排水。系统组成及其构架示意图如下图:

自动排水系统结构示意图3、上位机监控界面案例展示

主界面展示

监视界面展示

历史曲线查询界面展示

历史数据查询界面展示

操作箱显示屏界面展示

井下水泵房的自动排水系统的现状研究

井下水泵房的自动排水系统的现状研究 【摘要】在我国煤炭行业是一个非常重要的支柱产业,煤矿中最重要的就是矿井,矿井中最重要四大系统之一就是抽水系统。矿井涌水通常要从采区的水泵房排到中央泵房,再排到地面上。一个安全可靠稳定运行的排水系统是整个矿井的生命。除此之外,矿井低洼处的积水不能自动流入主排水井中,这些积水就算只有一小部分也应当及时排出,因为这些积水可能会影响正常的生产,甚至于酿成重大安全事故。目前我国矿山的水泵房都是主要由人工操作,自动排水系统的应用并不是很广泛。人工控制的工人每天肩负着很大的工作压力和工作量,人工排水系统是矿井安全的一大隐患。 【关键词】煤炭行业;矿井;自动抽水系统;井下水泵 前言 煤炭行业是我国几大支柱产业之一,矿井的安全问题已经伴随着煤炭的飞速发展慢慢成为了制约煤炭生产的关键因素。煤矿生产中的四大件分别是主通风机、主提升机、主抽水泵、空气压缩机。在这四个系统中,最重要的就是抽水系统,因为这关乎着广大煤矿劳动人民的生命安全,是保证矿井能够安全有效地生产的关键。井下水泵房的自动排水系统的主要任务就是对矿井进行排水作业。 我国现阶段有很多种不同的传统与现代的控制方式。有纯手工的人工控制方法。有以电位器为继电器的继电器控制方式,这是纯粹基于电气原理,利用简单的电气自动控制来达成目标,属于模拟控制方式。还有的是利用微处理器作为核心的单片机控制与PLC控制方法。这属于计算机自动控制。两种控制方法各有利弊。基本上是我国现在所使用的最广泛的自动控制方法。 1关于井下排水的重要性 我国的大多数煤矿在地下,所以大多数的煤矿开采都是地下开采,地下开采的同时就会由于地层中含水的渗出,水沙填充和水力采煤矿井的井下供水,雨水以及江河湖海水的渗漏。导致矿井中会有大量的积水。在一些水资源比较丰富的地区,矿井的涌水量甚至可能超越每秒钟20立方米。除此之外。地层结构会由于煤炭的开采而发生改变,岩层断裂之后会使采区与储水区发生贯通。发生突水事故。涌水量可能会急剧增加。这样就不能保证井下矿工的生命安全。严重的就会造成特大事故。国家及人民的财产安全都会受到侵害。因此,井下排水系统是煤矿生产中最重要最关键的一环。井下排水系统就是要将渗过来的井下积水从煤矿巷道送到地表。 井下排水系统每天的工作量非常大,所以它的效率也是非常重要的。我们对井下排水系统有很高的效率要求。并由于地下水多富含各种酸性离子。对排水系统的腐蚀效果也会很明显。井下排水系统需要具有较为良好的防腐蚀性。

排水泵站施工方案(完)

天津市滨海新区北大港农场2014年高标准 基本农田整理项目 天津市津协建筑安装工程有限公司

二零一六年二月十五日 排水泵站施工方案 工程概况 一、施工排水 泵站所在干渠平均上口 20m ,深4m ,坡比1:2,施工期水深2.5m 。施工排水 主要为泵站配套涵闸进出口浆砌石护坡,施工时需沿河提修筑横向围堰2道,与河提相连,形成封闭基坑,排除基坑明水,保证干场施工作业。 围堰釆用土围堰,设计水深2.5m ,堰高3.0m ,堰顶宽度3m ,坡比为1:1。挡 水围堰搭建完成后,釆用7.5KW 离心泵排出基坑内积水。 ^ 300 ^ 泵站围堰断面图 2〉土方开挖 泵站工程基槽土方开挖从上到下分层分段依次进行,釆用1m 3挖掘机挖土,就 近堆放两侧,用于回填。基坑的基底、边坡适当留有保护层,一般25-30㎝,然后 釆用人工挖至设计高程。 3〉土方回填 土方回填釆用74kw 推土机铺料,蛙夯夯实。土方回填土料质量应符合筑提土 料要求,土方回填按照设计规定的压实度标准进行控制。回填从最低处开始,按水 平分层逐层填筑,一般铺土厚度控制在15?20㎝,土块限制粒径不超过10㎝。 二、排水沟清淤施工 排水沟清淤施工釆用分段填筑围堰,排除清淤河道内积水,进而形成河道全线 同时干场清淤的施工方案。工程临时性建筑物只需填筑土围堰。 围堰 本工程每500m 设1个围堰,干沟及支沟水深2.5m ,围堰考虑安全超高 0.5m ,堰顶

宽度3m,围堰填筑坡比结合水上水下综合考虑为1:1.5。 围堰填筑所需临时土方,从项目区外取土,釆用1m3挖掘机挖取,装8T自卸汽车运输至现场,平均运距3KW;围堰填筑施工釆用74KW拖拉机碾压,蛙夯朴夯;清淤完毕后,围堰拆除釆用1m3挖掘机挖除,装8T自卸汽车运输3KW弃回取土场内。 2〉施工排水 施工排水为渠道内围堰填筑闭气后的初期排水。初期排水是主体工程形成干场作业的前提施工条件。施工初期排水考虑釆用釆用7.5kw离心泵排排除,积水可排入附近渠道。 3〉排水沟清淤施工 清淤工程线路较长,工程量大,渠道釆用泵排并充分晾槽后,同时施工。清淤施工釆用1m3挖掘机开挖,倒运二次,单侧出土,1m3挖掘机装8T自卸汽车运输至弃土场弃掉。项目工程清淤土方均运至项目区西侧空地,运距根据具体交通情况平均确定均为3kw。 施工期间,应严格按照相关施工规范施工,避免或减少淤泥沿途洒落。渠道清淤断面应严格按照施工图纸进行施工,清淤土方应及时弃运至弃土场。清淤过程中,如出现裂缝和滑动迹象时,应立即暂停施工和釆取应急抢救措施。 三、施工组织部署 1、施工组织管理 1.1组织机构 为确保本工程各项目标的完成,设项目部组织机构,项目部领导班子由项目经理、三总师、及副经理组成,主管技术、质量、生产、安全、经营、成本和行政管理工作,并负责对工程的领导、指挥、协调、决策等重大事宜。。 2、质量目标 3、施工现场安全管理目标 确保北京市市级文明安全工地。 4、施工计划和施工管理措施 根据本工程特点,将整体工期目标进行二次分解,确定几个在工程中起到关健作用的阶段工期控制目标。再以每个阶段工期控制目标反推工期,以此确定每个分项工程的最晚开始日期。根据各分阶段、分项目的工期目标,设定出详细的网络计划。在网络计划中结合机械、人力、材料等各种资源,重点确保各阶段需完成的工期目标。在实际施工中,严格以网络计划为指导,切实推进分项计划的进展,最终保证总工期目标的实现。 5、施工工期计划安排 包括合同及计划工期 施工进度计划网络图和施工进度计划表。 关键部位阶段工期计划: 6、施工顺序

煤矿井下泵房自动排水系统说明

煤矿井下泵房排水智能控制系统说明 井下排水是确保煤矿安全生产的重要环节,也是用电大户,确保其稳定可靠地运行,对矿井的安全生产有着重大意义。徐州兆恒工控科技有限公司的泵房排水智能控制系统,实现了对井下排水装备的自动控制和能效优化,不仅能提高水泵的工作效率和可靠性,也大大减轻了工作人员的劳动强度,为智慧矿山建设提供保障。 1、主要功能 1. 实现井下水泵的自动控制、远程手动控制、就地一键式启动,并保留原有的按步骤手动操作启停水泵。 2. 根据水仓水位和峰谷供电时机,在无人值守的情况下,按能效较优化方式轮换启停水泵。 3. 通过地面监控室计算机远程控制水泵的启停;能够显示并记录排水系统的各种参数和设备的运行状态:包括水池水位、水泵出水口的压力、吸水管真空度、电动阀的位置、电机的工作电流、重要位置的温度等。所有数据能够存储于数据库,并进行数据分析,评估排水设备的健康状况。 4. 通过就地操作箱控制水泵的启停;并能在就地操作箱的触摸屏上显示水泵的各种参数。 5. 本系统能够把有关数据和图形传送到局域网,实现信息的共享。 2、系统组成及构件 徐州兆恒工控科技有限公司的泵房排水智能控制系统主要由智能控制系统、语音系统、视频智能识别系统及用户平台组成。系统信号传输依托于矿井现有以太网络。控制系统采用西门子PLC及Wincc编程平台;视频智能识别系统选用海康高清机芯;语音系统具备开车预警、故障语音提示、语音对讲功能。视频系统和智能控制系统均具有网络发布接口,无论是集控室用户、矿调度用户、internet 用户都可以通过不同的用户权限登陆访问视频数据和控制数据界面。 系统由PLC读取现场传感器数据包括射流负压、出口压力、电机温度、电机振动、水仓液位、阀门到位、电机智能综保数据,按照预先设定的控制方法实现

排水泵房施工方案

建筑工程作业指导书 I、工程概况 1.1排水泵站建筑面积76.39m2,上部为砖砼结构,单层结构层高 5.4米, 士0.000标高等于2.980m,下部为钢筋砼预制现浇沉井? 8X 9.75m内径,深II. 050米,泵站的南北向各设钢筋砼出水井(6.0 <0 X.7)及闸槽井 (3.3 为.8 <8.38) 一座。 1.1.1排水泵房、变电所士0.000以上均采用砖混结构,现浇梁板体系,房屋外立面采用涂料粉刷。排水泵井及闸槽井采用沉井法施工(轻型井点降水),变电所层高5.38m,建筑面积为120.32m2, 士0.000标高等于绝对标高 2.980m。 1.2电力 室内照明采用220V单相供电,室内照明采用交流380V/220V三相四线供电,动力采用交流380V/220V三相四线供电,电源从低层配电间引接,立交洞身及泵站室外照明均以由泵房ZM外控制。本工程保护接地型式采用TN-S,所有电气设备在正常情况下,不带电的金属外壳部分,保护导线的金属管,均需与PE线可靠连接,节能方面采用节能型日光灯及低损耗镇流器,外灯采用高压纳灯。排水泵采用软起动降压起动。 1.3排水 泵站、变电所室外雨水、公路涵洞的雨水集中于沉井内,由潜水排污泵抽出,通过一根DN800的排水管排入附近小河内。 排水泵井内选用350QW1000-12,性能(Q= 1000m3/h,H=12m,N=55KW), 一台250QW520-12.5潜水排污泵性能(Q=520m3/h,H=12.5m,N=30KW)。隔栅

设备采用GH 1 000型回转式隔栅除污机,机电功率为2 .2KW,安装角度为8 0度,栅条间隙宽度80mm。选用MPZ-18型电动葫芦一台(起重量2吨,启开高度18米,功率3.4KW)。水泵扬水管采用法兰焊接钢管。 1.4闸槽井、出水井 本工程设置的闸槽井,尺寸为LXBXH= 4.3m X2.7mX7.74 m,并配置于摇式启闭机和DN 800铸铁镶钢闸门。 出水井尺寸为LXBXH= 6.0mM.0mX2.om。 1.5进出立管线 进水管管径为D800mm钢筋砼排水管,从桥梁1#井连至泵井处,并做钢筋砼坞帮加固;泵站出水管管径为DN800mm的球墨铸铁排水管。 1.6消防 本泵站高MFA2手提式灭火器,分设在门卫、生活用房、变电室和泵房内。 2、拟投放本工程的人员及机械 2.1拟投入本工程的劳动力

煤矿排水系统设计说明书

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井井口低273m,排水设备工况扬程低,水泵级数少,设备投资省,电耗低。

煤矿井下排水自动控制系统

煤矿井下排水自动控制系统 设 计 方 案

一、总则 本方案是针对煤矿井下主排水系统远程数值化集中控制技术要求,并充分考虑其先进性、安全性、可靠性、经济性及安装、使用和维护的方便而设计。 (一)设计依据 (1)设计方案根据使用方提出技术要求作出。 (二)设计原则 (1)控制系统由地面控制中心,监控分站和工业电视监视组成。(2)解决就地控制存在的事故隐患,减少各设备之间相互脱节、无法充分发挥效率的缺点。实现就地无人操作,仅设巡检人员。(3)本系统采用分布式控制,结构合理,信息共享,实现提高指挥效率和生产率,达到减人提效的目的。 (4)实现主排水系统中各种保护和水仓水位的控制信号及工业电视监视信号全部由已有矿井千兆以太网为平台进行数据命令传输。(5)充分满足现场运行和检修要求。 (6)保证整个系统运行可靠、故障率低、维护方便和修改灵活。(7)系统具有灵活和可靠的控制功能,简单实用,易于掌握,视频效果明显。 (8)系统具有自诊断功能,报警时可以发出声、光报警 (9)系统结构合理,便于系统的扩展。 (10)使用组态软件编程和模拟动态人机界面具有网络中断主排水系统自动停止功能确保设备安全运转。 (三)达到的技术水平和实现的目标 (1)实现就地和分区集中控制、可视化和语音通话三位一体的自动化控制系统体系。 (2)立足于高起点、高技术和高质量,将计算机控制系统和工业电

视相结合,实现以“集中控制为主,现场监控为辅”的控制模式,保证主排水系统系统的连续性和可靠性。 (3)系统技术达到国内领先水平。提高开机率和管理水平,减少操作人员和工人的劳动强度,为今后矿井生产综合自动化打下良好基础。 (4)实现调度中心对主排水系统的长距离控制、多点位信息传输和集中监测监控。具有在线监测、分析及完善的保护和报警功能。(5)实现在控制中心对现场所有控制分站远程编程。 (6)利用各种保护传感器,实现主排水系统及相关设施的集中控制和保护。 (7)通俗易懂的区域传统操作台,现场技术人员可在最短的时间内掌握操作方法。 (8)与工业电视相结合,有机的完成可视化管理的先进理念。 二、系统结构 针对矿现场煤流运输生产系统的特点,按照以“区域集中监控为主,现场多点监测为辅”的原则,提出以下设计方案。 (一)控制设备 根据现场实际分布情况,采用的集控系统结构原理图,如图1所示。利用光纤、电缆组成混合现场总线,实现对现主排水系统及工业电视。 监测监控系统主要由地面监控中心,传输线路,控制分站和水泵电机开关、水位传感器、开停传感器、甲烷传感器、烟雾传感器电压传感器、电流传感器、温度传感器、门禁传感器信号等构成(可根据实际要求扩展)。 (二)控制系统组成 主排水系统地面集中控制系统结构如图2所示。主要由四部分

给水排水系统图(施工图)绘制规则

给水排水系统图(施工图)绘制规则 建设部建筑设计院水专业组 摘要:随着经济的迅速发展,民用建筑物的功能与体型日趋复杂、庞大,用传统的轴侧图画法绘制给排水系统图遇到了困难。介绍了平面展开图画法,对轴侧图的画线进行了简化,而在系统的原理及功能表述方面做了加强。 关键词:建筑给水排水系统图绘制规则 Formulation of Working Drawings of Water and Discharge System Abstract:The function and size of civil buildings are going to complicating and hugeness day by day with the fast development of national economy.The axonometric projection is not fit the progressing demand in making up of working drawings of water and discharge systems.A new advance called flat-developing drawing based on improved axonometric projection with simplified lineation and enhanced expression of systematic function and principle is presented in this paper.▲ 1 说明 我院从80年代初开始,给水排水专业施工图从原来的平面图、系统图并重改为以平面图为主、辅以系统图及大样图的表示方法。即:平面图详细表示水平管道的管径、坡度、定位尺寸及标高等内容,作为施工的主要依据。平面图中因比例限制不能表示清楚的部分,如卫生间、水池、水泵房、水箱间、热交换间、各种水处理间、冷却塔布置等给排水内容较复杂处另画大样图。系统图则借鉴美、英、日等国较简练的绘图方法,在大部分工程设计中用特定的展开图画法取代传统的轴侧图(又名透视图)画法。 系统图的这种画法对轴侧图的画线进行了简化,而在系统的原理及功能表述方面做了加强。它大大节省了制图画图的时间。经过十几年的实践,效果良好。为使这种设计制图方法更具科学性,我们又从几何做图法及系统图功能表达要求的角度,对其进行整理、加工及完善,使其系统化。本文暂把其称之为系统图的新型画法,并做一简单介绍。 1.1采用新画法的理由 改革开放以来,随着经济的迅速发展,民用建筑物的功能与体型越来越复杂、庞大,建筑给排水系统不论从内容上还是复杂性方面已远远超越了传统的水卫概念。用传统的轴侧图画法绘制给排水系统图遇到了困难,这是考虑新型画法的起始原因。综合表述新型画法的理由和意义,有以下几点:

煤矿泵房自动化排水系统设计方案

XXX煤矿泵房自动化 排水系统设计方案 常州兰陵阀门控制有限公司联

序言 安全、优质、节能、高产、减少岗位人员、提高劳动效率最终达到降低成本,增强企业市场竞争能力,企业要生存、要发展,必须走安全、高效、高产实现矿井自动化之路,通过提高自动化控制水平,实现健全、全矿井的自动化、信息化网络化建设,提高管理管理水平,做到安全生产,减员增效,提高生产率。而井下自动化排水系统是井下自动化系统的重要组成部分。 全矿井中央水泵控制系统主要由两部分组成:井上监视、控制部分和井下中央水泵房排水控制部分。 1、井上监视、控制部分 采用上位机控制,用于实现全矿井水泵控制系统的地面监控与井下的数据传输、并配有功能强大的软件操作系统,用于实现全矿井的排水控制与监控,通过矿井网络系统将信息传送到全矿井综合自动化平台,全矿井综合自动化平台对有关信息进行分析后在WEB网页上发布,实现信息的共享。该系统软件功能强大,界面直观,操作简便,功能齐全,形象逼真的动态画面和全中文显示,还具有实时报警监视、数据采集、处理、显示及打印功能,安全确认机制和历史数据记录功能。 在工控机通过局域网与工控机连接的计算机都可浏览各水泵的运行状态及其信息。计算机和系统软件留有足够的冗余和以太网、OPC接口,可以方便地进行扩展,为实现全矿井综合自动化奠定基础。各监控系统实时采集生产工况参数,可以采用图形、报表的形式显示系统的实时工况。 该系统优化了生产计划,在服务器中建立了综合历史数据库,定时将水泵控制站的运行时间、水仓水位、流量等数据存入数据库中,便于统一管理,更好的利用峰谷电差价降低生产成本,设定不同的使用权限,各司其职。 2、中央水泵房控制部分 中央水泵房控制部分由PLC可编程控制箱、水泵综合控制箱和各种传感器组成,具有以下功能。 自动启泵过程:综合控制箱与PLC结合可实现水位自动监控,系统可根据水位的高低准确地发出开、停泵指令。当水位达到高位时,立即起动;当水位继续上升至高位极限水位时,

煤矿自动化系统建设

煤矿自动化系统建设 第一章系统概述 煤矿全矿井自动化监控系统由地面控制中心、井下监控站、现场分站、网络信息传输系统、网络通信接口设备和矿井工业闭路电视系统等组成。煤矿全矿井自动化系统采用过程知识系统,具有高先进性、高稳定性和可靠性。自动化控制水平要求如下: 1) 总体要求:对生产监控系统范围内的各子系统设备能够在生产控制中心进行集中监视和控制,实现全矿集中控制; 2) 井下要求:除掘进头外的所有电气设备均能在地面控制中心进行控制和监视。井下各子系统的控制均实现无人值守,仅有巡检工进行巡视和维护; 3) 地面要求:自动化水平与企业的管理有密切关系,考虑到煤矿及煤矿周围的社区情况,故煤矿自动化系统除主扇风机、矸石山外,均实现无人值守,仅有巡检工进行巡视和维护。但对主扇风机等控制系统能够实现集中监视。 第二章矿井自动化系统平台 随着现代煤矿采集工业中计算机自动化技术的广泛应用,以及无人化矿井采集的概念的逐步推广,煤矿采集安全作业的需

要,拥有实时高效可靠,高度集成化、智能化的中央监控系统平台越来越成为当代煤矿采集控制管理中心,进行生产管理的重要工具。一套良好的中央监控系统平台,是集数据通信、处理、采集、控制、协调、综合智能判断、图文显示为一体的综合数据应用软件系统,能在各种情况下准确、可靠、迅捷地作出反应,及时处理,协调各系统工作,达到实时、合理监控的目的。我公司在充分利用国内、国外监控一体化指挥平台技术基础上,开发具有“集中管理,分散控制;监控全面,使用方便”特点的过程知识平台软件,由于系统是基于先进的平台软件技术开发,从技术,设计,开发,维护等各个方面保证系统的先进性,是一套符合现代煤矿生产集中控制的软件系统。中央监控系统平台,在中央监控管理上从真正意义上实现了系统的高度集成。它能实现包括CCTV视频监控系统,排水设备监控系统、安全生产设备监控系统,环境监测系统,紧急电话系统,大屏幕显示系统,电力监控系统,选煤厂系统,报表系统以及联动预案调度系统的支持。原有设计的中央控制集成系统中各个相互独立的子系统,通过工业以太网技术,被有机的整合在一起,所有的监控管理操作,都可在一台工作站上完成,这摆脱了以往其他煤炭采集管理系统中各子系统中独成一体的,需要分别操作控制的模式,管理人员不必再在各个子系统控制主机间来回奔波,这大大提高了工作效率,降低了劳动强度,提高了设备利用率,降低运营成本。

主排水系统智能化控制系统

正龙煤业城郊煤矿主排水泵房智能化控制系统 技术协议 甲方:河南省正龙煤业有限公司城郊煤矿 乙方:徐州上若科技有限公司 根据矿井自动化控制系统的发展需要,对城郊煤矿副井底主排水泵房进行智能化控制系统改造,经甲、乙双方充分技术探讨、方案协商,达成如下技术协议: 一、遵守的主要现行标准及规范 《煤矿安全规程》2009版 MT/T 1004-2006 《煤矿安全生产监控系统通用技术条件》 MT/T 1006-2006 《矿用信号转换器》 MT/T 1008-2006 《煤矿安全生产监控系统软件通用技术条件》 MT/T 1002-2006 《煤矿在用主排水系统节能监测方法和判定规则》 MT 381-2007 《煤矿用温度传感器通用技术条件》 AQ 1029-2007 《煤矿安全监控系统及检测仪器使用管理规范》 AQ 1043-2007 《矿用产品安全标志标示》 二、现场设备情况 (1)水泵 MD580-70×8型,10台,流量580m3/h,扬程560m。 (2)电机 Y500-4型,10台,功率1250kW,额定电压6kV,额定电流143.1A,转速1480转/分。 (3)排水阀门 Z941H-64型 DN250 Pg64,手动操作。 (4)排水管路 Φ426×14 3趟。 (5)抽真空方式

射流方式,射流泵DSP-3型,射流阀DN25-64型,吸水阀DN20-64型。 (6)开关柜型号:KYGC-Z型,10台(保护器为DL型) (7)水仓 共3个,通过配水阀与吸水井相通。 三、系统技术要求 1.系统总体要求 城郊煤矿副井底主排水泵房智能化控制系统采用工业以太网、现场总线技术和可编程控制技术,对主排水系统进行在线监测和水泵自动化操作控制,实现水泵的各项运行参数在线实时监测、统计和显示,通过智能专家系统使水泵始终处于高效率的安全运行状态,通过故障参数进行分析、预警,防止事故发生。同时,可根据操作员指令或预定控制程序,自动完成水泵的定时启动、定水位启动、自动切换启动、智能经济运行等操作,自动控制分时运行、削峰填谷,实现水泵的高效经济运行和现场无人值守运行功能。系统既可现场就地操作控制,也可远程操作控制,当控制系统出现故障(即所有水泵均不能自动运行)时,可切换至手动方式(由水泵司机人工操作)启动水泵,确保主排水系统正常启动运行。乙方提供给甲方的矿井主排水智能化控制系统,必须达到以下技术要求和功能: 1、具有优先控制功能:系统根据检测的水泵历史工况数据使流量最大,吨/百米电耗最低的水泵优先启动。 2、正常情况下,根据小井水位(或水仓水位)系统能自动控制水泵启动、停运台数。当水仓水位高于警戒值(还没有达到安全极限值)需要启动两台水泵或两台以上水泵时,系统则应根据历史检测的水泵工况数据,优先依次启动流量大、吨/百米电耗低、压力(扬程)和流量与第一台在用水泵工况相接近的水泵。当水位低于临界水位需要停运一台或二台及以上的正在运行的水泵时,则应根据历史检测数据,优先依次停运流量较小、吨/百米电耗较高、压力(扬程)和流量相对较低的水泵。当水位排至最低水位时,所有水泵应自动停止运行。 非正常排水(排水抗灾或有淹井危险)时,应具有依次启动主排水泵房所有水泵的自动监测监控功能。 3、水位监测监控传感器采用超声波传感器,安装在与水仓相连的吸水小井内,且根据水位监测的实际情况,具有自动控制水泵依次启动运行或依次停运的

煤矿泵房自动化排水系统设计方案

煤矿泵房自动化排水系统设计方案

常州兰陵阀门控制有限公司 联 1 / 19 序言 安全、优质、节能、高产、减少岗位人员、提高劳动效率最终达到降低成本,增强企业市场竞争能力,企业要生存、要发展,必须走安全、高效、高产实现矿井自动化之路,通过提高自动化控制水平,实现健全、全矿井的自动化、信息化网络化建设,提高管理管理水平,做到安全生产,减员增效,提高生产率。而井下自动化排水系统是井下自动化系统的重要组成部分。 全矿井中央水泵控制系统主要由两部分组成:井上监视、控制部分和井下中央水泵房排水控制部分。 、井上监视、控制部分 采用上位机控制,用于实现全矿井水泵控制系统的地面监控与井下的数据传输、并配有功能强大的软件操作系统,用于实现全矿井的排水控制与监控,通过矿井网络系统将信息传送到全矿井综合自动化平台,全矿井综合自动化平台对有关信息进行分析后在网页上发布,实现信息的共享。该系统软件功能强大,界面直观,操作简便,功能齐全,形象逼真的动态画面和全中文显示,还具有实时报警监视、数据采集、处理、显示及打印功能,安全确认机制和历史数据记录功能。 在工控机通过局域网与工控机连接的计算机都可浏览各水泵的运行状态及其信息。计算机和系统软件留有足够的冗余和以太网、接口,可以方便地进行扩展,为实现全矿井综合自动化奠定基础。各监控系统实时采集生产工况参数,可以采用图形、报表的形式显示系统的实时工况。 该系统优化了生产计划,在服务器中建立了综合历史数据库,定时将水泵控制站的运行时间、水仓水位、流量等数据存入数据库中,便于统一管理,更好的利用

峰谷电差价降低生产成本,设定不同的使用权限,各司其职。 、中央水泵房控制部分 中央水泵房控制部分由可编程控制箱、水泵综合控制箱和各种传感器组成,具有以下功能。 自动启泵过程:综合控制箱与结合可实现水位自动监控,系统可根据水位的高低准确地发出开、停泵指令。当水位达到高位时,立即起动;当水位继续上升至高位极限水位时,系2 / 19 统根据诊断结果,起动备用水泵,以最大的排水能力来排除矿井涌水。不论起动几台水泵,当水位按要求逐渐下降过程中,系统会逐渐减少运行水泵的数量。 当以太网或编程箱发生故障时,水泵综合控制箱也能独立自动控制单台水泵运行。 、基本控制功能 系统功能应有数据自动采集、泵阀自动控制、系统自动控制、动态显示及故障记录报警几个部分组成。 数据自动采集和检测 数据自动采集和检测应分为两类:模拟量数据和数字量数据,通过的模拟量、数字量模块进行读取,保证数据的准确性及响应时间。刷新周期不大于。 模拟量检测的数据主要有:电机工作电压、电机工作电流、水仓水位、出水管流量、水泵温度、每台泵出口压力和水泵吸水管真空度。 数字量检测的数据主要有:水泵的工作状态(工作、备用或者检修状态)、水泵的起、停状态、电动闸阀的工作状态和启闭位置、射流泵总成专用阀的工作状态和液位开关的状态。 数据自动采集系统将水位变化信号进行转换处理、实时检测、从而判断矿井的涌水量,根据不同的水位状态来控制排水泵的启停。 电机温度、流量计等传感器与变送器,主要用于检测水泵、电机的运行状况,超限、报警,以避免水泵和电机的损坏。 的数字量输入模块将各种开关量信号采集到中作为数据处理的条件和依据,控制水泵的启停。 泵阀控制 整个系统要求达到设计的预期目的,阀门的控制是关键,系统的主控部件采用电动闸阀和射流泵总成。所有阀门可以通过控制箱、水泵综合自动控制箱进行开关控制。 水泵系统采用射流泵抽真空上水方式起动,启泵时将自动打开射流泵入水管路阀门,同时打开射流泵真空管路阀门,使泵体内造成必要的真空度,系统接收到负压传感器的信号后,同时关闭射流泵真空管路及射流泵入水管路阀门,阀门关闭后将自动起动水泵电机,当水泵出水口达到设定的压力值,系统接收到正压传感器的信号后打开出水管路电动闸阀进行排水。 若电动闸阀打开后一定时间内水泵压力未达到设定值,系统应会自动停止水泵运行并关闭电动闸阀同时报警。 当水仓水位达到低位时将先自动关闭排水管路电动闸阀,电动闸阀关闭到到位后,停止水泵电机。 自动控制 3 / 19 在水泵综合自动控制箱处于远程自动控制状态时通过自动检测水仓水位及相关

煤矿自动化平台建设活动实施方案

加快自动化平台建设活动实施方案编制人: 审核: 机电矿长: 矿长: 2014-1-5

加快自动化平台建设活动实施方案为响应集团公司提出的加快信息化自动化平台建设,实现减人增效的目的。运河煤矿借鉴先进单位的经验,并结合自身情况。由机电矿长牵头,对我矿现有设备现状做了整体评估,拟定了活动方案,并多次组织召开专题会议研究方案,形成方案如下: 一、现可实现无人值守(减人增效)的岗位机台 1、洗煤厂 洗煤厂生产系统为集中控制,牵扯生产系统除泵房(加、配药品)、上仓(分煤)、压滤机(卸料)、化验室、集控室外,其余固定机台全部撤人。即主厂房一楼、主厂房二楼、主厂房三楼、主厂房五楼、给煤机、矸石(煤泥)皮带六个固定机台变为流动巡查,工作方式为三八制作业,每班编制3人,正常出勤保证2-3人,对流动机台每1小时巡查一次,以确保设备的安全运行,可减15人。 为确保现场设备的安全运行,需要增设一部分监控设备,具体如下:

2、地面煤流系统 地面煤流系统目前地面煤流系统采用西门子(S7-300)工业可编程控制器(PLC)为主机,进行延时顺序开停机,实现了集中控制。现有7个机台,除手选机台外,每个机台设有4名固定巡查工,共配置24人;手选机台配置12人。按集控实施后,入仓、溜子每班一人巡查、改仓,共4人;三楼跳汰机牵扯床层调整人员不动,原一楼皮带和沫煤皮带每班一人巡查,集控室、手选人员不动,可减8人。 为确保现场设备的安全运行,需要增设一部分监控设备,具体如

下: 由巡查队人员负责。

为确保现场设备的安全运行,需要增设一部分监控设备,具体如下: 由巡查队人员负责。 为确保现场设备的安全运行,需要增设一部分监控设备,具体如下: 由巡查队人员负责。 为确保现场设备的安全运行,需要增设一部分监控设备,具体如下: 1、压风机房 1、完善现场供电系统使三台压风机都有独立的供电系统。增设一路高压电源将3#压风机电机改为高压电动机。能实现高压柜的远程控制和监控。

基于模块控制的煤矿井下自动排水监控系统设计

基于模块控制的煤矿井下自动排水监控系统设计 从我国煤矿生产实际出发,结合现代工业控制及监测技术,介绍了一种井下自动排水的监控系统,该监控系统基于模块化设计,主要由水位与系统相关参数监测模块、PLC控制模块和联网通讯模块组成。由于其模块化设计,系统易于扩展和维护,为今后矿井排水系统的进一步自动化提供了重要的参考依据。 标签:井下排水系统模块化设计监控系统PLC 自动化 1 概述 矿井排水系统负责排出煤矿井下积水、涌水,保证煤矿生产的安全,是煤矿生产中的四大系统之一。井下排水系统的一个核心部分即是监控系统。矿井排水系统是一个系统化很强的系统工程,在排水过程中不仅要考虑积水、涌水的多少,还要考虑能耗及矿井内的各种因素的影响,自动化很难,因此,在很长一段时间排水系统主要靠人为控制操作,通过人工观察矿井下水位情况,根据以往经验,决定开启和关闭水泵的数目。但这种人工控制方法会增强工人的劳动强度,并且整个操作过程易受人为因素影响,安全系数较低。 随着社会及科学技术的发展,逐渐出现了煤矿井下的自动排水系统,目前应用较多的是通过PLC控制排水系统,从而实现系统的自动检测和工作。本文正是在此基础之上应用模块化方法对井下自动排水的监控系统进行了设计,对排水系统的安全运行、实时监测和有效管理具有十分重要的意义。 2 矿井自动排水监控系统的性能要求 2.1 防爆性能 煤矿生产以安全为主,特别是在井下特殊的环境下安全生产显得更重要。因而排水系统整体来说属于电控系统,因此防爆性能一定要达到煤安标准。 2.2 井下水位和有关安全参数的实时监测 自动排水系统的主要目的是适时排出井下积水,所以其主要监测对象是水位情况,积水量一有变化监测系统应马上给出反应,以便于系统及时有效的排水。另外水泵内的压力、真空度等启动用参数和电机温度、系统电流、管路流量等系统安全运行的保障参数也需要进行实时监测,如果有关参数超出正常范围,要发出警报信号,以保障系统正常工作。 2.3 水泵的平稳起停 根据井下排水的特殊环境,要求水泵起停平稳,特别需要达到缓慢开启和闭合的要求。在启动的过程中,如果各参数不能达到要求,整个排水系统就不能进

煤矿综合自动化系统方案设计

山西潞安集团夏店煤矿全矿井综合自动化 技 术 要 求 2011年10月

全矿井综合自动化系统技术要求 第一章系统概况 1.1建设目标 此次综合自动化建设的内容主要是建设统一的网络传输平台,将矿井的各个控制系统及各工业现场的视频监控汇聚到集成监控平台,充分考虑子系统的接入与整合,节省投资、资源共享,提高系统功能,并可与矿信息管理网实现无缝联接,从而为信息化矿井建设奠定坚实的技术基础。 系统建成后,使各自动化子系统数据在异构条件下可进行有效集成和有机整合,实现相关联业务数据的综合分析,集控中心人员或相关专业部门人员通过相应的权限对安全和生产的主要环节设备实时监测和进行必要的控制,实现全矿井的数据采集、生产调度、决策指挥的信息化,为矿井预防和处理各类突发事故和自然灾害提供有效手段。 总之:系统运行后,设备稳定,传输可靠,系统安全,实现三网合一,达到监、管、控一体化及减员增效的目的,建成本质安全型的数字化矿井,并能体现建设的最新面貌,同时树立本矿职工的自信心和自豪感,鼓舞大家工作热情。 1.2建设内容 综合自动化系统平台通过地面集控中心服务器对子系统的数据采集,在工程师站上完成各子自动化系统的组态,使子系统数据达到有效集成,实现综合监测和控制。 具体建设内容如下: ●千兆工业以太网传输平台 千兆工业以太网传输平台就相当于在矿区修建了一条信息高速公路,通过在地面及井下部署工业以太网交换机组成千兆工业以太网,将来井上井下各控制系统、工业电视系统都能够通过此传输平台汇聚到矿调度集控中心。 ●调度集成监控平台 各个系统的数据通过信息高速公路传输到统一的数据仓库,通过调度集成监控平台可以对全矿井的控制数据进行统一的管理

煤矿井下排水系统联合排水试验规范(试行)

焦煤公司煤矿井下排水系统联合排水试验规(试行) 一、适用围 本规明确了煤矿井下排水系统联合排水试验方法、标准,适用于焦煤公司所属煤矿在用排水系统的联合排水试验。 二、联合排水试验依据 《煤矿安全规程》第三百一十一条矿井应当配备与矿井涌水量相匹配的水泵、排水管路、配电设备和水仓等,并满足矿井排水的需要。除正在检修的水泵外,应当有工作水泵和备用水泵。工作水泵的能力,应当能在20h排出矿井24h的正常涌水量(包括充填水及其他用水)。备用水泵的能力,应当不小于工作水泵能力的70%。检修水泵的能力,应当不小于工作水泵能力的25%。工作和备用水泵的总能力,应当能在20h排出矿井24h的最大涌水量。 排水管路应当有工作和备用水管。工作排水管路的能力,应当能配合工作水泵在20h排出矿井24h的正常涌水量。工作和备用排水管路的总能力,应当能配合工作和备用水泵在20h排出矿井24h的最大涌水量。 配电设备的能力应当与工作、备用和检修水泵的能力相匹配,能够保证全部水泵同时运转。 《煤矿安全规程》第三百一十四条每年雨季前对矿井“全部工作水泵和备用水泵进行一次联合排水试验,提交联合排水试验报告”。

三、联合排水试验意义 通过联合排水试验,检验矿井排水能力,主要检验泵房水泵能力是否达标,检验配电能力能否承担全部水泵负荷,检验排水管路和排水沟是否具备全部水泵开启后过水能力。联合排水试验是对矿井排水系统各个环节进行的一次全面系统检查和试验,实际检验矿井抵抗水灾的能力。 四、排水系统联合排水试验具体要求 1、排水系统联合排水试验的围包括井下中央泵房和各采区泵房。凡是二级及以上排水系统的,中央泵房和各级采区泵房的联合排水试验必须同时进行,原则上先开启下级泵房水泵。 2、排水系统联合排水试验时,工作水泵、备用水泵和检修水泵必须全部参与。 3、存在2个及以上直排地面排水系统的矿井,且各排水系统对应的供电系统互不影响时,可以单独或联合做排水试验。 4、水量测试按以下要求进行: 1)工作水泵全部开启时,各测水点记录此时的排水流量,校核“工作排水管路的能力,应当能配合工作水泵在20h排出矿井24h的正常涌水量”。 2)工作水泵和备用水泵全部开启时,各测水点记录此时的排水流量,校核“工作和备用排水管路的总能力,应当能配合工作和备用水泵在20h排出矿井24h的最大涌水量”。 3)工作水泵、备用水泵和检修水泵全部开启时,各测水点记录此时的排水流量之和为矿井排水系统最大排水能力。 五、排水系统联合排水试验前的准备

煤矿井下排水泵节能与控制系统的设计开题报告

辽宁工程技术大学 本科毕业设计(论文)开题报告 题目煤矿井下排水泵节能与控制系统的设计 指导教师张兰芬 院(系、部)机械工程学院 专业班级矿电11-1 学号1107250108 姓名姜宗帅 日期2015/4/6 教务处印制 25

一、选题的目的、意义和研究现状 煤矿井下排水设备对保证矿井正常生产起着非常重要的作用。目前国内各矿井的排水系统多采用传统的继电器控制方法,用人工进行监测。传统方法控制线路复杂,设备运行的可靠性低,工人劳动强度大,不适应煤炭发展的需要。本文设计的排水系统采用PLC控制,弥补了传统继电器控制的缺陷与不足,提高了水泵节能与工作可靠性和稳定性。 1设计现状: 目前国内外学者已经在煤矿井下排水系统控制的研究中取得了很多成就。就国内的研究工作来看,大多是从煤矿井下排水系统的安全可靠性、节能的角度进行研究。根据煤矿井下排水系统消耗电能大的特点,国内研究人员分别从离心式水泵,排水管路,电动机三个方面提出了对井下排水系统的节能改造。由于各类矿井情况差别大,能源消耗尤其是电能消耗大,所以在节能技术方面的研究对煤矿效益,以致可持续发展有着很大的意义。国内某计研究院提出采用PLC自动检测水仓水位、管道压力、流量等数据,根据水仓水位高低和参考矿井用电情况,建立数学模型,达到了水泵运行的避峰就谷的效果,有效地节省了矿井在排水系统上的能耗,缩减了煤矿的生产成本。 国外的研究大多从管道的长期的维护和清理,井水质量对排水设备的影响等更加细微更加长远的方面来研究。俄罗斯研究人员根据费用相等的原理,推导出水泵最佳使用周期和管道清理周期的两种形式相似的计算公式,为水泵使用和管道清理从科学的角度进行阐述,提高了整个排水系统的安全性能。 2设计目的和设计意义: 新形势下,随着市场经济的飞速发展,中国低碳节能的经济目标的提出,与泵类搭配使用的马达的用电量大致是全国耗电总量的两成由于过去水泵的效率比较低,致使资源的浪费问题严重。如何提高水泵的运转效率,是考虑水泵节能的首要工作,这成为当今势必考量的话题。该设计的目的以及意义就是通过分析煤矿井下排水泵的节能方法,找出一种最适合的节能途径,力求做到能源消耗最少,使泵的排水效率实现最大化。 二、研究方案及预期结果 26

给排水图纸识图方法

. 给排水图纸识图方法标高 - 平面图标注方式 标高 - 剖面图标注方式

. 标高 - 轴测图标注方式 标高 注意点: 1、室内标高一般标注的是相对标高,即相对正负零的标高; 2、标高一般情况下是以“m”为计量单位的,写小数点后面第三位; 3、标高按标注位置分为:顶标高、中心标高、底标高;

4、图纸没有特别说明,一般情况下:给水管标注的是管道中心标高,排水管标注的是 管道底标高。 管道管径标注 管径应以 mm为单位。水煤气输送钢管(镀锌或非镀锌)、铸铁管等管材,管径宜以公称 直径 DN表示(如 DN15、DN50);无缝钢管、螺旋、铜管、不锈钢管等管材,管径宜 以外径 D×壁厚表示(如D108×4、D159×4.5 等);钢筋混凝土(或混凝土)管、陶土管、 耐酸陶瓷管、缸瓦管等管材,管径宜以内径 d 表示(如 d230、d380 等);塑料管材, 管径宜按产品标准的方法表示。当设计均用公称直径DN表示管径时,应用公称直径DN 与相应产品规格对照表。 管道管径的标注 管路编号 (1)当建筑物的给水引入管或排水排出管的数量超过 1 根时,宜进行编号。 (2)建筑物穿越楼层的立管,其数量超过 1 根时宜进行编号。 (3)在总平面图中,当给排水附属构筑物的数量超过 1 个时,宜进行编号。编号方法 为:构筑物代号-编号;给水构筑物的编号顺序宜为:从水源到干管,再从干管到支管,最后到用户;排水构筑物的编号顺序宜为:从上游到下游,先干管后支管。

(4)当给排水机电设备的数量超过 1 台时,宜进行编号,并应有设备编号与设备名称对照表。管路编号 给水引入(排水排出)管编号表示方法 建筑给排水施工图的主要内容 建筑给排水施工图一般由图纸目录、主要设备材料表、设计说明、图例、平面图、系统 图(轴测图)、施工详图等组成。 室外小区给排水工程,根据工程内容还应包括管道断面图、给排水节点图等。

煤矿泵房自动化排水系统设计方案

XXX煤矿泵房自动化排水系统设计方案 兰陵阀门控制 联 序言

安全、优质、节能、高产、减少岗位人员、提高劳动效率最终达到降低成本,增强企业市场竞争能力,企业要生存、要发展,必须走安全、高效、高产实现矿井自动化之路,通过提高自动化控制水平,实现健全、全矿井的自动化、信息化网络化建设,提高管理管理水平,做到安全生产,减员增效,提高生产率。而井下自动化排水系统是井下自动化系统的重要组成部分。 全矿井中央水泵控制系统主要由两部分组成:井上监视、控制部分和井下中央水泵房排水控制部分。 1、井上监视、控制部分 采用上位机控制,用于实现全矿井水泵控制系统的地面监控与井下的数据传输、并配有功能强大的软件操作系统,用于实现全矿井的排水控制与监控,通过矿井网络系统将信息传送到全矿井综合自动化平台,全矿井综合自动化平台对有关信息进行分析后在WEB网页上发布,实现信息的共享。该系统软件功能强大,界面直观,操作简便,功能齐全,形象逼真的动态画面和全中文显示,还具有实时报警监视、数据采集、处理、显示及打印功能,安全确认机制和历史数据记录功能。 在工控机通过局域网与工控机连接的计算机都可浏览各水泵的运行状态及其信息。计算机和系统软件留有足够的冗余和以太网、OPC接口,可以方便地进行扩展,为实现全矿井综合自动化奠定基础。各监控系统实时采集生产工况参数,可以采用图形、报表的形式显示系统的实时工况。 该系统优化了生产计划,在服务器中建立了综合历史数据库,定时将水泵控制站的运行时间、水仓水位、流量等数据存入数据库中,便于统一管理,更好的利用峰谷电差价降低生产成本,设定不同的使用权限,各司其职。 2、中央水泵房控制部分 中央水泵房控制部分由PLC可编程控制箱、水泵综合控制箱和各种传感器组成,具有以下功能。 自动启泵过程:综合控制箱与PLC结合可实现水位自动监控,系统可根据水位的高低准确地发出开、停泵指令。当水位达到高位时,立即起动;当水位继续上升至高位极限水位时,系统根据诊断结果,起动备用水泵,以最大的排水能力来排除矿井涌水。不论起动几台水泵,当水位按要求逐渐下降过程中,系统会逐渐减少运行水泵的数量。 当以太网或PLC编程箱发生故障时,水泵综合控制箱也能独立自动控制单台水泵运行。 3、基本控制功能 系统功能应有数据自动采集、泵阀自动控制、系统自动控制、动态显示及故障记录报警

相关主题
文本预览
相关文档 最新文档