当前位置:文档之家› 010-质点、刚体的角动量、角动量守恒定律

010-质点、刚体的角动量、角动量守恒定律

010-质点、刚体的角动量、角动量守恒定律
010-质点、刚体的角动量、角动量守恒定律

质点、刚体的角动量,角动量守恒定律

1、选择题

1.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的

(A)动量不守恒,动能守恒. (C)对地心的角动量守恒,动能不守恒.

(B)动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒.

[ ]

2.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用

L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有

(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA

(C) L A =L B ,E KA >E KB . (D) L A

[ ]

3.一质点作匀速率圆周运动时,

(A) 它的动量不变,对圆心的角动量也不变.

(B) 它的动量不变,对圆心的角动量不断改变.

(C) 它的动量不断改变,对圆心的角动量不变.

(D) 它的动量不断改变,对圆心的角动量也不断改变.

[ ]

4.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速

度为ω0.然后她将两臂收回,使转动惯量减少为

31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0.

[ ]

5.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态

为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰

撞过程中对细杆与小球这一系统

(A) 只有机械能守恒. (C) 只有对转轴O 的角动量守恒.

(B) 只有动量守恒. (D) 机械能、动量和角动量均守恒.

[ ]

6.刚体角动量守恒的充分而必要的条件是

(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.

(C) 刚体所受的合外力和合外力矩均为零.

(D) 刚体的转动惯量和角速度均保持不变.

[ ]

7.一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今

有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,

在碰撞中守恒的量是

(A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量.

[ ]

8.一个物体正在绕固定光滑轴自由转动,

(A) 它受热膨胀或遇冷收缩时,角速度不变.

(B) 它受热时角速度变大,遇冷时角速度变小.

(C) 它受热或遇冷时,角速度均变大.

(D) 它受热时角速度变小,遇冷时角速度变大.

[ ]

9.将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球的

(A)速度不变. (B)速度变小. (C)速度变大。 (D)速度怎么变,不能确定.

[ ]

10.如图所示,钢球A 和B 质量相等,正被绳牵着以角速度ω绕竖直轴转动,二球与轴的距离都为r 1.现在把轴上环C 下移,使得两球离轴的距离缩减为r 2.则钢球的角速度

(A)变大. (B )变小. (C)不变.

(D)角速度怎么变,不能确定.

[ ]

11.地球绕太阳作椭圆轨道运动,太阳的中心在椭圆的一个焦点上,把地球看作一个质点,则地球的

(A) 动能守恒. (C) 对太阳中心的角动量守恒.

(B) 动量守恒,. (D) 对太阳中心的角动量守恒,动能守恒.

[ ]

12.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?

(A) 角动量从小到大,角加速度从大到小.

(B) 角动量从小到大,角加速度从小到大.

(C) 角动量从大到小,角加速度从大到小.

(D) 角动量从大到小,角加速度从小到大.

[ ]

13.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,在人跑向转台边缘的过程中,转台的角速度

(A) 不变. (B) 变小. (C) 变大. (D)不能确定角速度是否变化.

[ ]

14.人造地球卫星,绕地球作椭圆轨道运动,地球的中心在椭圆的一个焦点上,设地球的半径为R ,卫星的近地点高度为R ,卫星的远地点高度为2R ,卫星的近地点速度为1v ,则卫星的远地点速度2v 为

(A)12v . (B) 121v . (C) 132v . (D) 12

3v . [ ]

15.将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳放松,使半径扩大为2 r 1 ,此时小球做圆周运动的角速度为

(A)1ω. (B) 121ω. (C) 12ω. (D) 14

1ω. [ ]

2.判断题

1.如图所示,一水平刚性轻杆,杆长为l ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离为d ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,在两球都滑至杆端的过程中,杆的角速度变小。

2.一个物体正在绕固定光滑轴自由转动,它受热时角速度变大,遇冷时角速度变小.

3.将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球速度的大小保持不变.

4.长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,杆和子弹系统的动量守恒.

5.一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =2

1MR 2.当圆盘以角速度ω0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度不变。

6.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,棒的角动量不守恒.

7.刚体作定轴转动时,刚体角动量守恒的条件是刚体所受的合外力等于零.

8.刚体作定轴转动时,角动量守恒的条件是刚体所受对轴的合外力矩等于零.

3.填空题

1.质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则物体的角速度ω=_____________________.

2.在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s -1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =________ ____.

3.在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s -1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体速度的大小v =__________________.

4.如图所示,钢球A 和B 质量相等,正被绳牵着以ω0=4 rad/s 的角速度绕竖直轴转动,二球与轴的距离都为r 1=15 cm .现在把轴上环C 下移,使得两球离轴的距离缩减为r 2=5 cm .则钢球的角速度ω =_____ _____.

5.哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆.它离太阳最近的距离是r 1=8.75×1010 m ,此时它的速率是v 1=5.46×104 m/s .它离太阳最远时的速率是v 2=9.08×102 m/s ,这时它离太阳的距离是r 2=__ ____.

6.一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为j t b i t a r ωωsin cos +=,

其中a 、b 、ω 皆为常量,则此质点对原点的角动量L =_ _______. 7.如图所示,x 轴沿水平方向,y 轴竖直向下,在t =0

静止释放,让它自由下落,则在任意时刻t ,质点对原点O的角动量L =__________________. 8.质量为m 的质点以速度v 沿一直线运动,则它对该直

线上任一点的角动量为____. 9.质量为m 的质点以速度v 沿一直线运动,则它对直线

外垂直距离为d 的一点的角动量大小是__________.

10.一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转

动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整

个系统的角速度ω=__________________.

11.有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以ω1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台

和人一起转动的角速度ω2=_______________________.

12.一个刚体绕轴转动,若刚体所受的合外力矩为零,则刚体的________________守恒.

13.长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,由_____________组成的系统对转轴O的角动量守恒.

14.一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =2

1MR 2.当圆盘以角速度ω0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度ω=______________.

15.一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为ω =__________________. 16.一质量均匀分布的圆盘,质量为m ,半径为R ,放在一粗糙水平面上,圆盘可绕通过其中心O 的竖直固定光滑轴转动,圆盘和粗糙水平面之间摩擦力矩的大小为M f .开始时,圆盘的角速度为0ω,经过时间 =?t 后,圆盘停止转动。(圆盘绕通过O 的竖直轴的转动惯量为22

1mR ) 4.计算题

1.一均匀木杆,质量为m 1 = 1 kg ,长l = 0.4 m ,可绕通过它的中点且与杆身垂直的光滑水平固定轴,在竖直平面内转动.设杆静止于竖直位置时,一质量为m 2 = 10 g 的子弹在距杆中点l / 4处穿透木杆(穿透所用时间不计),子弹初速度的大小v 0 = 200 m/s ,方向与杆和轴均垂直.穿出后子弹速度大小减为v = 50 m/s ,但方向未变,求

(1) 子弹刚穿出的瞬时,杆的角速度的大小.

(2) 木杆能偏转的最大角度。

(木杆绕通过中点的垂直轴的转动惯量J = / m 1l 212)

2.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 23

1ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020

kg ,速率为v = 400 m ·s -1.试问:

(1) 棒开始和子弹一起转动时角速度ω有多大?

(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?

3.有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为T 0.如它的半径由R 自动收缩为R 2

1,求 (1) 球体收缩后的转动周期.

(2) 球体收缩后转动动能的变化。

(球体对于通过直径的轴的转动惯量为J =2mR 2 / 5,式中m 和R 分别为球体的质量和半径).

4.(1) 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为

31l 和3

2 l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度.

(2)在半径为R 的具有光滑竖直固定中心轴的水平圆盘上,有一

m 0v

人静止站立在距转轴为R 2

1处,人的质量是圆盘质量的1/10.开始时盘载人对地以角速度ω0匀速转动,现在此人沿圆盘半径走到圆盘边缘。已知圆盘对中心轴的转动惯量为22

1MR .求:求此时圆盘对地的角速度. 5.质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s -1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

刚体角动量守恒定律

转动动能定理、角动量守恒原理 一,转动动能定理: 1, 力矩的功 设刚体在外力F 作用下发生角位移d φ 由功的定义:相应的元功为: ?θ?θMd Frd ds F ds F dA o ==-?=?=sin )90cos( 所以力矩的功为: ??==2 1 ???Md dA A 2, 转动动能定理 设M 为作用刚体上的合外力矩。将转动定律应用于功的定义中: 2 22 121)(0ωωωω?ω?β?ωωJ J d J d dt d J d J Md A -=====???? 所以转动动能定理为: 2 22 121ωω?J J Md -=? 说明,(1)??Md 为合外力矩的功,是过程量 22 1 ωJ E K = 为刚体在t 时刻的转动动能。是时刻量。 (2)其中M 、J 、ω必须相对同一惯性系,同一转轴。 【例】:质量为m 长度为l 的匀质细棒,可绕端轴o 在铅垂铅垂面内自由摆动,求细棒自水平位置自由下摆到铅垂位置时的角速度。 解:取细棒为研究对象,视之为刚体。细棒下摆到 任意θ位置时受外力有:重力mg ,端轴支持力N (对o 不成矩) 。由功的定义:

2 cos 2)90sin(2900l mg d l mg d l mg Md o o ===-=???θθθθθ 由转动动能定理: l g ml J l mg 331210212222= ∴ ?? ? ??=-=ωωω 二,角动量守恒定律 设M 为作用于刚体的合外力矩,由定轴转动定律: dt dL dt J d dt d J J M = ===)(ωωβ 所以,刚体定轴角动量定理为 00 L L dL Mdt L L t t -==?? 特别当整个过程中合外力矩为零时,刚体的角动量守恒。 即刚体定轴转动角动量守恒定律为: 常矢==L M 0 说明:(1)刚体定轴角动量守恒条件是整个过程中合外力矩为零。 (2)守恒式各量(M 、J 、ω)均需是对同一惯性系中的同一转轴。 (3)? ??==都变,但乘积不变、都不变、ωωωJ J const I L (4)角动量守恒定律也是自然界基本定律之一。不仅适用宏观领域, 也适用微观领域。 【例】质量为m 的人站在质量为M ,半径为R 的水平匀质圆盘边沿,随圆盘以角速度0Ω旋转,当他运动到半径r 处时,系统的角速度变为多少? 解:系统转动过程中所受外力:重力Mg 、mg 、以及转轴的支持力N 均对转轴不成矩,故系统角动量守恒。 2 22 22022220222)2() 2 1()21()2 1 ()21(Ω++=+Ω+=ΩΩ+=Ω+ MR mr R M m MR mr MR mR MR mr MR mR

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

刚体的角动量及守恒定律

刚体的角动量及守恒定律 一、选择题 1、一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃。在该人把此二哑 铃水平收缩到胸前的过程中,对于人、哑铃与转动平台组成的系统来说,正确的 是: 。 A.机械能守恒,角动量守恒; B.机械能守恒,角动量不守恒; C.机械能不守恒,角动量守恒; D.机械能不守恒,角动量不守恒; 2、 刚体角动量守恒的充分而必要的条件是 。 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 3、一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今 有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力, 在碰撞中守恒的量是 。 (A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量. 4、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细 杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同 速率v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与 杆粘在一起转动,则这一系统碰撞后的转动角速度应为 。 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 。 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 6、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直 光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地 面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向 分别为 。 (A) ??? ??=R J mR v 2ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作 系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 。 (A) 动量守恒. (B) 机械能守恒. O v 俯视图

质点、刚体的角动量、角动量守恒定律

010-质点、刚体的角动量、角动量守恒定律 1. 选择题 1. 一质点作匀速率圆周运动时,[ ] (A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变. (D) 它的动量不断改变,对圆心的角动量也不断改变. 答案:(C ) 2. 刚体角动量守恒的充分而必要的条件是[ ] (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 答案:(B ) 3. 地球绕太阳作椭圆轨道运动,太阳的中心在椭圆的一个焦点上,把地球看作一个质 点,则地球的[ ] (A) 动能守恒. (B) 动量守恒. (C) 对太阳中心的角动量守恒. (D) 对太阳中心的角动量守恒,动能守恒. 答案:(C ) 4. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动 到竖直位置的过程中,下述说法哪一种是正确的?[ ] (A)角动量从小到大,角加速度从大到小. (B)角动量从小到大,角加速度从小到大. (C)角动量从大到小,角加速度从大到小. (D)角动量从大到小,角加速度从小到大. 答案:(A ) 5. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的[ ] (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒. (C)对地心的角动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒. 答案:(C ) 6. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有[ ] (A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA E KB . (D) L A

010-质点、刚体的角动量、角动量守恒定律

质点、刚体的角动量,角动量守恒定律 1、选择题 1.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (C)对地心的角动量守恒,动能不守恒. (B)动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒. [ ] 2.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用 L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA E KB . (D) L A

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

角动量守恒定律

第四节 角动量守恒定律 一、角动量 1. 质点对定点的角动量 (1)v m r p r L ?=?= (力矩:F r M ?=) (2)说明:r 指质点相对于固定点O 的位置矢量;指质点的动量;v 指质点的速度 (3)大小:=L αsin rmv , (4)方向:(右手法则)v r ?向 (5)单位:12-s kgm (6)量纲:12-T ML 2. 刚体对定轴的角动量 (将刚体分解为质点组)∑∑=???==????=???=ωI w r m L L w r m v r m L i i i oz i i i i i i 22 ω I L = 此式对质点也适用 3. 角动量定理: (1) 公式:dt dL dt I d dt d I I M ====)(ωωβ 或dL dt M =? (2)文字表述:刚体对某一给定转轴或点的角动量对时间的变化率等于刚体所受到的对同一转轴或点的和外力矩的大小。 (3)说明:dt M ?称冲量矩,表示力矩的时间积累效果,单位:牛·米·秒 若何外力矩M=0,则L=IW=恒量 4. 转动定律的普遍形式 dt dI dt d I dt L d M ωω +== 二、角动量守恒 1、角动量守恒的条件:质点所受相对于参考点的力矩的矢量和等于零;在有心 力作用下,质点相对于力心的角动量守恒。 2、应用:

例1:花样滑冰运动员的“旋”动作,当运动员旋转时伸臂时转动惯量较大,转速较慢;收臂时转动惯量减小,转速加快;再如:跳水运动员的“团身--展体”动作,当运动员跳水时团身,转动惯量较小,转速较快;在入水前展体,转动惯量增大,转速降低,垂直入水。 3、习题: 1.质点做直线运动时,其角动量( )(填一定或不一定)为零。 答案: 不一定 2.一质点做直线运动,在直线外任选一点O为参考点,若该质点做匀速直线运动,则它相对于点O的角动量( )常量;若该质点做匀加速直线运动,则它相对于点O的角动量( )常量,角动量的变化率( )常量。(三空均填是或不是)答案: 是; 不是; 是。 3.一质点做匀速圆周运动,在运动过程中,质点的动量( ),质点相对于圆心的角动量( )。(两空均填守恒或不守恒) 答案:不守恒;守恒。 4.一颗人造地球卫星的近地点高度为h 1 ,速率为υ 1 ,远地点高度为h 2, 已知地 球半径为R.求卫星在远地点时的速率υ 2.. 解:因为卫星所受地球引力的作用线通过地球中心,所以卫星对地球中心的角动量守恒。 根据角动量守恒定律得 r 1 mυ 1 = r 2 mυ 2 且r 1=R+ h 1 r 2 =R+ h 2 解得υ 2 =(R+ h 1 /R+ h 2 )υ 1

《大学物理》习题册题目及答案第3单元 角动量守恒定律

第3单元 角动量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ A ]1.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为 (A) GMR m (B) R GMm (C) R G Mm (D) R GMm 2 [ C ]2. 关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。 (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置 (D) 只取决于转轴的位置、与刚体的质量和质量的空间分布无关。 [ E ]3. 如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将 绳从小孔缓慢往下拉,则物体 动能不变,动量改变。 动量不变,动能改变。 角动量不变,动量不变。 角动量改变,动量改变。 角动量不变,动能、动量都改变。 [ A ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正 确的? (A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大 。 [ B ]5.两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 (A) A J >B J (B) B J >A J (C) A J =B J (D) A J 、B J 哪个大,不能确定 [ A ]6.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩一定是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: (A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 [ C ]7.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大 (B) 不变 (C) 减小 (D) 不能确定 二 填空题 1.质量为m 的质点以速度 v 沿一直线运动,则它对直线上任一点的角动量为 ___0_ 。 2.飞轮作匀减速转动,在5s 内角速度由40πrad·s 1 -减到10πrad·s 1 -,则飞轮在这5s 内总共转过了___62.5_____圈,飞轮再经_______1.67S_____ 的时间才能停止转动。 3. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动。 开始杆与水平方向成某一角度θ,处于静止状态,如图所示。释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = mgl 21 ,此时该系统角加速度的大小β= l g 32 。 4.可绕水平轴转动的飞轮,直径为1.0m ,一条绳子绕在飞轮的外周边缘上,如果从静 止开始作匀角加速运动且在4s 内绳被展开10m ,则飞轮的角加速度为2 /5.2s rad 。 5.决定刚体转动惯量的因素是 ___刚体的质量____ __;__刚体的质量分布____

角动量守恒定律

《大学物理》作业 No.4 角动量守恒定律 一、选择题 1.已知地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常数为G,则地球绕太阳作圆周运动的角动量为 [ ](A) (B) (C) (D) 2.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? [ ](A) 角速度从小到大,角加速度从大到小 ; (B) 角速度从小到大,角加速度从小到大 ; (C) 角速度从大到小,角加速度从大到小 ; (D) 角速度从大到小,角加速度从小到大。 3. 两个均质圆盘A和B密度分别为和,若>,但两圆盘质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为和,则 [ ](A) > (B) > (C) = (D) 、哪个大,不能确定 4.有两个力作用在一个有固定转轴的刚体上: (1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。 在上述说法中: [ ](A) 只有(1)是正确的。 (B) (1)、(2)正确,(3)、(4)错误。 (C) (1)、(2)、(3)都正确,(4)错误。 (D) (1)、(2)、(3)、(4)都正确。 5.关于力矩有以下几种说法: (1) 对某个定轴而言,内力矩不会改变刚体的角动量。 (2) 作用力和反作用力对同一轴的力矩之和必为零。 (3) 质量相等、形状和大小不同的两个物体,在相同力矩的作用下,它 们的角加速度一定相等。 在上述说法中,

7.角动量守恒定律

《大学物理》练习题 No 7 角动量守恒定律 班级__________学号 _________ 姓名 _________ 成绩 ________ 基本要求: (1) 掌握质点和刚体在定轴转动中的角动量、角动量定理、角动量守恒定律及应用 内容提要: 1. 质点的角动量 a. 质点对点的角动量:v m r p r L ?=?= b. 对固定轴的角动量:ω J L = 2. 刚体对定轴的角动量:等于刚体对此轴的转动惯量与角速度的乘积 即:ω z z J L = 3.刚体的角动量定理: 外力矩对系统的角冲量(冲量矩)等于角动量的增量. 即:00 ωω J J L d dt M L L t t -==?? 若J 可以改变,则:000 ωω J J L d dt M L L t t -==?? 4.角动量守恒定律:当物体所受的合外力矩为零时,物体的角动量保持不变, 即00 ωωω J J J ==或 常矢量 角动量守恒定律的两种情况: a. 转动惯量保持不变的单个刚体 00,0ωωωω ===则时,当J J M b. 转动惯量可变的物体。 . 保持不变就增大,从而减小时,当就减小; 增大时,当ωωω J J J 一、选择题 1.刚体角动量守恒的充分必要条件是 [ ] (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变

2.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J , 开始时转台以匀角速度ω 0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为 [ ] (A) J ω 0/(J +mR 2) . (B) J ω 0/[(J +m )R 2]. (C) J ω 0/(mR 2) . (D) ω 0. 3.如图7.1所示,一静止的均匀细棒,长为L 、质量为M , 可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动, 转动惯量为ML 2/3.一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v /2,则此时棒的角速度应为 [ ] (A) mv/(ML ) . (B) 3mv/(2ML ). (C) 5mv/(3ML ). (D) 7mv/(4ML ). 二、填空题 1. 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = . 2.质量均为70kg 的两滑冰运动员,以6.5s m /等速反向滑行,滑行路线的垂直距离为10m 。当彼此交错时,各抓住10m 长绳子的两端,然后相对旋转。则各自对中心的角动量=L ,当各自收绳到绳长为5m 时,各自速率为=v 。 3.一飞轮以角速度ω 0绕轴旋转, 飞轮对轴的转动惯量为J 1;另一静止飞轮突然被同轴地啮合到转动的飞轮上,该飞轮对轴的转动惯量为前者的二倍,啮合后整个系统的角速度ω = . 三、计算题 1. 如图7.2所示,有一飞轮,半径为r = 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m 1 = 20g 的物体,此物体匀速下降;若系m 2=50g 的物体,则此物体在10s 内由静止开始加速下降40cm . 绳系重物m 2后的张力? v /2 图7.1 图7.2 图7.3

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

010-质点、刚体的角动量、角动量守恒定律 (1)

质点、刚体的角动量,角动量守恒定律 1、选择题 1.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (C)对地心的角动量守恒,动能不守恒. (B)动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒. [ ] 2.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用 L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA E KB . (D) L A

大学物理第5章-角动量守恒定律-刚体的转动

第5章 角动量守恒定律 刚体的转动 5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。 答:质点的动量守恒的条件是: 当0F =时,p mv ==恒矢量。 质点的角动量守恒的条件是: 当0M =时,即000,F r θπ?=??=??=?? 时,L =恒矢量。 可见,当0F =时,质点动量与角动量能同时守恒。 5-2 质点在有心力场中的运动具有什么性质? 答:质点在有心力场中运动时,0,0F M ≠=,则角动量守恒,即: 当0M =时,L =恒矢量。 又因为有心力是保守力,则机械能守恒,即: 当0ex in nc A A +=时,K P E E E =+=恒量。 5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系? 答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得: a a b b r mv r mv = a b b a v r v r ∴= 可见,速率与距离成反比。 5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒? 答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,

它的角动量守恒。 5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中,相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少? 答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为: 020cos 1sin 2x v t y v t gt θθ=???=-?? , 00cos sin x y v v v v gt θθ=??=-? 对于抛射点的角动量: ()() x y y x L r mv xi y j mv i mv j xmv k ymv k =?=+?+=- 将,,,x y x y v v 代入得: 201cos 2L mgv t k θ=- 当小球到达最高点时,时刻为:0sin v t g θ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k g θθ=-。 5-6 为什么说刚体平动的讨论可归结为对质点运动的研究? 答:由于刚体平动时,各点的运动状态相同,则可取刚体上任意一点运动代表刚体的运动,所以刚体的平动可用质点运动来描述。 5-7如果刚体所受的合外力为零,其合外力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否一定为零? 答:如果0i i F =∑,但力不共轴,则力矩不为零0i i M ≠∑。 如果0i i M =∑,但力方向相同,则力不为零0i i F ≠∑。 5-8 在某一瞬时,如果刚体受到的合外力矩不为零,其角加速度可以为零吗?其角速度可以为零吗? 答:由刚体的转动定理:M J β=

相关主题
文本预览
相关文档 最新文档