当前位置:文档之家› 第五讲支路电流法的分析与应用

第五讲支路电流法的分析与应用

第五讲支路电流法的分析与应用
第五讲支路电流法的分析与应用

支路电流法教案

知识目标: 1、了解支路电流法解题适用范围 2、熟练掌握基尔霍夫定律分析电路的方法 3、运用支路电流法来分析基本电路 能力目标: 通过学生对支路电流法的学习,提高学生对基尔霍夫定律的应用的能力及其抽象思维能力。 情感、态度与价值观: 教学中注重师生配合,以学生为主体,增强其思考和主动学习和分析问题的能力,培养学生学习电子技术的兴 趣。 教学重点: 1、掌握并能运用支路电流法来分析基本电路 教学难点: 1、利用基尔霍夫第二定律(∑u=0)列回路电压方程 时各段电压的正、负号的确定 2、熟练掌握并能运用支路电流法来分析基本电路 教学方法: 启发法,举例法,讲解法 教学安排: 1课时

小黑板多媒体粉笔 □复习提问: 1、基尔霍夫第一定律(节点电流定律) 在电路中任意一个节点上,流入节点的电流之和,等于流出节点的电流之和。即 ∑I进=∑I出 如果规定流入节点的电流为正,流出节点的电流为负,则基尔霍夫电流定律也可写成 ∑I=0 亦即在任一电路的任一节点上,电流的代数和等于零。 2、基尔霍夫第二定律(回路电压定律) 在电路中,从一点出发绕回路一周回到该点里,各段电压的代数和等于零。即 ∑u=0 □新课引入 基尔霍夫定律是电路的基本定律之一。不论是在简单的或复杂的电路中,基本霍夫定律所阐明的各支路电流之间和回路中各电压之间的基本关系都是普遍适用的。下面介绍一种应用基尔霍夫定律来求解复杂电路的方法。 □新课讲授 第10节支路电流法

一、支路电流法的应用 如果知道各支路的电流,那么各支路的电压、电功率可以很 容易的求出来,从而掌握了电路的工作状态。支路电流法是以支 路电流为未知量,应用基尔霍夫定律,列出与支路电流数目相等 的独立方程式,再联立求解。 1、 首先应确定复杂电路中共有几条支路,几个节点。 2、 一个具有n 个节点,b 条支路(b>n )的复杂电路。由于n 个节点只能列出n-1个独立议程 ,这样还缺b-(n-1)个方程式,可由基尔霍夫电压定律来补足 二、现以图1为例说明支路电流法的解题步骤 1.任意设置各支路电流的参考方向(一条支路上只有一个电 流)和网孔回路的绕行方向(如图1示)。 图1 1、 根据基尔霍夫电流定律(∑I=0)列独立的节点电流方程。 如果电路有2个节点,则只能列出1个独立的方程式。 如果电路有n 个节点,则只能列出(n-1)个独立的方程式。 对于图中的节点B ,其电流为 I 1+I 2 =I 3 (1) R1 + _ Us1 R2 R3 + Us2 _ I 3 I

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

脉冲电流综述---PPT

综述 外场在材料加工中的应用; 1.外场;在材料加工中引入外场以改善材料的微观组织,从而改变材料性能 在材料加工中引入的外场中,主要有; 电流、磁场、重力(微重力和超重力)、超声波等, 1重力 2超声波 在金属凝固过程中引入超声振动,凝固组织从粗大的柱状晶变为均匀细等轴品,金属的宏观及微观偏析均得到改善。国外关于超声波对金属凝固组织影响的研究已有应用于生产的报道15],但是国内这一领域的研究很少。 高能超声处理合金熔体时,起主要作用的是声空化作用和声流作用。当台金熔体导入超声波以后,将产生声空化现象。在声空化泡形成长大过程中,其尺寸迅速增大,导致内部的液体蒸发。空化泡的增大和内部液体的蒸发会从周围吸收热量。这烤导致空化泡表面的金属液温度降低,造成局部过冷,因此在空化泡的附近形成晶核,使晶核的形核率增加。在空化泡崩溃过程中产生的强烈冲击波又会击碎正在长大的晶体,使之成为新的晶体质点。在声流的搅拌作用下,又使其弥散地分布于熔池熔体中。因此超声处理可显著细化金属凝固组织。 图1表明,超声波可显著细化sn-sb合金凝固组织,并使具有立方体结构的小平面相B相呈球化趋势,彻底消除比重偏析口。 图8表明,超声波可显著细化镁合金凝固组织。图9表明,超声波可使铸铁石墨组织变为粒状,这无疑将极大提高铸铁的力学性能。

为将超声波应用于钢的连铸生产中,见图2。研究表明,该方法可阻有效细化不锈钢凝固组织。 图5为翟启杰等研究结果,表明超声波可细化T10钢凝固组织。在金属凝固过程中引入超声振动,凝固组织从粗大的柱状晶变为均匀细等轴晶,金属的宏观及微观偏析均得到改善。 3磁场在材料加工 磁场,与其它外场比较,有一个最大特点,即其非接触性,由于各相磁化率及介电常数不同,相变中施加磁场,会影响各相稳定性,从而改变不同相的形貌,材料在磁场中的引入,最先从普通磁场开始,并已进行了广泛的研究,目前,侧重于都材料在强磁场作用下的研究,外加磁场包括稳恒、交变和脉冲磁场。用于细化金属凝固组织的方法主要包括外加交变磁场和脉冲磁场。外加交变磁场即电磁搅拌,大量实践证明,电磁搅拌能细化金属凝固组织闭, 磁场对金属凝固的影响 将金属熔体置于强磁场下,将改变体系的能量状态,从而改变其溶质传输和结晶过程。如果

局部放电检测方法之电检测法(介质损耗分析法)

局部放电检测方法之电检测法(介质损耗分析法) 电检测法包括脉冲电流法、无线电干扰电压法、超高频UHF 局部放电检 测技术、介质损耗分析法1.电检测法局部放电最直接的现象即引起电极间的电 荷移,动每一次局部放电都伴有一定数量的电荷通过电。介质引起试样外部电 极上的电压变化另外每,次放电过程持续时间很短在气隙中一次放电过程在10 ns 量级在油隙中一次放电时间也只有1ms 根据Maxwell 电磁理论如此短持续时间的放电脉,冲会产生高频的电磁信号向外辐射局部放电电检测法即是基 于这两个原理常见的检测方法有脉冲电流法无线电干扰电压法介质损耗分析法 等等特别是20 世纪80 年代由S. A. Boggs 博士和G. C. Stone 博士提出的超高频检测法近年来得到广泛关注。并逐渐有实用化的产品问世 2.1.1 脉冲电流法 2.介质损耗分析法DLA 局部放电对绝缘材料的破坏作用是与局部放电,消 耗的能量直接相关的因此对放电消耗功率的测量很早就引起人们的重视在大多 数绝缘结构中,随着电压的升高绝缘中气隙或气泡的数目将增加此外局部放电 的现象将导致介质的损坏从,而使得tgd 大大增加因此可以通过测量tgd 的值来测量局部放电能量从而判断绝缘材料和结构的性能情况。 介质损耗分析法特别适用于测量低气压中存在,的辉光或者亚辉光放电由于 辉光放电不产生放电脉冲信号而亚辉光放电的脉冲上升沿时间太长,普通的脉 冲电流法检测装置中难以检测出来但这种放电消耗的能量很大使得Dtgd 很大 故只有采用电桥法检测Dtgd 才能判断这种放电的状态和带。来的危害。 但是。DLA 方法只能定性的测量局部放电是否发生基本不能检测局部放电 量的大小这限制了。DLA 方法的运用目前关于用DLA 方法测局部放,电的报 道还很少。

脉冲电流故障测距法

https://www.doczj.com/doc/241840875.html, 脉冲电流故障测距法 脉冲电流故障测距法 本章主要分析了脉冲电流法存在的问题,并对传统脉冲电流测试回路提出了改进,解决了使用传统脉冲电流法测量电缆故障距离时存在的波形叠加、不易识别的问题。详细介绍了该方法的工作原理,以及各参数的选择。结合小波分析技术,实现对脉冲电流波形的自动处理,达到了精确、自动测距的目的,进一步推一了脉冲电流测距方法的应用。 脉冲电流法存在的问题 本节主要对传统脉冲电流测试过程中,测试电路中各个主要元件对测试波形的影响进行了深入的分析,总结了影响脉冲电流法测试波形的各种因素,得出测试电路对测试波形的作用规律。井在此基础上提出了对脉冲电流测试方法的改进。

https://www.doczj.com/doc/241840875.html, 电流波形全过程扩散开的电流波形输出 脉冲电流测试法是钊·对电缆的高阻与闪络性故障而采用的方法,对电缆的故障测距法的改进点施加高压使之击穿,同时使用仪器采集击穿产生的电流行波信号,通过电流行波信号在测量端与故障点往返一趟的时间来计一算故障趾离。图3一1为脉冲电流神闪测试时的典型波形图。 从冲闪测试过程及波形可以看出,脉冲电流法所测故障波形具有以下特点,同时也是影响脉冲电流故障测距精度的主要因素由于行波在电缆中存在传播损耗,电流波形以及线性电流藕合器的输出,随时间的增长越来越平滑,幅值也越来越小。

https://www.doczj.com/doc/241840875.html, 电缆中的电流会随着时间的增加逐渐趋近于。,故障波形的全貌表现为幅值衰减的余弦振荡,这是由于故障点击穿后电缆与电容中存在的能量消耗完毕的缘故。故障点反射脉冲有一个小的正脉冲出现,这是由于高压电容及测试导线存在的杂散电感的影响。 入射波与反射波之间易产生混叠现象,如图一所示。当在测量点附近发生故障时,由于入射波与反射波之间的重叠,使第一个反射波无从识别。严重时可淹没放电脉冲与反射脉冲的起始点,给故障定位带来误差。其中,两种因素是不可避免的,因为能量消耗是自然规律因素中杂散电感是客观存在的,但是应该可以通过适当的改进措施来利用或者消除它的影响对于因素,虽然提高采样频率可以减小叠加范围,但是无论采样频率如何提高,都不可能完全消除线路测量端存在的波形混叠问题。因此深入研究新型电缆故障检测方法具有非常重要的意义。 我们可以主要从两个方面解决脉冲电流法测距所存在的波形不易识别的问题,一是对信号分析方法的研究,二是行波测距方法原理的改进。对于信号的分析方法,利用小波分析原理,通过小波变换对信号进行分解与重构,可以准确测得发射波的到达时间,大大减少了测距误差。本文主要从行波测趾方法的原理上做了进一步研究,利用电感和电阻元件对线路中电压电流的影响,提出一种比较优化的方法。该方法所测得的波形明显易分析,提高了测距精度。

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图 3-5 。图中C x 代表试品电容,Z m (Z' m )代表测量阻抗,C k代表耦合电容,它的作用是为 C x与Z m之间提供一个低阻抗的通道。Z代表接在电源与测量回路间的低通滤波器,Z可以让工频电压作用到试品上,但阻止被测的高频脉冲或电源中的高频分量通过。 图3-5(a)为并联测量回路,试验电压U经Z施加于试品C x,测量回路由C k与Z m串联而成,并与C x并联,因此称为并联测量回路。试品上的局部放电脉冲经C k耦合到Z m上,经放大器A送到测量仪器M。这种测量回路适合于试品一端接地的情况,在实际工作中应用较多。 图3-5(b)为串联测量回路,测量阻抗Z m串联接在试品C x低压端与地之间,并经由C k形成放电回路。因此,试品的低压端必须与地绝缘。 图3-5(c)为桥式测量回路,又称平衡测量回路。试品C x与耦合电容C k均与地绝缘,测量阻抗Z m与Z m分别接在C x与C k的低压端与地之间。测量仪器M测量Z m与Z m’上的电压差。

基于B-Dot的kA级短脉冲电流测量方法

第13卷 第6期 太赫兹科学与电子信息学报Vo1.13,No.6 2015年12月 Journal of Terahertz Science and Electronic Information Technology Dec.,2015 文章编号:2095-4980(2015)06-0990-06 基于B-Dot的kA级短脉冲电流测量方法 谭榕容,冉汉政,程 刚 (中国工程物理研究院电子工程研究所,四川绵阳 621999) 摘 要:高压脉冲电流的测量方式主要是Rogowski线圈。B-Dot是一种非侵入式脉冲电流测量探针,但由于B-Dot测量模型的建立以及应用标定等过程与实际应用环境密切相关,且对待测电流 强度有严格的要求,目前还未见其在实际kA级短脉冲方面的应用研究。本文在对B-Dot的kA级 短脉冲测量方法进行理论研究的基础上,设计了微型B-Dot探针,并利用B-Dot探针对kA级短脉 冲电流进行试验。试验结果表明,B-Dot探针适用于kA级脉冲电流的测量,且与理论研究 结论一致。 关键词:Rogowski线圈;脉冲电流;B-Dot探针;非侵入式 中图分类号:TN248 文献标识码:A doi:10.11805/TKYDA201506.0990 Measurement of kA-level short pulse current based on B-Dot TAN Rongrong,RAN Hanzheng,CHENG Gang (Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang Sichuan 621999,China) Abstract:Taking measurement by using Rogowski coil is the main method for high voltage pulse. B-Dot is a non-invasive measurement probe of pulse current, which bears many advantages in the measurement on the discharge circuit with compact structure and strictly specified parameters compared with general Rogowski coils. Nevertheless,the modeling of B-Dot and its calibration process are closely related to the practical application environments,and there are also strict requirements on the current intensity, the researches on its applications in kA level short pulse current measurement are seldom reported. This work aims to the preliminary exploration research on application of B-Dot in kA short pulse current. Based on analyzing the principle of kA level short pulse current measurement by using B-Dot, micro B-Dot probes are designed and tested on kA-μs level pulse current. The test results accord well to the theory analysis. Key words:Rogowski coil;pulse current;B-Dot probes;non-invasive 由于高新技术和国防建设的需求,脉冲功率技术应运而生。脉冲功率技术在技术上的特征是:高脉冲功率(>106 W),短脉冲持续时间(10–10 s~10–3 s),高电压(103 V~107 V)和大电流(103 A ~107 A)。测量是脉冲功率装置调试运行、改造和提高不可或缺的重要手段[1]。因此,随着脉冲功率的发展,脉冲功率技术领域的测量技术发展显得尤为迫切,而由于脉冲功率的技术特点,对测量技术提出了很高的要求。脉冲电流是脉冲功率装置的核心参数之一。目前,脉冲电流的测量方式主要有:分流器法、Rogowski线圈法和磁光效应法。Rogowski线圈由于精确度高、频率响应特性好的特点,在目前脉冲电流测量方面应用最为广泛[2]。然而,在利用Rogowski线圈进行脉冲电流测量时,被测电流回路必须穿过线圈,而Rogowski线圈体积较大,对待测回路面积有一定的要求,不仅要求增加装置体积,而且引入较大的分布参数,这在体积和回路参数要求严格的脉冲功率装置的电流测量方面并不大适用。 B-Dot是一种结构特殊的Rogowski线圈,主要用于测量变化的磁场,也可通过测量变化的电流建立的变化磁场达到间接测量电流的目的。B-Dot结构简单,放置方式灵活,进行脉冲电流测量时,不需要将线圈穿过被测回路,与脉冲电流回路没有直接的电气连接关系,不会改变待测电流回路的设计,不会引入额外的分布参数, 收稿日期:2014-10-17;修回日期:2014-11-16 基金项目:中国工程物理研究院电子工程研究所创新基金资助项目(S2*******)

脉冲电流法测试电缆局部放电的分析方法

脉冲电流法测试电缆局部放电的分析方法 陈冠豪,王宇斌,何文 (广东电网公司东莞供电局,广东省东莞市,523000) 摘要:作为电缆局部放电的有效监测手段,脉冲电流法进行局部放电测试的经验及方法日益被深化和掌握。本文在实际测试分析层面上对如何使用脉冲电流法进行局部放电测试进行了介绍,为局部放电的分析判断提供了典型的判断方法和依据。 关键词:电缆;局部放电;脉冲电流法;波形;频谱;相位图谱;定位 The means of analysis on using pulse current method to test cable partial discharge CHEN Guanhao,WANG Yubin,HE Wen (Guangdong Grid Dongguan Power Supply Bureau, Dongguan 523000, China) Abstract:As an effective means of monitoring the cable partial discharge, the experiences and approaches of pulse current method of partial discharge test are increasingly deepening and in the hand. This paper introduces how to use the method of pulse current to do the partial discharge test in the actual test analysis level, and provides typical judgment method and basis for analyzing and judging partial discharge. Keywords: Cable; Partial Discharge; Pulse Current Method; Waveform; Frequency Spectrum; Phase Spectrum; Positioning 1 前言 电气设备检修技术的发展大致可以分为三个阶段,即故障检修、定期检修和状态检修,状态检修以可靠性为主,它是根据设备的状态而执行的预防性作业。作为电力系统运行的首要要求,供电可靠性日益凸显其重要性,因此状态检修逐步取代了以往的定期预防性检修。状态检修通过对设备关键参数的测量来识别其已有的或潜在的劣化迹象,可在设备不停运的情况下对其进行状态评估。而在线监测作为状态检修发展的大趋势,正处于起步和快速发展的重要时期。其中,电缆局部放电在线监测技术的产生更是具有革命性的意义。 电缆局部放电现象对电缆的绝缘和电能的传输产生着巨大的有害作用,局部放电的长期发展会导致电气设备产生严重的缺陷,并且由于局放的形成多在终端内部或电缆本体内部,而且过程细微发展缓慢,不易被发现,因此局部放电成为困扰着电缆安全可靠运行的一大难题。利用在线监测技术对可能存在局部放电现象的电缆进行跟踪观察,能够有效地监测局放的发展趋势,便于制定相应的解决方案对隐患进行消除。 2内部局放的产生机理 当电缆本体、接头或终端中的主绝缘存在空穴、气泡、杂质等不纯的物质时,相当于主绝缘中存在一个杂质电容,在电缆线芯通过高压交流电的情况下,会对杂质电容进行充电,当电压达到介质的击穿电压时,杂质电容间便进行一次击穿放电。如此反复地进行充电和击穿放电,产生的热量使主绝缘碳化,长期下去主绝缘便会不断

什么是脉冲电流

什么是脉冲电流 那究竟什么是脉冲?从字面上理解——脉搏的跳动所产生的冲击波。脉冲 的定义其实是这样的:电压(V)或电流(A)的波形象心电图上的脉搏跳动的 波形但现在听到的什么电源脉冲、声脉冲……又作何解释呢——脉冲的原意被延伸出来得:隔一段相同的时间发出的波等机械形式,学术上把脉冲定义为:在短时间内突变,随后又迅速返回其初始值的物理量称之为脉冲。从 脉冲的定义内我们不难看出,脉冲有间隔性的特征,因此我们可以把脉冲作为 一种信号。脉冲信号的定义由此产生:相对于连续信号在整个信号周期内短时间发生的信号,大部分信号周期内没有信号。就象人的脉搏一样。现在 一般指数字信号,它已经是一个周期内有一半时间(甚至更长时间)有信号。 计算机内的信号就是脉冲信号,又叫数字信号。 脉冲信号:瞬间突然变化,作用时间极短的电压或电流称为脉冲信号.它可以 是周期性重复的,也可以是非周期性的或单次的。脉冲反应堆pulse reactor :能在很短时间间隔内达到超临界状态,从而产生很高脉冲功率和很强中子通量,并能安全可靠地多次重复运行的反应堆。它分为热中子脉冲堆和快中子脉 冲堆两类。中国建成了一座铀氢锆脉冲反应堆,这是以铀氢锆作燃料的反应堆。它主要以氢作为慢化剂,当功率升高时,温度就会提高,氢的慢化作用减弱, 反应性立即降低,反应堆有很大的瞬发负温度系数,因而呈脉冲运行。脉冲反 应堆除了用来培训人员、从事研究工作和生产短寿命放射性同位素外,还可用 来治疗癌症、中子照相、活化分析及辐照燃料和材料。脉冲电源:用户的负载需要断续加电,即按照一定的时间规律,向负载加电一定的时间,然后 又断电一定的时间,通断一次形成一个周期。如此反复执行,便构成脉冲电源。

第4章-局部放电测量的基本原理

第4章 局部放电测量的基本原理 脉冲电流法的基本原理可用图4.1所示电路阐述:当试品C X 产生一次局部放电时,脉冲电流经过耦合电容C k 在检测阻抗两端产生一个瞬时的电压变化,即脉冲电压 U ,脉冲电压经传输、放大和显示等处理,可以测量局部放电的基本参量。脉冲电流法是对局部放电频谱中的较低频段(一般为数千赫兹至数百千赫兹或至多数兆赫兹,局部放电信号能量主要集中在该段频带内)成分进行测量,以避免无线电干扰。传统的测量仪器一般配有脉冲峰值表指示脉冲峰值,并有示波管显示脉冲大小、个数和相位。放大器增益很大,其测试灵敏度相当高,而且可以用已知电荷量的脉冲注入校正定量,从而测出放电量q 。 图4.1 脉冲电流法基本原理示意图 4.1 脉冲电流法的基本测量线路 (a)并联法测量回路 (b )串联法测量回路 (c )平衡法测量回路 图4.2 脉冲电流法的基本试验测量线路示意图 脉冲电流法的基本试验测量线路有三种,如图4.2所示,其中图4.1(a )、(b)统称为直接法测量回路,(c )称为平衡法测量回路。每种测量回路应包括以下基本部分: (1)试验电压u ; (2)检测阻抗Zd ,将局部放电产生的脉冲电流转化为脉冲电压; (3)耦合电容C k ,与试品C x 构成使脉冲电流流通回路,并具有隔离工频高电压直接加在检测阻 抗上Z d 的作用; (4)高压滤波器Zm ,一方面阻塞放电电流进入试验变压器,另一方面抑制从高压电源进入的 谐波干扰。 (5)测量及显示检测阻抗输出电压的装置M 。 e

并联法多用于试品电容较大或试品有可能被击穿的情况下,过大的工频电流不会流入检测阻抗Z d而将Zd烧损并在测试仪器上出现过电压的危险。另外,某些试品在正常测量中无法与地分开,只能采用并联法测量线路。 串联法多用于试品电容较小情况下,耦合电容具有滤波作用,能够抑制外部干扰,而且测量灵敏度随C k /C x 的增大而提高。在相同的条件下,串联法比并联法具有更高的灵敏度,这是因为高压引线的杂散电容及试验变压器入口电容(无电源滤波器时)也被利用充当耦合电容。另外,C k 可利用高压引线杂散电容来充当,线路更简单,可以避免过多的高压引线以降低电晕干扰,在220kV 及更高电压等级的产品试验中多被采用。 平衡法需要两个相似的试品,其中一个充当耦合电容。它是利用电桥平衡的原理将外来的干扰消除掉,因而抗干扰能力强。电桥平衡的条件与频率有关,只有当C x 1与Cx 2的电容量和介质损失角δtg 完全相等,才有可能完全平衡消除掉各种频率的外来干扰;否则,只能消除掉某一固定频率的干扰。在实际测量中,试品电容的变化范围很大,若要找到与每个试品有相同条件的电容是困难的。因而,往往采用两个同类试品作为电桥的两个高压臂以满足平衡条件。 4.2 检测阻抗 检测阻抗,也称为输入单元,其主要作用是取得局部放电所产生的高频脉冲电流信号,并对试验电源的工频及其谐波低频信号则予以抑制。检测阻抗是连接试品与仪器主体部分的关键部件,对仪器的频率特性与灵敏度有直接关系。检测阻抗可分为RC 型及LCR 型两大类,如图 4.3所示,图中电容C d主要由至仪器主体连接电缆的电容、放大器输人电容等组成。 4.2.1 RC 型检测阻抗 图4.3表示接有RC 型检测阻抗时的等效局部放电检测电路。当试品C x 产生局部放电时,视在放电量为q ,C x 两端会产生一个脉冲电压u ?,理想情况下u ?是一个直角脉冲波,但在实际情况中u ?具有一定的上升时间并具有以下的形式 )1(t m f e U u α--=? (4.1) 式中脉冲电压幅值)]/(/[d k d k x m C C C C C q U ++=,f α为放电衰减常数。 对于理想情况,在放电瞬间,电荷q 引起的C k 和C d 上响应的脉冲电压可认为按电容反比例分配,则C d 上的脉冲电压幅值为 图4.3 检测阻抗 图4.4 接RC 检测阻抗的测试回路

脉冲电流法-电力电缆故障测试仪

第四章脉冲电流法 §4-1 脉冲电流法与线性电流耦合器 电缆的高阻与闪络性故障由于故障点电阻较大(大于10倍的电缆波阻抗),低压脉冲在故障点没有明显的反射(反射脉冲幅度小于5%),故不能用低压脉冲反射法测距。脉冲电流法是将电缆故障点用高电压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,通过分析判断电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。脉冲电流法采用线性电流耦合器采集电缆中的电流行波信号。 图4.1 线性电流耦合器应用示意图 图4.1是冲击高压闪络测试的接线示意图,线性电流耦合器L放置在储能电容C接电缆外皮的接地引线旁。L实际上是一个空心线圈,与地线中电流产生的磁场相匝链。设时间t2与t1时电流分别为i2与i1,t1小于t2但接近t2,根据电磁感应定律求出线圈的输出电压: V=K(i2-i1)/(t2-t1)=KΔi/Δt (4.1) 其中参数K是一取决于线圈匝数、形状及与地线相对位置的常数,电流变化量: 47

Δi=i2-i1, 时间变化量: Δt=t2-t1。 式(4.1)说明,线性电流耦合器的输出电压与地线电流的变化率成正比,而不是与地线中电流本身成正比。 (a) (b) 图4.2 a.地线中的电流 b. 线性电流耦合器的输出 图4.2给出了地线中的电流与对应的线性电流耦合器的输出,可以看出线性电流耦合器在地线中电流开始上升时,输出是一个尖脉冲,而在地线中电流趋于平稳后,输出为零。因此,在故障点击穿产生的电流行波到达后,线性电流耦合器输出一脉冲信号,可以从线性电流耦合器有无脉冲信号输出,判断测量点是否有电流行波出现。 与脉冲电压法使用电阻、电容分压器进行电压取样 48

浅谈脉冲电流法局部放电测试的分析方法

浅谈使用脉冲电流法测试电缆局部放电的 分析方法 陈冠豪王宇斌何文 (广东电网公司东莞供电局,东莞,523000) 摘要:作为电缆局部放电的有效监测手段,脉冲电流法进行局部放电测试的经验及方法日益被深化和掌握。本文在实际测试分析层面上对如何使用脉冲电流法进行局部放电测试进行了介绍,为局部放电的分析判断提供了典型的判断方法和依据。 关键词:电缆;局部放电;脉冲电流法;波形;频谱;相位谱图;定位 一.前言 电气设备检修技术的发展大致可以分为三个阶段,即故障检修、定期检修、状态检修,状态检修是以可靠性为中心的检修,它是根据设备的状态而执行的预防性作业。作为电力系统运行的首要要求,供电可靠性日益凸显其重要性,因此状态检修逐步取代了以往的定期预防性检修。状态检修通过对设备关键参数的测量来识别其已有的或潜在的劣化迹象,可在设备不停运的情况下对其进行状态评估。而在线监测作为状态检修发展的大趋势,正处于起步和快速发展的重要时期。其中,电缆局部放电在线监测技术的产生更是具有革命性的意义。 电缆局部放电现象对电缆的绝缘和电能的传输产生着巨大的有害作用,局部放电的长期发展会导致电气设备产生严重的缺陷,并且由于局放的形成多在终端内部或电缆本体内部,而且过程细微发展缓慢,不易被发现,因此局部放电成为困扰着电缆安全可靠运行的一大难题。利用在线监测技术对可能存在局部放电现象的电缆进行跟踪观察,能够有效地监察局放的发展趋势,便于制定相应的解决方案对隐患进行消除。 二. 内部局放的产生机理 当电缆本体、接头或终端中的主绝缘存在空穴、气泡、杂质等不纯的物质时,相当于主绝缘中存在一个杂质电容,在电缆线芯通过高压交流电的情况下,会对杂质电容进行充电,当电压达到介质的击穿电压时,杂质电容间便进行一次击穿放电。如此反复地进行充电和击穿放电,产生的热量使主绝缘碳化,长期下去主绝缘便会不断碳化变薄,从而导致主绝缘容易被击穿,产生接地故障。

支路电流法

二、现以图1为例说明支路电流法的解题步骤 任意设置各支路电流的参考方向(一条支路上只有一个电流)和网孔回路的绕行方向(如图1示)。 图1 1)、根据基尔霍夫电流定律(∑I=0)列独立的节点电流方程。如果电路有2个节点,则只能列出1个独立的方程式。如果电路有n个节点,则只能列出(n-1)个独立的方程式。对于图中的节点B,其电流为I1+I2 =I3 (1) 2)、根据基尔霍夫第二定律(∑u=0)列不足的回路电压方程。上图1中共有三个未知电流,但只能列出1个独立的节点电流方程式,还要再列出两个独立的回路电压方程式,电路才能求解。为保证回路的独立,每次所取的回路须含有一个新支路(即其他方程式中没有利用过的支路),则此回路电压方程式就是独立的,因此,我们一般选择网孔来列方程。在列回路电压方程式时,可先标出各元件电阻两端电压的正、负极极性(如图2示)。在用式∑u=0时,各段电压的正、负号是这样规定的:如果在绕行过程中从元件的正极点到负极点,此项电压便是正的;反之从元件的负极点绕到正极点,此项电压则是负的(简言之,“先遇正得正,先遇负得负”)。

例如图2中的两个网孔,沿图示绕行方向,根据∑u=0,得 R1I1-I2R2+Us2-Us1=0 (2) I2R2+I3R3=Us2 (3) 1、解联立方程组。 若已知E1,E2,R1,R2,R3,把这些已知数据代入(1)、(2)、(3)式中,得 I1+I2-I3=0 (1) E1-E2=R1I1-I2R2 (2) E2=R2I2+R3I3 (3) I1= I2= I3= 若为正值,电流实际方向与标明的参考方向相同;若为负值,电流的实际方向与标明的参考方向相反。 [例题1] 图所示电路中,已知电阻R1=5Ω,R2=10 Ω,R3=15Ω,E1=180v,E2=80v,求各支路电流 解: (1) 设各支路电流参考方向、回路绕行方向如上图。

第二节:支路电流法教案精修订

第二节:支路电流法教 案 标准化管理部编码-[99968T-6889628-J68568-1689N]

他方法。 4 .典型例题讲解 例1:如图,已知E1E217V,R1?1W,R25 W,R3?2 W,用支路电流法求各支路的电流。 例2、已知电路如图所示,其中E1=15 V, E2=65 V, R1=5 Ω, R2=R3=10 Ω。试用支路电流法求R1、 R2和R3三个电阻上的电压。 例3、试用支路电流法,求图所示电路中的电流I3。 例4、用支路电流法求图中各支路电流,并说明U S1和U S2是起电源作用还是起负载作用。图中U S1=12 V, U S2=15 V, R1=3 Ω, R2=Ω, R3=9 Ω。 【课外作业】 1.如图所示电路,能列出独立的基尔霍夫电流方程的数目是( ) A.1个 B.2个 C.3个 D.4个形式以增强学生学习主动性, 分组讨论法拓展训练

2.上题图中,能列出的独立的基尔霍夫方程的数目是( ) A.1个 B.2个 C.3个 D.4个 3.如图所示电路中,正确的关系是( ) A.I1= E1-E2 R1+R2 B.I2= E2 R2 C.I1= E1-U ab R1+R2 D.I2= E2-U ab R2 4.电路如图所示,请判别该电路有几条支路,几个节点,几个网 孔,并列出该电路用支路电流法解题时所需的方程。 5.如图所示,已知E1=6V,E2=1V,内阻不计,R1=1Ω,R2=2Ω,R3 =3Ω,试用支路电流法求各支路电流。 讲授法 小结:1.支路电流法解题步骤。 2.用支路电流法解题的注意点 布置 作业 习题(《电工基础》第2版周绍敏主编) 3.填充题(6),4.问答与计算题(1)、(2)

电子电路分析实例

电子电路分析实例 Final revision by standardization team on December 10, 2020.

一款简单的恒流源电路图 如下图是一款简单的恒流源电路图,在该电路中:当±v,R b2、Rtii和Re被确定之后,c就被确定了,在一定范围内与负载电阻RL的大小无关,只要使管子的V伸工作在晶体管输出特性曲线的平坦部分,就可以保持Jc的不变。 (VT,Re反馈网络起到稳压) 1kHz低频载波振荡电路 所示的振荡电路设计在1 kHz载波振荡频率上,负载是影响尽量小的电压放大桥式振荡器,为了简化电路,使用两个2SB75晶体管,电源电压为12 V。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 0 能通过,使振荡器产生单一频率的输出。 低频电压放大器 低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 ( 1 )共发射极放大电路 图 1 ( a )是共发射极放大电路。 C1 是输入电容, C2 是输出电容, VT 就是起放大作用的器件, RB 是基极偏置 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、 3 端是输出。 3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1

( b ),动态时交流通路见图 1 ( c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。 ( 2 )分压式偏置共发射极放大电路 图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是 RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 LC 振荡器 LC 振荡器的选频网络是 LC 谐振电路。它们的振荡频率都比较高,常见电路有 3 种。( 1 )变压器反馈 LC 振荡电路 图 1 ( a )是变压器反馈 LC 振荡电路。晶体管 VT 是共发射极放大器。变压器 T 的初级是起选频作用的 LC 谐振电路,变压器 T 的次级向放大器输入提供正反馈信号。接通电源时, LC 回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率 f 0 相同的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级 L1 、 L2 的耦合又送回到晶体管 V 的基极。从图 1 ( b )看到,只要接法没有错误,这个反馈信号电压是和输入信号电压相位相同的,也就是说,它是正反馈。因此电路的振荡迅速加强并最后稳定下来。

IDM脉冲电流分析

通常,在功率MOSFET的数据表中的第一页,列出了连续漏极电流ID,脉冲漏极电流IDM,雪崩电流IAV的额定值,然后对于许多电子工程师来说,他们对于这些电流值的定义以及在实际的设计过程中,它们如何影响系统以及如何选取这些电流值,常常感到困惑不解,本文将系统的阐述这些问题,并说明了在实际的应用过程中如何考虑这些因素,最后给出了选取它们的原则。 连续漏极电流 连续漏极电流在功率MOSFET的数据表中表示为ID。对于功率MOSFET来说,通常连续漏极电流ID是一个计算值。当器件的封装和芯片的大小一定时,如对于底部有裸露铜皮的封装DPAK,TO220,D2PAK,DFN5*6等,那么器件的结到裸露铜皮的热阻RθJC是一个确定值,根据硅片允许的最大工作结温TJ和裸露铜皮的温度TC,为常温25℃,就可以得到器件允许的最大的功耗PD: 当功率MOSFET流过最大的连续漏极电流时,产生最大功耗为PD: 因此,二式联立,可以得到最大的连续漏极电流ID的计算公式: (1) 其中,RDS(ON)_TJ(max) 为在最大工作结温TJ下,功率MOSFET的导通电阻;通常,硅片允许的最大工作结温为150℃。 需要说明的是:上述的电流是基于最大结温的计算值;事实上,它还要受到封装的限制。在数据表中,许多公司表示的是基于封装限制最大的连续漏极电流,而有些公司表示的是基于最大结温的电流,那么它通常会在数据表注释中进行说明,并示出基于封装限制的最大的连续漏极电流。 在公式(1)中,需要测量器件的热阻RθJC,对于数据表中的热阻都是在一定的条件下测试的,通常是将器件安装在一个1平方英寸2oz的铜皮的PCB上,对于底部有裸露铜皮的封装,等效热阻模型如图1所示。如果没有裸露铜皮的封装,如SOT23,SO8等,图1中的RθJC通常要改变为RθJL,RθJL就是结到管脚的热阻,这个管脚是芯片内部与衬底相连的那个管脚。

50个典型应用电路实例详解

电路1 简单电感量测量装置 电路2 三位数字显示电容测试表 电路 3 市电电压双向越限报警保护器 电路4 红外线探测防盗报警器 电路5 禁烟警示器 电路6 采用555时基电路的简易温度控制器 电路7 采用555时基电路的自动温度控制器 电路8 采用CD4011的超温监测自动控制电路 电路9 数字温度计电路 电路10 热带鱼缸水温自动控制器 电路11 采用555时基电路的简易长延时电路 电路12 双555时基电路长延时电路 电路13 精确长延时电路 电路14 数字式长延时电路 电路15 循环工作定时控制器 电路16 多级循环定时控制器 电路17 抗干扰定时器 电路18 采用555集成电路的简易光电控制器 电路19 采用功率开关集成电路TWH8751的路灯自动控制器电路20 采用双D触发器CD4013的路灯控制器 电路21 使用氖灯的单键触摸开关 电路22 双键触摸式照明灯 电路23 触摸式延时照明灯 电路24 家用简易闪烁壁灯控制器 电路25 自动应急灯电路 电路26 12V供电的电子节能灯 电路27 高响度警音发生器 电路28 电子仿声驱鼠器 电路29 由HY560构成的语音录放电路 电路30 闪烁灯光门铃电路 电路3 1 由LM386构成的3W简易OCL功放电路 电路32 由TDA2009构成的1W高保真BTL功率放大器 电路33 具有音调控制功能的25W混合式Hi—Fi放大器 电路34 超级广场效果的耳机放大器 电路35 家用电器过压自动断电装置 电路36 电话自动录音控制器 电路37 电风扇自动温控调速器 电路38 水开报知器 电路39 新颖的鱼缸灯 电路40 小型电子声光礼花器 电路41 电源频率检测器 电路42 采用555时基电路的过流检测器电路 电路43 自制交流自动稳压器 电路44 采用555时基电路的过电压、过电流保护电路

相关主题
文本预览
相关文档 最新文档