当前位置:文档之家› 射频电路与天线-Smith圆图-褚庆昕

射频电路与天线-Smith圆图-褚庆昕

Research Institute of Antennas & RF Techniques

射频电路与天线(一)

RF Circuits & Antennas

第4讲Smith圆图

褚庆昕

华南理工大学电子与信息学院天线与射频技术研究所TEL: 22236201-601

Email:qxchu@https://www.doczj.com/doc/2511083081.html,

y

y

Research Institute of Antennas & RF Techniques

S

o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y

今天,计算机计算已变得非常容易,精度远远高于作图法。但是,并不能说作图法就无用了,更不能说圆图就可以淘汰了,因为圆图不仅可以简化计算,更重要的是可以提供清晰的几何概念和物理意义。

Smith圆图已成为分析和设计RF/MW电路的常用工具,许多设计软件和测量仪器都使用Smith圆图。

y

4.1.1 反射系数圆与相位射线

y

l

平面内(实部为横坐标,虚部为竖坐标)

y

()1

l Γ=≤常数φ=常数

Γ平面

2βl

Γ( l )

l

y

Research Institute of Antennas & RF Techniques

S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y

()

l φ0.1

l α=

y

归一化阻抗圆

y

y

Research Institute of Antennas & RF Techniques

S o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y

r圆

开路点

短路点

匹配点

Research Institute of Antennas & RF Techniques

S

o u

t h C h i n a U n i v e r s i t y o f T e c h n o l o g y

x 圆

Smith阻抗圆图y

y

Smith阻抗圆图

Research Institute of Antennas & RF Techniques

y

Smith 导纳圆图

1.

y

Research Institute of Antennas & RF Techniques

S

o u t h C h i n a U n i v e r s i t y o f T e c h n o l o g y

但要注意,同时要做下列变换:

?开路点和短路点互换。?上半圆为容抗。?下半圆为感抗。

?电压最大点与最小点互换。?

平面坐标轴反向。

y

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

11微波技术复习(答案史密斯圆图版).

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ到3000GHZ,波长从0.1mm到1m; 微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现 象有哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解?

6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。, 相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为0R jwL Z G jwC += +,它仅由自身的分布参数决定而与负载及信号源无关; 2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为衰减常数和相移常数,其一般的表达式为()()R jwL G jwC γ=++; 3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即p v ω β=; 4)传输线上电磁波的波长λ与自由空间波长0λ的关系02r λπλβε= =。 7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并 分析三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z i n 定义为该点的电压和电流之比, 与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。

传输线理论射频电路与天线褚庆昕

South China University of Technology 2.2 无耗传输线的特解 特解是指在特定边界条件下,传输线上电 压电流的解。 对于传输线,通常的边界条件有:终端条 件、源端条件和电源、阻抗条件。 I z ?l 0U L U I g I l l 0U g z E g Z g

South China University of Technology 1. 终端边界条件 已知代入通解,为 022 e j β l = U l + Z c I l e - j β l = U l - Z c I l U +U - 得到 U( z = l ) = U l ,I( z = l ) = I l l 0 0 l 00I =1(U +e - j β l -U -e j β l )U = U +e - j β l + U -e j β l Z c

South China University of Technology 为了简化解的形式,采用坐标变换 计及复数Euler 公式,最后得 z ' = l - z U( z ' ) = U l cos β z ' + jZ c I l sin β z ' I( z ' ) =j U l sin β z ' +I cos β z ' l Z c 于是 U( z ) = 1 (U + Z I )e j β ( l - z ) + 1 (U - Z I )e - j β ( l - z ) 22112Z 2Z l c l l c l I( z ) = (U + Z I )e j β ( l - z ) -(U - Z I )e - j β ( l - z ) l c l l c l c c

SMITH圆图分析与归纳

《射频电路》课程设计题目:SMITH圆图分析与归纳 系部电子信息工程学院 学科门类工学 专业电子信息工程 学号 姓名 2012年6月25日

SMITH 圆图分析与归纳 摘 要 Smith 圆图在计算机时代就开发了,至今仍被普遍使用,几乎所有的计算机辅助设计程序都应用Smith 圆图进行电路阻抗的分析、匹配网路的设计及噪声系数、增益和环路稳定性的计算。 在Smith 圆图中能简单直观地显示传输线阻抗以及反射系数。 Smith 圆图是在反射系数复平面上,以反射系数圆为低圆,将归一化阻抗圆或归一化导纳圆盖在底图上而形成的。因而Smith 圆图又分为阻抗圆图和导纳圆图。 关键字:Smith 圆图 阻抗圆图 导纳圆图 归一化阻抗圆 归一化导纳圆 一 引言 通过对射频电路的学习,使我对射频电路的视野得到了拓宽,以前自己的视野只局限于低频电路的设计,从来没考虑过波长和传输线之间的关系,而且从来没想过,一段短路线就可以等效为一个电感,一段开路线可以等效为一个电容,一条略带厚度的微带竟然可以传输电波,然而在低频电路我们只把它当做一条阻值可以忽略的导线,同时在低频电路设计时好多原件,都要自己手动计算,然而在学习射频电路时,我发现我们不仅要考虑波长和传输线之间的关系,同时还要考虑每一条微带的长度和宽度,当然我感到最重要的是,通过Smith 圆图可以大大的简化了,我对电阻和电容的计算, 二 史密斯圆图功能分析 2.1 史密斯圆图的基本基本知识 史密斯圆图的基本在于以下的算式: )0/()0(Z ZL Z ZL +-=Γ Γ代表其线路的反射系数,即散射矩阵里的S11,Z 是归一负载值,即0/Z ZL 。当中,ZL 是线路的负载值,Z0是传输线的特征阻抗值,通常会使用50Ω。 圆图中的横坐标代表反射系数的实部,纵坐标代表虚部。圆形线代表等电阻圆,每个圆的圆心为()1/(+R R ,0),半径为)1/(1+R 。R 为该圆上的点的电阻值。 中间的横线与向上和向下散出的线则代表阻抗的虚数值,即等电抗圆,圆心为(1,X /1),半径为X /1。由于反射系数是小于等于1的,所以在等电抗圆落在单位圆以外的部分没有意义。当中向上发散的是正数,向下发散的是负数。 圆图最中间的点(01J Z +=,0=Γ)代表一个已匹配的电阻数值(此ZL=Z0,即1=Z ),同时其反射系数的值会是零。圆图的边缘代表其反射系数的幅度是1,即100%反射。在图边的数字代表反射系数的角度(0-180度)。 有一些圆图是以导纳值来表示,把上述的阻抗值版本旋转180度即可。 圆图中的每一点代表在该点阻抗下的反射系数。该电的阻抗实部可以从该电所在的等

史密斯圆图基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。 事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础

射频电路与天线(华工)试卷及答案

一、填空题 1、无耗传输线终端短路,当它的长度大于四分之一波长时,输入端的输入阻抗为容抗,将等效为一个电容。[见P19段路线输入阻抗公式1-45] 2、无耗传输线上驻波比等于1时,则反射系数的模等于0。 3、阻抗圆图上,|Γ|=1的圆称为单位圆,在单位圆上,阻抗为纯电抗,驻波比等于无限大。 4、只要无耗传输终端接上一个任意的纯电阻,则入射波全部被吸收,没有反射,传输线工作在匹配状态。[ZL=ZC才能匹配] 5、在传输线上存在入射波和反射波,入射波和反射波合成驻波,驻波的最大点电压值与最小点上的电压值的比即为传输线上的驻波比。 6、导纳圆图由等反射系数圆、等电抗圆和等电阻圆组成,在一个等电抗圆上各点电抗值相同。 7、圆波导的截止波长与波导的截面半径及模式有关,对于TE11模,半径越大,截止波长越短。[无论是矩形波导,还是圆波导,截止波长都与a(矩形时为宽边,圆时为半径)成正比。圆波导主模TE11,次模TM10] 8、矩形波导的工作模式是TE10模,当矩形波导传输TE10模时,波导波长(相波长)与波导截面尺寸有关,矩形波导截面的窄边尺寸越小,波导波长(相波长)越长。[见P45-相波长(波导波长)的公式,可知其只与某一频率和截止波长有关,且与截止波长(=2a)成反比,与窄边b无关。矩形波导主模TE10,次模TE20] 9、在矩形谐振腔中,TE101模的谐振频率最小。[矩形谐振腔主模TE101] 10、同轴线是TEM传输线,只能传输TEM波,不能传输TE或TM波。[都能传,但大多数场合用来传TEM波] 11、矩形波导传输的TE10波,磁场垂直于宽边,而且在宽边的中间上磁场强度最大。[P46倒数第三行,磁场平行于波导壁面。电场沿x轴正弦变化,在x=a/2处电场最大。] 12、圆波导可能存在“模式简并”和“极化简并”两种简并现象。 13、矩形波导中所有的模式的波阻抗都等于377欧姆。[矩形波导在TE模式>η,TM模式<η,η为TEM在无限大媒质中的波阻抗,在空气中则为377。注意:矩形波导不能传输TEM。] 14、矩形谐振腔谐振频率和腔体的尺寸与振荡模式有关,一般来讲,给定一种振荡模式,腔体的尺寸越大,谐振频率就越高。[P50] 15、两段用导体封闭的同轴型谐振腔,当它谐振在TEM模时,其长度等于半波长的整数倍。[P99,同轴型谐振腔分三种类型,半波长、1/4波长、电容负载式] 16、对称振子天线上的电流可近似看成是正弦分布,在天线的输入端电流最大。 17、对称振子天线既可以作发射天线,也可以作接收天线,当它作为发射天线时,它的工作带宽要比作为接收天线时大。 18、天线阵的方向性图相乘原理指出,对于由相同的天线单元组成的天线阵,天线阵的方向性图可由单元天线的方向性图与阵因子相乘得到。 19、螺旋天线的工作模式有法向模、轴向模和边射模三种,其中轴向模辐射垂直极化波。 20、在相同的辐射场强条件下,定向天线与无方向性天线相比可节省输入功率,所节省的倍数等于天线的方向性系数。 二、选择题 1、已知传输线的特性阻抗为50Ω,在传输线上的驻波比等于2,则在电压驻波波节点上的输入阻抗等于:()(4)[直接由P22公式1-54算出,不用P18公式1-36算出反射系数,再由P23公式1-38算出负载阻抗] (1)、100Ω (2)、52Ω (3)、48Ω (4)、25Ω

阻抗匹配与史密斯(Smith)圆图 基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的 作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。 另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1.阻抗和史密斯圆图基础

史密斯圆图地详解

本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1. 阻抗和史密斯圆图基础 图1. 阻抗和史密斯圆图基础

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

通俗讲解史密斯圆图

不管 这是 今天1、是2、为3、干 1、是该图“在我史密当中管多么经典的射是什么东东? 天解答三个问题是什么? 为什么? 干什么? 是什么? 表是由菲利普我能够使用计算密斯图表的基本 的Γ代表其线射频教程,为什 题: 普·史密斯(Phillip 算尺的时候,我本在于以下的算线路的反射系数从容面对“史什么都做成黑白p Smith)于193我对以图表方式算式。 数(reflection coe 史密斯圆图 白的呢?让想理39年发明的,当式来表达数学上efficient) ”,不再懵逼 理解史密斯原图当时他在美国的上的关联很有兴图的同学一脸懵的RCA 公司工作兴趣”。 懵逼。 作。史密斯曾说说过,

即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50?。 简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。 2、为什么? 我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。 很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。 我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。 我在表述这个“掰弯”的过程,你就理解,这个图的含义了。(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福) 现在,我就掰弯给你看。 世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。 史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。

2.1、首先,我们先理解“无穷大”的平面。 首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。 在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧姆。 R,电阻:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。 标准式:。(理想的电阻就是实数,不涉及复数的概念)。 如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。既:电阻仍然是实数R(复阻抗的实部),电容、电感用虚数表示,分别为:

2020年史密斯圆图基本原理

作者:败转头 作品编号44122544:GL568877444633106633215458 时间:2020.12.13 阻抗匹配与史密斯(Smith)圆图:基本原理 摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。 事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括 计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

微波大作业Smith圆图的应用

微波大作业 班级: 作者:

应用史密斯圆图提取慢波微带线特征阻抗方法 摘要:慢波微带线的多种不连续性和相邻慢波单元的耦合影响了特征阻抗的准确计算,因此在慢波微带线的设计阶段需要一种手段来提取其特征阻抗。提出一种利用史密斯圆图提取慢波微带线特征阻抗的方法,该方法通过观察慢波微带线的反射系数在史密斯圆图中的图像估计其特征阻抗的大小,并通过反射系数极值计算特征阻抗。以梳状慢波微带线为例检验该方法,特征阻抗的提取结果与利用S参数提取的结果十分接近,从而证明该方法是一种可行的慢波微带线特征阻抗提取方法。 关键词:慢波微带线特征阻抗史密斯圆图 1.引言 在微波集成电路活单片微波集成电路中,电路的小型化是有限考虑的设计目标。慢波微带线可以提高所传到的电磁波的相位常数β,今儿缩短单位电长度微带线的物理长度,一次成为射频器件小型化的一种长度。 慢波微带线的主要特性参量有特征阻抗Zc和相位常数β。相位常数可以直接测量,儿特征阻抗需要通过间接手段获得。一般是先计算微带线分布参数和其不连续性引起的寄生参数。由于寄生参数的计算是基于近似公式并且常常忽略相邻慢波单元的耦合,所以分布参数的计算结果存在误差,进而影响到特征阻抗的精确计算。 因为对特征阻抗的计算存在误差,所以在慢波微带线设计阶段就需要一种手段来估计算结果。而通过反射系数在史密斯圆图上的图像来提取特征阻抗,恰恰可以解决这个问题 2.史密斯圆图的原理 史密斯圆图是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。一年後,一位名为Kurakawa的日本工程师也声称发明了这种图表。史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣”。 史密斯圆图基本在于以下的算式 当中的Γ代表其线路的反射系数(reflection coefficient),即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。 图表中的圆形线代表电阻抗力的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻力,当中向上的是正数,向下的是负数。图表最中间的点(1+j0)代表一个已匹配(matched)的电阻数值(ZL),同时其反射系数的值会是零。图表的边缘代表其反射系数的长度是1,即100%反射。在图边的数字代表反射系数的角度(0-180度)和波长(由零至半个波长)。 有一些图表是以导纳值(admittance)来表示,把上述的阻抗值版本旋转180度即可。

Smith圆图快速入门

Smith 圆图快速入门 从Smith chart 我们不仅可以简化计算,同时还它还可以帮助我们理好的理解长线理论中的概念的现实含义以及它本身。 由于纳圆图(Y-Smith chart )与阻抗圆图(Z-Smith chart )有简单的对应关系,所以下边我们仅对阻抗圆图(Z-Smith chart )的特点作一个归纳。 如下图图7所示,阻抗圆图可以提供四个数据:X 、R 、Γ和相位θ;在横坐标上半部分电抗呈感性,横坐标下半部分电抗呈容性;在坐标为(1,0)处表示传输线终端呈开路(开路点);(-1,0)对应于终端短路点;开路点与短路点之间相差π相位;电压波腹都落在正的横坐标轴,电压波节落在负的横坐标轴上;处于最外边的圆(1=Γ)代表驻波状态,其上半个圆代表纯电感,其下半圆代表纯电容;坐标原点代表阻抗匹配点(0=Γ)。 图7. 阻抗圆图特性 阻抗圆图关系表 1.三个特殊点

匹配点开路点短路点 中心点(0,0)右边端点(1,0)左边端点(-1 ,0) Γ= 0 Z = 1 ρ= 1 Γ=1 Z = ∞ r = ∞,x = ∞ Γ= ?1 Z = 0 r = 0 ,x = 0 2.三条特殊线 (1)实轴为纯电阻线 (2 )左半实轴上的点为电压波节点,该直线段是电压波节线、电流波腹线。该直线段上某点归一化电阻r 的值为该点的K 值; (3 )右半实轴上的点为电压波幅点,该直线段是电压波腹线、电流波节线。该直线段上某点归一化电阻r 的值为该点的ρ值; 3.两个特殊面 (1)上半圆,归一化电抗值,上半圆平面为感性区x > 0 (2)下半圆,归一化电抗值x < 0,下半圆平面为容性区 4.两个旋转方向 因为已经规定负载端为坐标原点,当观察点向电源方向移动时,在圆图上要顺时针方向旋转;反之,观察点向负载方向移动时,在圆图上要逆时针方向旋转 5.四个参数 在圆图上上任何一点都对应有四个参量:Γ、x、ρ(或Γ)和φ

射频电路与天线 教学大纲

射频电路 课程名称:射频电路 英文名称:Radio Frequency Circuits 学分:3 课程总学时:48 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:□基础课□专业基础课?专业课 面向专业:信息工程、电子科学与技术(物理电子学)、电子科学与技术(微电子技术) 、集成电路设计与系统集成 先修课程:电磁场与电磁波 一、教学信息 课程的性质: 《射频电路》课程是电子与通信工程等专业的一门重要的专业课。其任务是学习射频信号的产生、传输、变换、检测、测量技术及电磁波的辐射与接收。《射频电路》主要讲述射频电路的内容。 课程的目的与教学基本要求: 课程的目的是通过这门课程的学习,学生可以掌握射频电路与天线的基本原理,并具备分析能力与初步的设计能力,为无线通信、光纤通信、移动通信等课程提供技术基础。 通过这门课的学习,要求学生熟练掌握传输线理论,了解波导和谐振腔的基本知识,掌握微波网络理论,了解各种射频电路的工作原理,掌握天线的辐射原理和天线的基本参数,了解各种线天线和面状天线的工作原理。 考核方式: 总分数100分,平时作业考勤占总分数30% ,期末闭卷考试占总分数70%。 二、教学资源

教材 [1]李绪益著,《微波技术与微波电路》,广州:华南理工大学出版社,2007.3。 [2]褚庆昕著,《射频电路与天线》(讲义),2008。 多媒体教学资源(课程网站、课件等资料) 教学课件,教学视频,精品课程网站http://202.38.193.234/rf1/。 三、教学内容、要求与学时分配 按各章节列出主要内容,注明课程教学的难点和重点,对学生掌握知识的要求,以及学时的分配 1 第一部分、传输线理论 (1)传输线的纵向问题-传输线理论(8学时) 主要内容:传输线方程及其解、无耗传输线上的行波与驻波、驻波比、反射系数、不同负载时无耗传输的工作状态、圆图及其应用。 基本要求:理解长线的概念,理解传输线方程及其解的意义,熟练掌握传播常数、特性阻抗、反射系数、驻波比的物理意义,熟练掌握无耗传输线上反射系数、驻波比、输入阻抗的特点与相互关系,掌握不同负载时无耗传输线的工作状态,掌握阻抗圆图和导纳圆图的构成,熟练应用传输线理论解决传输线问题,熟练应用圆图求解传输线问题。 重点:无耗传输线上反射系数、驻波比、输入阻抗的意义、特点和相互关系,无耗传输线问题的求解,圆图计算。 (2)传输线的横向问题(8学时) 主要内容:传输线横向问题与纵向问题的分解,几种常用传输线的横向问题分析方法和特征参数公式,包括矩形波导、圆波导、同轴线、带状线、微带线等。 基本要求:了解等效电压、等效电流的意义,了解横向问题的场方程,了解纵向分量法,掌握导波系统中模式、传播常数、相位常数和传输条件,掌握导波系统截止波长、波导波长、相速度、群速度、波阻抗的概念及其特点,了解矩形

阻抗匹配与史密斯(Smith)圆图_基本原理

Maxim > App Notes > WIRELESS, RF, AND CABLE Keywords: smith chart, RF, impedance matching, transmission line Mar 23, 2001 APPLICATION NOTE 742 Impedance Matching and the Smith Chart: The Fundamentals Abstract: Tutorial on RF impedance matching using the Smith Chart. Examples are shown plotting reflection coefficients, impedances and admittances. A sample matching network is designed at 60 MHz using graphical methods. Tried and true, the Smith chart is still the basic tool for determining transmission-line impedances. When dealing with the practical implementation of RF applications, there are always some nightmarish tasks. One is the need to match the different impedances of the interconnected blocks. Typically these include the antenna to the low-noise amplifier (LNA), power-amplifier output (RFOUT) to the antenna, and LNA/VCO output to mixer inputs. The matching task is required for a proper transfer of signal and energy from a "source" to a "load." At high radio frequencies, the spurious elements (like wire inductances, interlayer capacitances, and conductor resistances) have a significant yet unpredictable impact on the matching network. Above a few tens of megahertz, theoretical calculations and simulations are often insufficient. In-situ RF lab measurements, along with tuning work, have to be considered for determining the proper final values. The computational values are required to set up the type of structure and target component values. There are many ways to do impedance matching, including: q Computer simulations: Complex to use, as such simulators are dedicated to differing design functions and not to impedance matching. Designers have to be familiar with the multiple data inputs that need to be entered and the correct formats. They also need the expertise to find the useful data among the tons of results coming out. In addition, circuit-simulation software is not pre-installed on computers, unless they are dedicated to such an application. q Manual computations: Tedious due to the length ("kilometric") of the equations and the complex nature of the numbers to be manipulated. q Instinct: This can be acquired only after one has devoted many years to the RF industry. In short, this is for the super-specialist. q Smith chart: Upon which this article concentrates. The primary objectives of this article are to review the Smith chart's construction and background, and to summarize the practical ways it is used. Topics addressed include practical illustrations of parameters, such as finding matching network component values. Of course, matching for maximum power transfer is not the only thing we can do with Smith charts. They can also help the designer with such tasks as optimizing for the best noise figures, ensuring quality factor impact, and assessing stability analysis.

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。 RXI-P RXI-N 900M RXQ-P RXQ-N 1800M VCC 频率取样 13M CLK 功 DAT 率 RST 样 取 发射频率取样 信 号 TXI-P TXI-N 射频电压 TXQ-P TXQ-N 等级 (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波, 天 线 开 关 接收解调 频 率 合 成 R X VCO 鉴相 调制 功 率 放大器 TX VCO 功控 分频 发射互感器

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。 1、 该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 900M 1800M SYN-VCC 频率取样 13M SYN-CLK SYN- DAT SYN- RST (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图) 由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套 天 线 开 关 接收解调 频 率 合 成 R X VCO O CPU (音频) 分频 数字 处理 音频放大

射频电路与天线试题库

判断题 1、无耗传输线终端短路,当它的长度大于四分之一波长时,输入端的输入阻抗为容抗,将等效为一个电容。 2、无耗传输线上驻波比等于1 时,则反射系数的模等于0。 3、阻抗圆图上,| r=i的圆称为单位圆,在单位圆上,阻抗为纯电抗,驻波比等于无限大。 4、只要无耗传输终端接上一个任意的纯电阻,则入射波全部被吸收,没有反射,传输线工作在匹配状态。 5、在传输线上存在入射波和反射波,入射波和反射波合成驻波,驻波的最大点电压值与最小点上的电压值的比即为传输线上的驻波比。 6、导纳圆图由等反射系数圆、等电抗圆和等电阻圆组成,在一个等电抗圆上各点电抗值相同。 7 、圆波导的截止波长与波导的截面半径及模式有关,对于TE11 模,半径越大,截止波长越短。 &矩形波导的工作模式是TE10模,当矩形波导传输TE10模时,波导波长(相波长)与波导截面尺寸有关,矩形波导截面的窄边尺寸越小,波导波长(相波长)越长。 9、在矩形谐振腔中,TE101模的谐振频率最小。 10、同轴线是TEM传输线,只能传输TEM波,不能传输TE或TM波。 11、矩形波导传输的TE10波,磁场垂直于宽边,而且在宽边的中间上磁场 强度最大。 12、圆波导可能存在“模式简并”和“极化简并”两种简并现象。 13、矩形波导中所有的模式的波阻抗都等于377 欧姆。14、矩形谐振腔谐振频率和腔体的尺寸与振荡模式有关,一般来讲,给定一种振荡模式,腔体的尺寸越大,谐振频率就越高。

15、两段用导体封闭的同轴型谐振腔,当它谐振在TEM 模时,其长度等于半波长的整数倍。 16、对称振子天线上的电流可近似看成是正弦分布,在天线的输入端电流最大。 17、对称振子天线既可以作发射天线,也可以作接收天线,当它作为发射天线时,它的工作带宽要比作为接收天线时大。 18、天线阵的方向性图相乘原理指出,对于由相同的天线单元组成的天线阵,天线阵的方向性图可由单元天线的方向性图与阵因子相乘得到。 19、螺旋天线的工作模式有法向模、轴向模和边射模三种,其中轴向模辐射垂直极化波。 20、在相同的辐射场强条件下,定向天线与无方向性天线相比可节省输入功率,所节省的倍数等于天线的方 选择题 1、已知传输线的特性阻抗为50Q,在传输线上的驻波比等于2,则在电压驻波波节点上的输入阻抗等于: () (1)、100Q (2)、52Q (3)、48Q (4)、25Q 2、传输线上的驻波比等于2,在驻波波幅点上的电压等于10V,则驻波波节点上的电压等于: )

相关主题
文本预览
相关文档 最新文档