当前位置:文档之家› 单相全波可控整流电路单相桥式半控整流电路[1]

单相全波可控整流电路单相桥式半控整流电路[1]

单相全波可控整流电路单相桥式半控整流电路[1]
单相全波可控整流电路单相桥式半控整流电路[1]

单相全波可控整流电路、单相桥式半控整流电路

一.单相全波可控整流电路

单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。

图1 单相全波可控整流电路及波形

单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。变压器不存在直流磁化的问题。单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。因此,单相全波电路有利于在低输出电压的场合应用

1.电路结构

图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形

单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。如此即成为单相桥式半控整流电路(先不考虑VDR)。单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)

2.电阻负载

半控电路与全控电路在电阻负载时的工作情况相同。其工作过程如下:

a)在u2正半周,u2经VT1和VD4向负载供电。

b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。

c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。

d)u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,u d又为零。

3.续流二极管的作用

1)避免可能发生的失控现象。2)若无续流二极管,则当a突然增大至180 或触发脉冲

丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。3)有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。4)续流期间导电回路中只有一个管压降,有利于降低损耗。

4.单相桥式半控整流电路的另一种接法

图4.单相全控桥式带电阻负载时的电路及波形图5.单相桥式半控整流电路的另一接法相当于把上图中的VT3和VT4换为二极管VD3和VD4,这样可以省去续流二极管VDR,续流由VD3和VD4来实现。

二.阻感性负载(设WL>R)

1.电路结构

带阻感性负载的单相全控桥式电路如图3—7(a)所示。由于电感的感应电势使输出电压波形出现负波。输出电流是近似乎直的,晶间管和变压器副边的电流为矩形波。

图3 单相桥式全控整流电路[阻感性负载]

2.工作原理及工作波形

(1)在u2正半波的区间

当wt=o-a时:品间管vT 1、vT4承受正压,但无触发脉冲,处于关断状态。假设电路己工作在稳定状态,则在o—a区间出于电感释放能量,晶闸管vT2、vT4维持导通。

当wt=a时刻及以后:在wt=a处触发晶闸管vTl、vT4使其导通,电流沿a—>vT1->L-> R->VT4-b-Tr的二次绕组一>a流通,此时负载上有输出电压和屯流。电源电压反向加到晶闸管vT2、vT3上,使其承受反压而处于关断状态。

(2)在u2负半波区间‘

当wt=180度时:电源电压自然过零,感应电势使品闸管vTl、vT4继续导通波,晶间管vT2、vT3承受正压,因元触发脉冲,vTz、v工处于关断状态。

在wt=180+a时刻及以后:在wt=180+a处触发品间管vT2、VT3使其导通,电流沿b—VT3—L--R--VT2---a---Tr的二次绕组一>b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压和电流,此时电源电压反向加到上vTl、vT4,使其承受反压而变为关断状态。晶闸管vT2、VT3一直耍导通到下一周期wt=360+a处再次触发晶间管vT1、vT4为止。

3.为扩大移相范围,增大输山电压,同样可以在负载两端并一续流二极管。

4.电路如图4(a)所示。接—续流二极管vD后,当电源电压降到零时.负载电流经续流二极管vD续流,使电路直流输出端只有1v左右的压降,迫使晶间管的电流城小到维持电流以下而关断。一个周期内工作波形如图4(b)所示。

从工作波形可看出:在一个周期中,晶闸管的导通角为180-a。续流管的导通角为2a。

单相桥式半控整流电路实验报告

单相桥式半控整流电路 实 验 报 告 系别:电气工程系 班级:电器121 姓名: 学号:

实验一单相桥式半控整流电路实验 一、实验目的: 1、加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。 2、了解续流二极管在单相桥式半控整流电路中的作用,学会对实验中出现的问题加以分析和解决。 二、实验主要仪器与设备: 三、实验原理 本实验线路如图1所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸管,图中的R用D42三相可调电阻,将两个 900Ω接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感Ld在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。 VD3 图1 单相桥式半控整流电路实验线路图 四、实验内容及步骤 1、实验内容: (1)锯齿波同步触发电路的调试。 (2)单相桥式半控整流电路带电阻性负载。 (3)单相桥式半控整流电路带电阻电感性负载。

2、实验步骤:

五、实验注意事项 1、双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。 2、在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将Ulf及Ulr 悬空,避免误触发。 六、实验心得

单相桥式全控整流电路Matlab仿真

单相桥式全控整流电路 M a t l a b仿真 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录( ( (3 4 6 8 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 电路结构 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则==1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,==1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录 完美篇 单相桥式全控整流电路仿真建模分析 (1) (一)单相桥式全控整流电路(纯电阻负载) (2) 1.电路的结构与工作原理 (2) 2.建模 (3) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (12) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (13) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 U1U2Ud Id + - T VT3 VT1 VT2VT4 a b R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式半控整流

目录 摘要 (2) 1.设计任务和要求 (3) 设计任务 (3) 设计要求 (3) 2.单相桥式半控整流电路的设计 (2) 设计方案 (2) 主电路的原理与设计 (4) 驱动电路的原理与设计 (5) 错误!未定义书签。 元器件的选取及相关参数计算 (8) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 电力电子器件的保护 (11) 错误!未定义书签。 错误!未定义书签。 总电路原理图及工作原理 (12) 建模与仿真 (12) 心得体会 (13) 参考文献 (13) 摘要 就是把交流电能转换成直流电能的电路。大多数整流电路由变压器、驱动电 路、整流主电路、保护电路等组成。它在直流电机调速、发电机的励磁调节、电 解、电镀等领域得到广泛应用。20世纪70年代以后,主电路多用硅整流电路和 晶闸管组成。而变压器的作用是实现交流输入电压与直流输出电压的匹配以及交 流电网与整流电路之间的电隔离(可以减小电网与电路间的电干扰和故障影响)。 整流电路的种类很多,主要有半波整流电路、单相桥式半控整流电路、单相桥式 全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。本课程设计 为单相桥式半控整流电路。 关键字:整流驱动过电压保护变压 单相桥式半控整流电路

1.设计任务和要求 设计任务 单相桥式半控整流电路的技术要求: 设计一单相桥式半控整流电路,对RL负载供电,其中R=10Ω,L=20mH;要求直流输出电压在0~180伏连续可调。 设计要求 1)方案设计 2)完成主电路的原理分析,各主要元器件的选择 3)触发电路的设计 4)绘制系统电路图 5)利用matlab仿真软件建模并仿真,获取电压电流波形,对结果进行分析 6)撰写设计说明书 2.单相桥式半控整流电路的设计 设计方案 在单相桥式全控整流电路中,每一个导电回路中都有两个晶闸管,即利用两个晶闸管同时导通以控制导电的回路。实际上对每个导电回路进行控制,只需要一个晶闸管就够了,另一个可以用二极管代替。从而简化整个电路,调节起来也比较方便,并且也节省了成本,这就是单相桥式半控整流电路。 本设计电路主要由触发电路、主电路、和过电压过电流保护电路组成 主电路的原理与设计

单相桥式全控整流电路Matlab仿真

目录 单相桥式全控整流电路仿真建模分析 0 (一)单相桥式全控整流电路(纯电阻负载) (1) 1.电路的结构与工作原理 (1) 2.建模 (2) 3仿真结果与分析 (4) 4小结 (6) (二)单相桥式全控整流电路(阻-感性负载) (7) 1.电路的结构与工作原理 (7) 2.建模 (8) 3仿真结果与分析 (10) 4.小结 (11) (三)单相桥式全控整流电路(反电动势负载) (13) 1.电路的结构与工作原理 (12) 2.建模 (14) 3仿真结果与分析 (16) 4小结 (18) 单相桥式全控整流电路仿真建模分析 一、实验目的 1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。 2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。 二.实验内容

(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理 1.1电路结构 R 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图) 1.2工作原理 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。 (1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。 (2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。 (3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,u T2.3=u T1.4=1/2 u2。 (4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、

单相桥式半控整流电路实验报告

课程名称:电力电子技术指导老师:成绩: 实验名称:单相桥式半控整流电路实验实验类型:同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.加深单相桥式半控整流电路带电阻性、电阻电感性、反电势负载时工作情况的理解 2.了解续流二极管在单相器哦啊是半控整流电路中的作用;学会对实验中出现的问题加以分析和解决 3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法 二、实验内容和原理 1.实验内容 (1)锯齿同步触发电路的调试 (2)单相桥式半控整流电路带电阻性负载 (3)单相桥式半控整流电路带电阻电感性负载 (4)单相桥式半控整流电路带反电势负载 2.实验原理 (1)单相桥式半控整流电路实验原理 实验电路图如下图所示 由2组锯齿波同步移相触发电路给共阴极的2个晶闸管提供触发脉冲,整流电路的负载可根据要求选择电阻性、电阻电感性负载。 在电源电压正半周时,VT1导通,VT2关断电源,通过VT1和VD4供电。电压过零时,因为电感作用,VT1继续导通,VD3续流 在电源电压负半周时,VT2导通,VT1关断,电源通过VT2和VT3供电。电压过零时,因为电感作用,VT2继续导通,VD4续流。 (2)锯齿波同步移相出发电路实验原理 锯齿波同步移相触发电路的电路图如下图所示

它是由同步检测和锯齿波形成环节、移相控制环节、脉冲形成和放大环节、强触发环节、双窄脉冲形成电路环节组成。 同步锯齿波环节如下图所示: 负半周下降段,VD1导通,C1充电,上负下正,O点接地,R负电位,Q也负电位,VT2反偏截止。 负半周上升段,经过R1给C1充电,上升速度比R点同步电压慢,所以VD1截止,Q点电位1.4V,VT2导通,UQ钳制在1.4V。 VT2截止时,IC1对C2充电,UC线性增长,为锯齿波上升段。 VT2饱和导通,R4较小,C2通过R4、VT2很快放电,形成锯齿波下降段 移相控制环节如下图所示: 利用叠加原理,UT锯齿波电压、UK控制电压、UP初始调整电压如上图所示。 UP的作用就是改变VT4开始导通的时刻,UK的作用就是可以改变输出脉冲相位。

单相桥式全控整流电路(阻感性负载)

1. 单相桥式全控整流电路(阻-感性负载) 1.1单相桥式全控整流电路电路结构(阻-感性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(阻-感性负载)电路图如图1所示 图1. 单相桥式全控整流电路(阻-感性负载) 1.2单相桥式全控整流电路工作原理(阻-感性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。2)在u2正半波的ωt=α时刻及以后: 在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。 3)在u2负半波的(π~π+α)区间: 当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。 4)在u2负半波的ωt=π+α时刻及以后: 在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。 1.3单相桥式全控整流电路仿真模型(阻-感性负载) 单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示: 图2 单相双半波可控整流电路仿真模型(阻-感性负载)

(完整版)单相桥式半控整流电路

单相桥式半控整流电路 1.带电阻负载的工作情况 在单向桥式半控整流电路中,VT1和VD4组成一对桥臂,VD2和VT3组成另一对桥臂。在u 正半周(即a 点电位高于b 点电位),若4个管子均不导通,负载电流id 为零,ud 也为零,VT1、VD4串联承受电压u ,设VT1和VD4的漏电阻相等,则各承受u 的一半。若在触发角处给VT1加触发脉冲,VT1和VD4即导通,电流从电源a 端经VT1、R 、VD4流回电源b 端。当u 过零时,流经晶闸管的电流也降到零,VT1和VD4关断。 在u 负半周,仍在触发延迟角处触发VD2和VT3,VD2和VT3导通,电流从电源b 端流出,经VT3、R 、VD2流回电源a 端。到u 过零时,电流又降为零,VD2和VT3关断。此后又是VT1和VD4导通,如此循环地工作下去。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。 整流电压平均值为 α=0时, Ud =Ud0=0.9 U2。 α =180°时, Ud = 0。可见,α角的移相范围为0--180°。θ 的范围为0--180. 向负载输出的直流电流平均值为: 晶体管VT1和VD4,VD2和VT3轮流导电,流过晶闸管的电流平均值只有输出直流平均值的一半,即: 流过晶闸管的电流有效值为:

变压器二次侧电流有效值I2与输出直流电流有效值I相等,为 2.带RL负载的工作情况 先不考虑(续流二极管VDR ) 1.每一个导电回路由 1个晶闸管和1个二极管 构成。 2.在u2正半周,处 触发VT1,u2经VT1和 VD4向负载供电。 3.u2过零变负时,因 电感作用使电流连续, VT1继续导通,但因a点 电位低于b点电位,电流 是由VT1和VD2续流, ud=0。 4.在u2负半周,处 触发触发VT3,向VT1加 反压使之关断,u2经VT3 和VD2向负载供电。 5.u2过零变正时, VD4导通,VD2关断。VT3 和VD4续流,ud又为零。 续流二极管VDR 1若无续流二极管,则 当α突然增大至180或 触发脉冲丢失时,会发生 一个晶闸管持续导通而两 个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。 2有续流二极管VDR时,续流过程由VDR完成,避免了失控的现象。 3续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 整流电压平均值为

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

单相半控桥式整流电路的设计说明

工业应用技术学院 课程设计任务书 题目单相半控桥式晶闸管整流电路的设计 专业、班级学号 主要容、基本要求、主要参考资料等: 一、主要容 (1)电源电压:交流220V/50Hz (2)输出电压围:20V-50V (3)最大输出电流:10A (4)电源效率不低于70% 二、基本要求 1、主要技术指标 (1)具有过流保护功能,动作电流为12A; (2)具有稳压功能。 2、设计要求 (1)合理选择晶闸管型号; (2)完成电路理论设计、绘制电路图、电路图典型波形并进行模拟仿真。 二、主要参考资料 [1] 王兆安,黄俊,电力电子技术(第4版)[M],北京:机械工业,2000. [2] 王兆安,明勋,电力电子设备设计和应用手册(第2版)[M],北京:机械工业,2005. [4] 康华光,大钦,电子技术基础-模拟部分(第5版)[M],北京:高等教育,2005. [4] 治明,电力电子器件基础[M],北京:机械工业,2005. [5] 吴丙申,模拟电路基础[M],北京:北京理工大学,2007.

[6] 马建国,孟宪元,电力设计自动化技术基础[M],北京:清华大学,2004. 完成期限: 指导教师签名: 课程负责人签名: 年月日

1.设计的基本要求 1.1 设计的主要参数及要求: 设计要求:1、电源电压:交流220V/50Hz 2、输出电压围:20V-50V 3、最大输出电流:10A 4、具有过流保护功能,动作电流:12A 5、具有稳压功能 6、电源效率不低于70% 1.2 设计的主要功能 单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。单相桥式整流电路在感性负载电流连续时,当相控角α<90°时,可实现将交流电功率变为直流电功率的相控整流;在α>90°时,可实现将直流电返送至交流电网的有源逆变。在有源逆变状态工作时,相控角不应过大,以确保不发生换相(换流)失败事故。 2.总体系统的设计 2.1 主电路方案论证 方案1:单相半控桥式整流电路(含续流二极管) 单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 方案2:单相半控桥式整流二极管(不含续流二极管) 不含续流二极管的电路具有自续流能力,但一旦出现异常,会导致:一只晶闸管与两只二极管之间轮流导电,其输出电压失去控制,这种情况称之为“失控”。失控时的的输出电压相当于单相半波不可控整流时的电压波形。在失控情况下工作的晶闸管由于连续导通很容易因过载而损坏。因为半导体本身具有续流作用,半控电路只能将交流电能转变为直流电能,而直流电能不能返回到交流电能中去,即能量只能单方向传递。 经过比较本设计选择方案一含续流二极管的单相半控桥式整流电路能更好的达到设计要求。 2.2 主电路结构及其工作原理

单相桥式半控整流电路实验

实验二单相桥式半控整流电路实验 一.实验目的 1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。2.熟悉MCL—05组件锯齿波触发电路的工作。 3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。 二.实验线路及原理 见图4-6。 三.实验内容 1.单相桥式半控整流电路供电给电阻性负载。 2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。 3.单相桥式半控整流电路供电给反电势负载(带续流二极管)。 4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MCL—05组件或MCL—05A组件 5.MEL—03三相可调电阻器或自配滑线变阻器。 6.MEL—02三相芯式变压器。 7.二踪示波器 8.万用电表 五.注意事项 1.实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路

形式计算出负载电阻的最小允许值。 2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤 (1)在主电路不接通电源时,调试触发电路,使之正常工作。 (2)在控制电压U ct =0时,接通主电源。然后逐渐增大U ct ,使整流电路投入工作。 (3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。 3.注意示波器的使用。 4.MCL —33(或MCL —53组件)的内部脉冲需断开。 5.接反电势负载时,需要注意直流电动机必须先加励磁 六.实验方法 1.将MCL —05(或MCL —05A ,以下均同)面板左上角的同步电压输入接MCL —18的U 、V 输出端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连), “触发电路选择”拨向“锯齿波”。 三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv =220v ,并打开MCL —05面板右下角的电源开关。观察MCL —05锯齿波触发电路中各点波形是否正确,确定其输出脉冲可调的移相范围。并调节偏移电阻RP2,使U ct =0时,α=150°。注意观察波形时,须断开MEL-02和MCL-33(或MCL —53组件)的连接线。 注:如您选购的产品为MCL —Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同 2.单相桥式晶闸管半控整流电路供电给电阻性负载: 连接MEL-02和MCL-33(或MCL —53组件)。 (a )把开关S2合向左侧连上负载电阻Rd (可选择900Ω电阻并联,最大电流为0.8A ),并调节电阻负载至最大。 MCL-18(或MCL —Ⅲ型主控制屏,以下均同)的给定电位器RP1逆时针调到底,使U ct =0。 三相调压器逆时针调到底,合上主电路电源,调节主控制屏输出U uv =220V 。 调节MCL-18的给定电位器RP1,使α=90°,测取此时整流电路的输出电压U d =f (t ),输出电流i d =f (t )以及晶闸管端电压U VT =f (t )波形,并测定交流输入电压U 2、整流输出电压U d ,验证 2cos 19.02α+=U U d 。 若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。 (b )采用类似方法,分别测取α=60°,α=30°时的U d 、i d 、U vt 波形。 3.单相桥式半控整流电路供电给电阻—电感性负载 (a )把开关S1合向左侧接上续流二极管,把开关S2合向右侧接上平波电抗器,短接直流电动机电枢绕组A1A2。 MCL-18的给定电位器RP1逆时针调到底,使U ct =0。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出使U uv =220V 。

单相桥式全控整流电路 (1)

电力电子技术实验报告 实验名称:单相桥式全控整流电路_______班级:自动化_________________ 组别:第组___________________分工: 金华职业技术学院信息工程学院 年月日 目录

一.单项全控整流电路电阻负载工作分 析..................................................- 1 - 1.电路的结构与工作原 理............................................................ ...............- 1 - 2.建 模…………….................................................. ...........................................- 3 - 3.仿真结果与分 析............................................................ ...........................- 5 - 4.小 结…………….................................................. ...........................................- 5 - 二.单项全控整流电路组感负载工作分 析..................................................- 6 - 1.电路的结构与工作原 理............................................................ ...............- 6 - 2.建 模…………….................................................. ............................................- 8 - 3.仿真结果与分 析............................................................ ..........................- 10- 4.小 结…………….................................................. ...........................................- 10 - 三.单项全控整流电路带反电动势阻感负载工作分 析...............................- 11 - 1.电路的结构与工作原 理............................................................ ...............- 11 - 2.建 模…………….................................................. ............................................- 13 - 3.仿真结果与分 析............................................................ ............................- 15 - 4.小 结…………….................................................. ............................................- 15 -

单相桥式半控整流电路(可编辑修改word版)

2 单相桥式半控整流电路 1.带电阻负载的工作情况 在单向桥式半控整流电路中,VT1 和VD4 组成一对桥臂,VD2 和VT3 组成另一对桥臂。在u 正半周(即a 点电位高于b 点电位),若4 个管子均不导通,负载电流id 为零,ud 也为零,VT1、VD4 串联承受电压u,设VT1 和VD4 的漏电阻相等,则各承受u 的一半。若在触发角处给VT1 加触发脉冲,VT1 和VD4 即导通,电流从电源a 端经VT1、R、VD4 流回电源b 端。当u 过零时,流经晶闸管的电流也降到零,VT1 和VD4 关断。在u 负半周,仍在触发延迟角处触发VD2 和VT3,VD2 和VT3 导通,电流从电源b 端流出,经VT3、R、VD2 流回电源a 端。到u 过零时,电流又降为零,VD2 和VT3 关断。此后又是VT1 和VD4 导通,如此循环地工作下去。晶闸管承受的最大正向电压和反向电压分别为U2 和 2 U2。 整流电压平均值为 α=0 时,Ud =Ud0=0.9 U2。α=180°时,Ud = 0。可见,α角的移相范围为0--180°。θ 的范围为 0--180. 向负载输出的直流电流平均值为: 晶体管VT1 和VD4,VD2 和VT3 轮流导电,流过晶闸管的电流平均值只有输出直流平均值的一半,即: 流过晶闸管的电流有效值为: 2

变压器二次侧电流有效值I2 与输出直流电流有效值I 相等,为 2.带RL 负载的工作情况 先不考虑(续流二极管VDR ) 1.每一个导电回路由 1 个晶闸管和1 个二极管 构成。 2.在u2 正半周, 处触发VT1,u2 经VT1 和VD4 向负载供电。 3.u2 过零变负时,因 电感作用使电流连续,VT1 继续导通,但因a 点电位低 于b 点电位,电流是由VT1 和VD2 续流,ud=0。 4.在u2 负半周, 处触发触发VT3,向 VT1 加反压使之关断, u2 经VT3 和VD2 向负载 供电。 5.u2 过零变正时, VD4 导通,VD2 关断。 VT3 和VD4 续流,ud 又为零。 续流二极管VDR 1若无续流二极管,则 当α突然增大至180 或 触发脉冲丢失时,会发生一 个晶闸管持续导通而两个 二极管轮流导通的情况,这使ud 成为正弦半波,即半周期ud 为正弦,另外半周期ud 为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。 2有续流二极管VDR 时,续流过程由VDR 完成,避免了失控的现象。 3续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。 整流电压平均值为

单相全波和桥式整流电路

单相全波整流电路中,若要求输出直流电压为18v,则整流电压器二次侧的输出电压时多少 1》要求整流输出直流电压为18v而没有电容器滤波时,变压器二次侧的输出电压:U交=U直/0.9=18/0.9=20(V) 2》整流输出直流设置了电容器滤波后电压为18v时,变压器二次侧的输出电压:U交=U直/0.9/1.41=18/0.9/1.41≈14(V)

在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。 晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的 变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就 是在自然换相点触发换相时的情况。图1是电路接线图。 为了分析方便起见,把一个周期等分6段(见图2)。 在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被 触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。 这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b 两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。 加在负载上的整流电压为 ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 ud=ub-uc=ubc 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。 5.由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°~100°,称为宽脉冲触发。另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。这种方法称双脉冲触发。 6.整流输出的电压,也就是负载上的电压。整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头uab、uac、ubc、uba、uca、ucb均为线电压的一部分,是上述线电压的包络线。相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。 7.晶闸管所承受的电压。三相桥式整流电路在任何瞬间仅有二臂的元件导通,其余四臂的元件均承受变化着的反向电压。例如在第(1)段时期,KP1和KP6导通,此时KP3和KP4,承受反向线电压uba=ub-ua。KP2承受反向线电压

单相桥式全控整流电路仿真建模分析

单相桥式全控整流电路仿真建模分析 一、单相桥式全控整流电路(电阻性负载) 1电路的结构与工作原理 1.1电路结构 R id 图 1 单相桥式全控整流电路(纯电阻负载)的电路原理图 1.2 工作原理 在电源电压正半波,在wt <α时,晶闸管VT1,VT4承受正向电压,晶闸管VT2,VT3承受反向电压,此时4个晶闸管都不导通,且假设4个晶闸管的漏电阻相等,则ut1(4)=ut2(3)=1/2U2;在wt=α时,晶闸管VT1,VT4满足晶闸管导通的两条件,晶闸管VT1,VT4导通,负载上的电压等于变压器两端的电压U2;在wt= π时,因电源电压过零,通过晶闸管VT1,VT4的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断;在电源负半波,在wt <α+π时,触发晶闸管VT2,VT3使其元件导通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(Ud=-U2)和电流,且波形相位相同。此时电源电压反向施加到晶闸管VT1,VT4,使其承受反向电压而处于关断状态;在wt=2π时,因电源电压过零,通过晶闸管VT2,VT3的阳极电流小于维持晶闸管导通的条件下降为零,晶闸管关断。 2单相桥式全控整流电路建模 在MATLAB 新建一个Model ,同时模型建立如下图所示: 图2 单相桥式全控整流电路(电阻性负载)的MATLAB 仿真模型

2.1模型参数设置 在此电路中,输入电压的电压设置为220V,频率设置为50Hz,电阻阻值设置为1欧姆,电感设置为1e-3H,脉冲输入的电压设置为3V,周期设置为0.02(与输入电压一致周期),占空比设置为10%,触发角分别设置为20°,60°,90°,150°因为两个晶闸管在对应时刻不断地周期性交替导通,关断,所以脉冲出发周期应相差180°。 晶闸管参数 脉冲参数

单相桥式半控整流电路

信息工程学院 电力电子学课程设计报告书 题目: 单相桥式半控整流电路 专业: 班级: 学号: 学生姓名: 指导教师: 2012 年 5 月9 日

信息工程学院课程设计任务书

目录 摘要 (3) 设计要求 (5) 方案选择 (5) 元器件的选择 (7) 晶闸管 (7) 晶闸管的结构 (7) 晶闸管的工作原理图 (7) 晶闸管触发条件 (8) 电路组成 (9) 保护电路的设计 (10) 过电压保护 (10) 过电流保护 (11) 结果分析 (12) 电路原理图及其工作波形 (12) 分析 (15) 参数计算 (16) 元件选择 (17) 实验结果 (18) 元器件清单 (18) 实验结果 (21) 心得与体会 (21)

摘要 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,因而我们进行了此次课程设计。又因为整流电路应用非常广泛,而锯齿波移相触发单相晶闸管半控整流电路又有利于夯实基础,故我们单结晶体管触发的单相晶闸管半控整流电路这一课题作为这一课程的课程设计的课题。 关键字:逆变电路单相晶闸管PWM 电力电子

相关主题
文本预览
相关文档 最新文档