当前位置:文档之家› 最新人教版三年级数学上册导学案:8 分数的初步认识

最新人教版三年级数学上册导学案:8 分数的初步认识

最新人教版三年级数学上册导学案:8 分数的初步认识
最新人教版三年级数学上册导学案:8 分数的初步认识

本单元是学生在数学领域中第一次接触“分数”这个抽象概念,而且是较为。无论是从其意义还是读、写法上来看都与整数有很大的差异。学好本单元内容才能为今后继续学习分数等有关知识打下坚实的基础。在教学时要让学生体会到分数来源于生活,知道分数是在“平均分”的情况下才产生的。

“分数的初步认识”这一单元是在学生已掌握一些整数知识的基础上进行教学的。整数是单位“1”的叠加,而分数是单位“1”的均分,从整数到分数是数的概念的一次拓展,是学生认识数的一次质的飞跃。几分之一既是一个分数,又是一个分数单位,对以后认识几分之几、分数大小的比较等起着至关重要的作用。

本单元内容主要包括认识分数、分数的简单计算、分数的简单应用等几部分。教学内容要结合具体情境,通过直观操作,使学生逐渐形成分数的正确表象,初步建立分数的概念,理解分数的意义,为今后进一步学习分数打下基础。

1.结合生活实际,使学生初步认识几分之一和几分之几,并且会读、写简单的分数,知道分数的各部分名称以及分数的大小。

2.使学生会计算简单的同分母分数的加减法。

3.在理解分数意义的基础上,使学生学会用分数的知识解决简单的实际问题,培养学生解决问题的意识和能力。

(1)分数的初步认识(4课时)

(2)分数的简单计算(3课时)

(3)分数的简单应用(2课时)

(4)单元知识归纳与易错警示(1课时)

本单元以老师讲解为主,利用情境演示与操作探究相结合的方法让学生逐一掌握要学的知识。

1.分数的初步认识第1课时几分之一

新课。(6分钟)1.(1)把4块凤梨月饼平均分给2

家人,每家分得几块?

(2)把2块蛋黄月饼平均分给2

家人,每家分得几块?

(3)把1块豆沙月饼平均分给2

家人,每家分得几块?

2.导入新课。

质疑:把4块和2块月饼分给两家

人很好分,但是把1块豆沙月饼平

均分给两家人,每家分得几块呢?

用什么样的数来表示分到的月饼

呢?这就是我们今天要学习的新

内容。(板书课题:几分之一)

42÷7=

28÷4=

27÷3=

81÷9=

答案:6 4 6 7

9 9

2.用分数表示下面各图

中的阴影部分。

3.下面哪个图形中的阴

影部分可以用

1

4

表示?

(能的画“√”,不能

的画“×”)

答案:(1)√(2)×

4.填一填。

(1)把一块长方形布

料平均分成6份,每份

是这块布料的()

探究新知。(25分钟)1.认识

1

2

1

4

(1)找一找生活中物体的一半,

用自己准备的圆形纸、长方形纸、

正方形纸说说是怎么找的。

(2)课件出示教材第90页例1:

明确物体的一半,就是它的二分之

一,写作

1

2

。明确把物体平均分成

4份,每份是它的四分之一,写作

1

4

(3)找找、写写、说说。

教师演示:拿起一张长方形纸任意

撕成两半,举起其中一半问:“这

1.(1)小组合作。拿出自己喜

欢的学具表示出二分之一。

(2)明确物体的一半,也就是

它的二分之一,写作

1

2

学生交流:把一块月饼平均分

成2份,每份是这块月饼的一

半,也就是它的二分之一,写

1

2

;把一张纸平均分成两份,

每份是它的

1

2

……

(3)将长方形的纸任意撕成两

半,不是平均分,所以不能用

1

2

课件出示教材第91页例3。 (1)小组讨论:观察这两组分数,你们发现了什么?为什么? (2)引导学生通过比较发现规律。 老师板书:分子是1的两个分数,分母大的分数较小。

数越多,每一份反而越少。 ( ) 答案:×

三 巩固练习。(5分钟) 完成教材第91页“做一做”。

独立完成,集体订正。

教学过程中老师

的疑问:

四 课堂小结,拓展延伸。(4分钟)

1.通过今天的学习,你有什么收获?

2.布置作业。

1.说说自己本节课的收获。

2.独立完成作业。

五 教学板书

六 教学反思

本节课通过“分一分”“折一折”“画一画”“涂一涂”,充分调动学生学习的积极性,给学生提供充分参加数学活动的机会,激发其创新的意识,让学生在动手实践、交流探讨中获得新知,理解并掌握分数的含义,培养学生的探究能力和手脑并用的意识。

第2课时几分之几

课题几分之几课型新授课

设计说明

通过上节课的学习,学生认识了几分之一,对分数有了初步的了解,基于上述情况,本节教学设计做了这样的安排:

1.由复习过渡到探索新知。

上课开始,设计关于几分之一和分数的各部分名称的内容,使学生在对旧知进行回顾的同时,学习兴趣受到激发,为后面的学习打下良好的基础。

2.在动手实践中加强对分数的认识。

由于学生对分数有了初步的了解,本节课加强学生对分数的认识,在教学教材92页例4和例5前,先让同学们自己动手把一张正方形纸平均分成4份,把彩带平均分成10份,进一步巩固对平均分的认识,然后任意取其中的几份,认识几分之几,充分发挥学生的主观能动性,较好地实现教学目标。

学习目标1.使学生在认识几分之一的基础上认识几分之几及分数的各部分名称,并会比较分母相同的两个分数的大小。

2.为学生提供实践的机会,提高学生动手操作的能力。

3.培养学生与人合作的意识,提高学生与人合作的能力。

学习重点使学生明确几分之几的含义。

学习准备教具准备:PPT课件。

学具准备:正方形纸、彩笔、刻度尺。

课时安排1课时

教学环节导案学案达标检测

创设情境复习旧知识,引入新课。(6分钟)1.复习几分之一。

举例子说说四分之一的意义。

2.复习分数的构成各部分的名

称。

谁能说说分数的各部分名称?

3.揭示课题。这节课我们继续学

习分数。(板书课题:几分之几)

1.举例说明,并说说这

个分数表示的意义。

2.结合具体的分数,说

说分数各部分的名称。

3.明确本节课的学习

任务。

1.用分数表示阴影部分的内容。

2.把一张正方形纸折成相等的4

份,你能想出几种折法?画出折

探究新知。(25分钟)1.认识四分之几。

让学生进行小组合作:先把一张

正方形的纸平均分成4份,然后

根据自己的意愿涂颜色,想涂几

份就涂几份,并用分数表示涂色

部分的大小,最后在小组内交

流。

2.认识十分之几。(课件出示教材

第92页例5)

(1)引导学生把1分米长的一

条彩带平均分成10份。

(2)每份是这条彩带的几分之

几?2份是它的几分之几?5份

呢?

(3)你还能想到哪些分数?

老师小结:像

2

4

3

4

3

10

7

10

这样的数,也都是分数。

1.分组汇报:把一张正

方形的纸平均分成4

份。

甲组:每份是它的

1

4

乙组:3份是它的

3

4

丙组:2份是它的

2

4

丁组:4份是它的

4

4

2.(1)动手操作,用

刻度尺分一分,注意要

分得均匀。

(2)思考并在小组内

交流老师提出的问题。

学生1:每份是这条彩

带的

1

10

学生2:3份是它的

3

10

,5份是它的

5

10

,7

份是它的

7

10

,9份是

它的

9

10

痕,并把其中的2份涂上色。

答案:法①

法②

法③

3.把阴影部分用分数表示出来。

4.判断。

(1)把一根绳子分成三段,每段

是它的

1

3

。()

(2)图中的阴影部

分可以用

1

4

表示。()

(3)把一瓶水分成5份,喝了2

份,喝了这瓶水的2

5

。()

答案:(1)×(2)√(3)×三

巩固练

习。(5分

钟)

完成教材第92页“做一做”。独立完成,集体订正。

教学过程中老师的疑问:四

课堂小结,拓展延伸。(4分钟)

1.通过今天的学习,你有什

么收获?

2.布置作业。

1.与同学交流自

己本节课的收获。

2.独立完成作业。

教学板书

教学反思

本节课的教学内容是认识几分之几,要使学生透彻地理解几分之几的含义,离不开合作学习和动手实践活动。因此,本节课的教学呈现以下两点:

1.关注学生能力的培养,充分开展教学活动。

学生的逻辑思维能力、合作探究能力、动手操作能力等直接影响着对新知识的理解和掌握情况,而这些能力的培养又是在学习新知的过程中逐步实现的。所以,本节课通过“涂一涂”“说一说”“找一找”等活动,既加深了学生对新知识的理解,又培养了学生的能力。

2.重视小组合作的学习方式。

本节课的每个环节都是以小组合作的方式开展的,通过小组成员不断发现分数的意义,加快了学生对新知识的理解,达到了很好的效果。

教师点评和总结:

第3课时比较分数的大小

2.如果两个分数的分母相

同,分子不同,又该怎样

比较它们的大小呢?(板

书课题)

探究新

知。(22

分钟)

1.探究同分母分数的大小

比较的方法。

(课件展示教材第93页

例6)

(1)比较:

2

5

○3

5

小组合作:先涂色表示这

两个分数,再比较它们的

大小,说说为什么。

学生汇报,老师板书:。

2

5

3

5

(2)比较:

6

6

○5

6

动手操作:先涂色表示这

两个分数,再比较它们的

大小,说说为什么。

2.师生共同总结同分母分

数比较大小的方法。

1.(1)学生汇报:

2

5

3

5

2

5

是把一张纸平均分成5份,表示这样

的2份;

3

5

是把一张纸平均分成5份,表示这样

的3份。都平均分成了5份,这样的2

份显然比3份少,所以

2

5

3

5

(2)动手操作:先涂色表示这两个分

数,再比较它们的大小。

学生汇报:

6

6

5

6

都是把一个圆平均分成6份,

6

6

表示这样的6份,即全部,而

5

6

表示这

样的5份,即一部分,所以

6

6

5

6

2.看图写分数,比大小。

3.在○里填上“>”“<”

或“=”。

答案:<>>=

2.同分母分数,分子越大,分数越大;

分子越小,分数越小。

巩固练习。(8分

钟)完成教材第93页“做一

做”。

独立完成,集体订正。

教学过程中老师的

疑问:

课堂小结,拓展延伸。(4分钟)1.同学们通过今天的学习

一定有很多收获吧!

2.布置作业。

1.交流本节课的收获。

2.独立完成作业。

教学板书

教学反思

本节课的教学并没有采取灌输式的讲解,而是让学生自己去观察,去比较,给学生提供了充分展示自我、实现自我的空间,学生的积极性很高,课堂氛围也很浓厚。在看图比较分数大小之后,归纳出同分母分数大小比较的方法,再运用这种方法比较其他分数的大小,实现了从知识理解到知识运用的教学目标。

教师点评和总结:

练习课

学习目标

1.进一步巩固对分数的初步认识,理解含义,并能使学生正确、熟练地计算简单的分数加减

法。

2.提高学生分析问题和解决问题的能力。

学习重点能应用分数表达自己的见解,提高分析问题、解决问题的能力。

学习准备教具准备:PPT课件

教学环节导案达标检测

检测知识

点1:

分数含义

的理解。

课件出示教材第94

页“练习二十”第1

题。

下面的分数能表示各

图中的涂色部分吗?

能表示的画“√”,不

能表示的画“×”。

分析:把物体平均分成几份,其

中的1份就表示几分之一。第1

幅图平均分成2份,取了其中的1

份,是12,正确;第3幅图平均分成

4份,取了其中的1份,是14,

正确;第2、4幅图不是平均分,

不能用分数表示。

答案:

1

2

(√)

1

3

(×)

1

4

(√)

1

5

(×)

1.下面各图中,()的阴影部分

占整个图形的

1

4

A. B.

C.

答案:C

知识点2:

分数的大

小比较。

课件出示教材第95

页“练习二十”第6

题。

比一比。

分析:分母相同的分数比较大小:

分子越大,分数越大。分子都是1

的分数比较大小:分母越大,分

数越小。

2.先写出分数,再比较大小。

(1)

(2)

知识点3: 扩展创新。

阴影部分占整个图形的几分之一?

分析:不能明显看出占整个图形的几分之一,可以画虚线平均分

成几份,阴影部分就是整个图形的几分之一。

答案:

阴影部分占整个图形的

1

7

。 3.如下图,阴影部分占大长方形的( ),占大正方形的( )。

巩固练习 完成教材第94~95页“练习二十”第4、5题。

教学过程中老师的疑问:

课堂小结,布置作业。

1.总结学生的掌握

情况。

2.完成教材第94~95页“练习二十”第2、3、7、8题。

交流学习心得与体会。

教学反思 本节课巩固对分数的认识和大小比较,以学生练习为主,老师指导为辅。毕竟分数是一个比较抽象的知识,学生接受起来有一定难度,所以课堂上难免有学生犯各种各样的错误。

针对这些不足之处,引导学生互相交流探讨解决,学生不能解决的疑惑,老师再给予指导,

使学生总体上掌握了这部分知识。

教师点评和总结:

第1课时分数的简单计算(1)

分钟)一共吃了这个苹果的几

分之几?你会解答吗?

3.导入新课

这就是我们今天要学的

新内容——分数的简单

计算(1)。2. 3.学生明确本节课的学习

任务。

有()个

1

3

(2)7个

1

10

是(),4个

1

7

()。

(3)

5

7

+

2

7

就是()个

1

7

再加上

()个

1

7

,结果等于7个

1

7

也就是()。

答案:(1)4 2(2)

7

10

4

7

(3)

5 2 1

2.把一张长方形纸连续对折3次,

展开后每份是这张纸的

()

()

答案:

1

8

3.算一算。

探究新知。(25分钟)(一)探究同分母分数加

法。

课件出示教材第96页例1

的情境图。

1.仔细看看,图上的人在

干什么?你了解到哪些

数学信息?

2.根据这些信息,你能提

出哪些数学问题?怎么

列算式?

老师板书:

我会列式:

1

8

+

2

8

3.学生拿出学具动手摆一

摆。

4.讨论思考:

1

8

+

2

8

得多少呢?为什

么?

老师板书:

1

8

+

2

8

=

3

8

(二)自学同分母分数减

(一)1.学生1:他们在吃西

瓜,哥哥把一个西瓜平均切成

了8块。

学生2:哥哥吃了2块,是这

个西瓜的

2

8

学生3:弟弟吃了1块,是这

个西瓜的

1

8

2.学生回答。

我提的问题是:哥哥和弟弟一

共吃了这个西瓜的几分之

几?

3.拿出小正方形摆一摆。

4.学生汇报:

2

8

是2个

1

8

1

8

是1个

1

8

2

8

+

1

8

也就是2个

1

8

加上1个

1

8

,一共是3个

1

8

,也就是

3

8

(二)1.学生按照要求打开书

教学板书

教学反思

在前面的学习中,学生已经认识了几分之一和几分之几的分数并能比较分数的大小,本节课学习分数的简单加减法。通过直观推理让学生充分感知,然后经过比较归纳,最后概括算理,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。本节课注重动手操作,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己进行动脑、动手、动口、动眼等多种形式的练习,使学生乐学善学,把数学课上得有趣、有效、有益。最后通过交流总结,学生得出同分母分数相加减,分母不变,分子相加减的结论。

教师点评和总结:

第2课时分数的简单计算(2)

课题分数的简单计算(2)课型新授课

设计说明

学习分数的简单计算,理解算理是关键,为了避免学生把分数加、减法与整数加、减法相混淆,本节课教学设计突出了以下几点:

1.关注情境的创设,充分调动学生的学习积极性。

把教学内容融入生活情境中,使学生兴致勃勃地参与到学习活动中,在不知不觉中掌握新知。

2.关注对算理的理解,使学生轻松掌握算法。

本节教学设计创设了一系列的问题,让学生在回答问题的过程中加深对分数算理的理解,从而较为轻松地掌握分数加、减法的计算,为将来的正确计算打下坚实的基础。

学习目标1.使学生在理解算理的基础上能正确计算1减几分之几的分数减法。

2.培养学生良好的思想品质,提高学生的思维能力。

3.培养学生联系生活实际、主动运用数学的意识。

学习重点学会1减几分之几的计算方法,能正确计算。

学习准备教具准备:PPT课件。学具准备:信息卡片。

课时安排1课时

教学环节导案学案达标检测

复习旧知识,引入新课。(6分钟)1.先来回顾上节课的内容。

课件出示习题:

2.有谁会计算1-

1

3

等于几呢?

3.导入课题。

今天我们就来学习1减几分之几

的计算方法。

(板书课题:分数的简单计算(2))

1.学生认真答题。

2.大家讨论自由举手发言。

3.明确本节课的学习任务。

1.填空。

探究1减几分之几的计算方法。(25分钟)课件出示教材第97页例3的情境

图。

1.引导学生观看课件的演示过程。

并说说演示过程的意思。

2.讨论怎么计算:

1-

1

4

=?

3.分组操作实践。

4.汇报交流:

老师板书:1-

1

4

=

4

4

-

1

4

=

3

4

5.组织学生交流怎么把这道题转

化成同分母分数的减法,交流后

汇报。

老师小结:把1转化成与减数分

母相同的分数,再按照同分母分

数减法的计算方法计算。

1.认真观察。说一说:把一

个圆平均分成4份,拿走1

份,还剩几份?

2.交流得出:1-

1

4

=

3

4

3.操作:拿出一张正方形

纸,把一张正方形纸平均

折成4份,撕掉1份,还

剩3份。

4.学生交流结果:

学生1:可以看作是把一个

圆平均分成4份,1表示这

样的4份。

学生2:1可以看作4个

1

4

学生3:4个

1

4

减去1个

1

4

3个

1

4

,就是

3

4

5.组织学生交流后得出:把

被减数1转化成分母是4

的分数

4

4

2.填一填。

(1)小乐吃了一块月饼的

1

4

,这块月饼还剩下()。

(2)一袋盐,用掉了它的

1

3

还剩下它的()。

答案:(1)

3

4

(2)

2

3

3.看图写算式。

(1)

()-()=()

(2)

()+()=()

4.一张餐桌长1米,宽710

米,长比宽多多少米?

巩固练习。(5分

钟)

完成教材第97页“做一做”

第2、3题。

独立完成,并说说计

算方法。

教学过程中老师的疑

问:

四 1.通过今天的学习,你有什么 1.说说自己本节课的

华师大版八年级(上)数学导学案

第12章 数的开方 导学方案 第一课时 一、自主学习: 【导学提纲】 1.我们已学过哪些数的运算? 2.加法与减法这两种运算之间有什么关系?乘法与除法之间呢? 3.什么是平方根?一个数的平方根如何表示呢?什么是算术平方根?什么叫开平方? 4、一个数的平方根有什么特点? 5、要剪出一块面积为25 cm 2 的正方形纸片,纸片的边长应是多少? 【预习填空】 ★1、如果一个数的 等于a ,那么这个数叫做a 的 。 ★2、一个正数必定有 ,它们互为 ,其中正数a 的 叫做a 的算术平方根;0的平方根 (有且只有 个);负数 ; 3、一个正数a 的平方根记作 (符号表示),其中 是算术平方根, 称为被开方数; 4、求一个 ,叫做开平方,将一个正数开平方,关键是找出它的一个 ; 5、练习: (1)∵( )2 =25 ∴正数25的平方根是 ,可表示为± =±5; (2)∵( )2=0.09 ∴正数0.09的平方根是 ,可表示为 = ; (3)∵( )2=16/25 ∴16/25的平方根是 ,可表示为 = ; (4)∵( )2=0 ∴0的平方根是 ,可表示为 = ; (5) ∵负数 ,∴ -4 。 6、已知一个数的平方等于10000,那么这个数是 . 【学贵有疑】 组长或学科导生检查情况(等级): 组长或导生(签字): 二 ·展示提升 1、填空(1) 144的平方根是 ; (2) 0的平方根是 ; (3) 25 4 的平方根是 ; (4) -4有没有平方根?为什么? 2、求下列各数的算术平方根。 (1)121 (2)2 14 (3)64 (4)102 ;(5)0;

3、求下列各数的平方根:(1)81;(2)0.09;(3)1600;(4)49/25;(5)0.0256; 4、下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由. (1)-64; (2)0; (3)(-4)2 三、合作交流:如果我们知道了两个平方根中的一个,那么是否可以得到它的另一个平方根呢?为什么? 知识回顾与小结 1、平方根的性质:一个正数有个平方根,它们互为;0有一个平方根,它是;负数没有. 2.一个非负数a的平方根的表示法:当a>0时,a的正的平方根用符号“2a”表示,a的负的平方根用符号“-2a”表示,这两个平方根合起来可以记作“2a ”;其中a叫做被开方数,2叫做根指数;根指数为2时,一般略去不写. 3.求一个数的平方根,可以通过平方运算来解决 四、达标检测: 1、、下列说法正确的个数是() ①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根. A.1 B.2 C.3 D.4 2.求下列各数的平方根.0,1 9 ,17, 25 64 ,(-2)2,2 1 4 ,-16. 3). A.±4 B.4 C.±2 D.2 4.求下列各数的算术平方根. (1)0.0025;(2)(-6)2;(3)0;(4)(-2)×(-8). 5.下列说法中错误的是() A是5的平方根 B.-16是256的平方根 C.-15是(-15)2的算术平方根 D.±2 7 是 4 49 的平方根 五、课外作业: 六、学后反思:你都学到了些什么?有哪些地方还是让你感到疑惑的?…… 数的开方导学方案第二课时

2019年秋新版人教版八年级上数学全册导学案

第一课时三角形的边 一、新课导入 1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗? 2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗? 二、学习目标 1、三角形的三边关系。 2、用三边关系判断三条线段能否组成三角形。 三、研读课本 认真阅读课本的内容,完成以下练习。 (一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。 研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟) 要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。一边阅读一边完成检测一。 研读二、认真阅读课本( P64“探究”,时间:3分钟) 要求:思考“探究”中的问题,理解三角形两边的和大于第三边; 游戏:用棍子摆三角形。 检测练习二、6、在三角形ABC中, AB+BC AC AC+BC AB AB+AC BC 7、假设一只小虫从点B出发,沿三角形的边爬到点C, 有路线。路线最近,根据是:,于是有: (得出的结论)。 8、下列下列长度的三条线段能否构成三角形,为什么? (1)3、4、8 (2)5、6、11 (3)5、6、10 研读三、认真阅读课本认真看课本( P64例题,时间:5分钟) 要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。 (2)、对这例题的解法你还有哪些不理解的? (3)、一边阅读例题一边完成检测练习三。 检测练习三、 9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长; ②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!) 解: (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么?(二)你认为应该注意什么问题? 五、强化训练 【A】组 1、下列说法正确的是 (1)等边三角形是等腰三角形 (2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形 (3)三角形的两边之差大于第三边 (4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形

人教版八年级数学下册导学案全册

第十七章反比例函数 课题 17.1.1 反比例函数的意义课时:一课时【学习目标】 1.理解并掌握反比例函数的概念。 2.会判断一个给定函数是否为反比例函数。 3.会根据已知条件用待定系数法求反比例函数的解析式。 【重点难点】 重点:理解反比例函数的意义,确定反比例函数的表达式。 难点:反比例函数的意义。

【导学指导】 复习旧知: 1.什么是常量?什么是变量?函数是如何定义的? 2.我们学过哪几种函数?每一种函数形式怎样? 3.写出下列问题中的函数关系式并说明是什么函数.

(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。 学习新知:阅读教材P39-P40相关容,思考,讨论,合作交流完成下列问题。 1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?

2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式? 3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。 【课堂练习】 1.下列等式中y是x的反比例函数的是() ①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x ⑧y=-3/2x 2.已知y是x的反比例函数,当x=3时,y=7, (1)写出y与x的函数关系式;(2)当x=7时,y等于多少?

【要点归纳】 通过今天的学习,你有哪些收获?与同伴交流一下。

八年级数学上册全册导学案+分层练习合集(含答案)

11.1 与三角形有关线段 11.1.1 三角形边 1.通过具体实例,认识三角形概念及其基本要素. 2.学会三角形表示及根据“是否有边相等”对三角形进行分类. 3.掌握三角形三边关系. 阅读教材P2~4,完成预习内容. 知识探究 (一)三角形 1.定义:由不在____________三条线段首尾________所组成图形叫做三角形. 2.有关概念 如图,线段AB,BC,CA是三角形________,点A,B,C是三角形________,∠A,∠B,∠C是相邻两边组成角,叫做三角形________,简称三角形角. 3.表示方法:顶点是A,B,C三角形,记作“________”,读作“____________”. (1)三角形表示方法中“△”代表“三角形”,后边字母为三角形三个顶点,字母顺序可以自由安排,即△ABC,△ACB,△BAC,△BCA,△CAB,△CBA为同一个三角形. (二)三角形分类 1.等边三角形:三条边都________三角形.

2.等腰三角形:有两边________三角形,其中相等两条边叫做________,另一边叫做________,两腰夹角叫做________,腰和底边夹角叫做________. 3.不等边三角形:三条边都________三角形. 4.三角形按边相等关系分类 三角形????? 三角形 三角形????? 三角形 三角形 等边三角形是特殊等腰三角形,即底边和腰相等等腰三 角形 . (三)三角形三边关系 1.三角形任意两边之和________第三边. 2.推论:由于a +b>c ,根据不等式性质,得c -b

八年级上册数学导学案

c a b A B C §11.1.1三角形的边 主备:崔建国集备:八年级数学组审核:叶立新时间:2014年6月 课时:1课时课型:新授课授课时间:年月日授课人: 【学习目标】 1.认识三角形,能用符号语言表示三角形,并把三角形分类. 2.知道三角形三边不等的关系. 3.懂得判断三条线段能否构成一个三角形的方法并能用于解决有关的问题。【重点】知道三角形三边不等关系. 【难点】判断三条线段能否构成一个三角形的方法. 【学法】自主、合作、探究 【学习准备】三角板、 【学习过程】 【预习案】 1、阅读教科书P2—P3内容,并完成下列问题: (1)三角形概念:叫做三角形。 组成三角形的叫做三角形的边,所组成的角叫做三角形的内角,简称角,相邻两边的是三角形的顶点。 如图,线段、______、______是三角形的边; 三角形的顶点是______、、、 三角形的角有、、、 图中以A、B、C为顶点的三角形记作__________。 (2)三角形按角分类可分为___________、___________、______________。 (3)等腰三角形概念:的三角形叫做等腰三角形。 等边三角形概念:的三角形叫做等边三角形。 注意:等边三角形是特殊的_______三角形 如图,等腰三角形ABC中,AB=AC,腰是______,底是______, 顶角指_____ __,底角指。 (4)三角形按边分类可分为 三角形 A B C 白山市第二十中学八年级数学(上)导学案班级:姓名:

【探究案】 探究:1、假设一只小虫从点B出发,沿三角形的边爬到点C, 有路线。路线最近,根据是:, 于是有:(得出的结论)。 2、请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式大小: 边测量长度 AB AC BC AB+BC_____AC AB + AC _____ BC AC +BC _____ AB 结论: 3、三角形三边关系的应用。 阅读教科书例题,仿照例题解法完成下面这个问题: 一个等腰三角形的周长是28cm, (1)已知腰长是底边长的3倍,求各边长。 (2)已知其中一边长为6cm,求其他两边长。 【课堂小结】 ①本节课你有哪些收获? ②你还有什么问题或想法需要和大家交流? 【作业】1、必做题:教科书 8页1、2、6、7 2、选做题: 1、若△ABC的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的 最大边长是___________. 2、已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。

最新人教版八年级下册数学教案导学案及答案全册1名师优秀教案

人教版八年级下册数学教案导学案及答案全册1 2013.3人教版八年级下册数学教案导学案及答案全册 第十六章分式 16(1分式 16.1.1从分数到分式 一、教学目标 ( 了解分式、有理式的概念. 1 2(理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1(重点:理解分式有意义的条件,分式的值为零的条件. 2(难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入 10200sv1(让学生填写P4[思考],学生自己依次填出:,,,. 7a33s 2(学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100 千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少, 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x千米/时. 10060轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以

20,v20,v10060=. 20,v20,v sv100603. 以上的式子,,,,有什么共同点,它们与分数有什么相同点和不同点, as20,v20,v 五、例题讲解 P5例1. 当x为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围. [提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗,这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当m为何值时,分式的值为0, 2mm,1m,2(1) (2) (3) m, 1m,1m,3 12[分析] 分式的值为0时,必须同时满足两个条件:?分母不能为零;?分子为零,这样求出的m的(( 解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习 1(判断下列各式哪些是整式,哪些是分式, m,4719,y8y,39x+4, , , , , 2xx,9205y 2. 当x取何值时,下列分式有意义, x,52x,53 (1) (2) (3) 23,2xx,4x,2 3. 当x为何值时,分式的值为0, 2x,1x,77x2(1) (2) (3) x,x5x21,3x 七、课后练习 奈曼四中八年级数学备课教案资料 1

八年级数学上册导学案_(全册有答案)

八年级数学上册导学案 第一章轴对称与轴对称图形 1.1我们身边的轴对称图形 教学目标: 1、观察、感受生活中的轴对称图形,认识轴对称图形。 2、能判断一个图形是否是轴对称图形。 3、理解两个图形关于某条直线成轴对称的意义。 4、正确区分轴对称图形与两个图形关于某条直线成轴对称。 5、理解并能应用轴对称的有关性质。 教学重点: 1、能判断一个图形是否是轴对称图形。 2、轴对称的有关性质。 难点: 1、判断一个图形是否是轴对称图形。 2、正确区分轴对称图形与两个图形关于某条直线成轴对称。 教学过程: 一、情境导入 教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。 学生欣赏,思考:这些图形有什么特点? 二、探究新知 1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在 镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗? 学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。 2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯 形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗? 学生活动:观察、小结特点。 3、教师给出轴对称图形的定义。 问题: ⑴“完全重合”是什么意思? ⑵这条直线可能不经过这个图形本身吗? ⑶圆的直径是圆的对称轴吗? 学生分组思考、讨论、交流,选代表发言,教师点评。 ⑴指形状相同,大小相等。 ⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。 ⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。 4、猜想归纳: 正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论? 学生思考、讨论、交流。 5、你还能举出生活中轴对称图形的例子吗? 6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左 边图形沿虚线对折后与右边的图形有着怎样的关系? 7、教师给出两个图形关于某条直线成轴对称的定义。 8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。 教师引导小结。 三、巩固反馈 1、26个英文大写字母中,是轴对称图形的是________________________。 2、中华民族是一个有着五千年文明历史的古老民族,在她灿烂的文化中,汉字是其中一朵瑰丽的奇葩,请写出几个是轴对称的汉字-______________________。 3、关于奥运会五环图案有下列各说法:①它不是轴对称图形;②它是轴对称图形,只有一条对称轴③它是轴对称图形,有无数条对称轴,其中正确的是______。

新人教版八年级下册数学导学案(全册)

新人教版八年级下册数学导学案(全册) 第十六章 分式 16.1分式 16.1.1从分数到分式 一、 教学目标 1. 了解分式、有理式的概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入 1.让学生填写P4[思考],学生自己依次填出:7 10,a s ,33 200,s v . 2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v +20100小时,逆流航行60千米所用时间v -2060小时, 所以v +20100=v -2060. 3. 以上的式子v +20100,v -2060,a s ,s v ,有什么共同点?它们与分数有什么相同点和不 同点? 五、例题讲解 P5例1. 当x 为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围. [提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时.. 满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 1-m m 3 2+-m m 112 +-m m

修订版最新人教版八年级上册数学导学案全集

11.1.1三角形的边 一、学习目标 1.认识三角形,能用符号语言表示三角形,并把三角形分类. 2.知道三角形三边不等的关系. 3.懂得判断三条线段能否构成一个三角形的方法,?并能用于解决有关的问题 二、重点:知道三角形三边不等关系. 难点:判断三条线段能否构成一个三角形的方法. 三、合作学习 (一)精讲 知识点一:三角形概念及分类 1、学生自学教科书内容,并完成下列问题: (1)三角形概念:由不在同一直线上的三条线段顺次首尾连接所组成的图形 叫做三角形。如图,线段____、______、______ 是三角形的边; 点A 、B 、C 是三角形的______; _____、 ______、_______ 是相邻两边组成的角,叫做三角形的内角,简称三角形 的角。图中三角形记作__________。 (2)三角形按角分类可分为___________、___________、______________。 (3)三角形按边分类可分为 _____________ (二)精练一: 1、如图.下列图形中是三角形的___________? 2、图3中有几个三角形?用符号表示这些三角形. 精讲 知识点二:知道三角形三边的不等关系,并判断三条线段 能否构成三角形 1、探究:请同学们画一个△ABC ,分别量出AB ,BC ,AC 的长,并比较下列各式的大小: AB+BC_____AC AB + AC _____ BC AC +BC _____ AB 结论:三角形任意两边的和大于第三边,任意两边的差小于第三边.......................... 精练二: 1、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,10 2、有四根木条,长度分别是12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,能组成三角形的个数是_______个。 3、如果三角形的两边长分别是3和5,那么第三边长可能是( ) A 、1 B 、9 C 、3 D 、10 4、阅读教科书例题,仿照例题解法完成下面这个问题: 5、一个三角形有两条边相等,周长为20cm ,三角形的一边长6cm ,求其他两边长。 6、一个等腰三角形的两边长分别是2和5,则它的周长是( ) A 、7 B 、9 C 、12 D 、9或12 7、若三角形的周长是60cm ,且三条边的比为3:4:5,则三边长分别为 ___________. 8、(选做)若△ABC 的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最大边长是___________. 9、已知线段3cm,5cm,xcm,x 为偶数,以3,5,x 为边能 组成______个三角形。 学习反思: A B C

人教版八年级数学下册导学案(全册)

第十六章 二次根式 第1课时 二次根式的定义 学习目标: 了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字 母的取值范围。 理解二次根式的非负性 学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导: 看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。(2)被开方数必须是 数。 判断下列格式哪些是二次根式? ⑴ 3.0 ⑵ 3- ⑶ 2 )2 1(- ⑷ ()223≥-a a ⑸ 12+a ⑹ 3+a ⑺ a ⑻()02?-x x 学: 代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义? 2-x ⑵ x -21 ⑶13-+ -x x ⑷2x ⑸3x (6) ()01-a (1)常见的非负数有:a a a ,,2 (2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。 巩固练习: 已知(),03122 =-++b a 求a,b 的值 2.已知053232=--+--y x y x 则y x 8-的值为 练: 1.下列各式中:①52+- x ②2009 ③33 ④π ⑤22a - ⑥ 3+-x 其中是二次根式的有 。 2.若1 21 3-+-x x 有意义,则x 的取值范围是 。 3.已知122+-+-= x x y ,则=y x 4.函数x y +=2中,自变量x 的取值范围是() (A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子ab a 1+ -有意义,则P (a,b )在第( )象限 (A )一 (B)二 (C)三 (D)四 6.若,011=-++b a 则=+20112011 b a 7.方程084=--+-m y x x ,当y>0时,m 的取值范围是 8.已知01442=-++ +-y x y y ,求xy 的值

最新人教版八年级数学下册第十六章 二次根式导学案(全章)

第十六章 二次根式导学案 二次根式(1) 一、学习目标 1、了解二次根式的概念,能判断一个式子是不是二次根式。 2、掌握二次根式有意义的条件。 3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a 二、学习重点、难点 重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。 三、学习过程 (一)复习回顾: (1)已知a x =2,那么a 是x 的______;x 是a 的________, 记为______,a 一定是_______数。 (2)4的算术平方根为2 ,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。 (二)自主学习 (1)16的平方根是 ; (2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满 足关系式25t h =。如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。 思考:16, 5 h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________ 4

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么? 3,16-,34)0(3 ≥a a ,12+x 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。所以,在二次根式a 中,字母a 必须满足 , a 才有意义。 3、根据算术平方根意义计算 : (1) 2)4( (2) (3)2)5.0( (4)2)3 1( 根据计算结果,你能得出结论: ,其中0≥a , 4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成 一个数的平方的形式。 如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2. 练习:(1)把下列非负数写成一个数的平方的形式: 6 0.35 (2)在实数范围内因式分解 72-x 4a 2-11 (三)合作探究 例:当x 是怎样的实数时,2-x 在实数范围内有意义? 解:由02≥-x ,得 2≥x 当2≥x 时,2-x 在实数范围内有意义。 练习:1、x 取何值时,下列各二次根式有意义? ________ )(2=a 2)3(

新人教版八年级数学上册导学案全册

数学导学案八年级备课组

课题11.1全等三角形的判定(一) (1) 一、 学习目标 1、掌握全等形、全等三角形及相关概念和全等三角形性质。 2、理解“平移、翻折、旋转”前后的图形全等。 3、熟练 确定全等三角形的对应元素。 二、 自学指导 自学课本P2-3页,完成下列要求: 1、理解并背诵全等形及全等三角形的定义。 2、注意全等中对应点位置的书写。 3、理解并记忆全等三角形的性质。 4、自学后完成展示的容,20分钟后,进行展示。 三、展示容: 1、________相同的图形放在一起能够____。这样的两个图形叫做____。 2、能够_____的两个三角形叫做全等三角形。 3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。 4、______叫做对应顶点。_______叫做对应边。_____叫做对应角。 5、全等三角形的对应边__。____相等。 6、课本P4练习1、2 7、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。 8 7

8、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC. 10 9 10、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD 和∠BCE相等吗?为什么? 课后反思: 1.2三角形全等的判定(2)

新人教版八年级下册数学教案《导学案》复习课程

一、选择题 1.下列式子中,是二次根式的是() A. B C D.x 2.下列式子中,不是二次根式的是() A B C D. 1 x 3.已知一个正方形的面积是5,那么它的边长是() A.5 B C. 1 5 D.以上皆不对 二、填空题 1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根. 三、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少? 2.当x 是多少时, x +x2在实数范围内有意义? 3 . 4. x有()个. A.0 B.1 C.2 D.无数 5.已知a、b ,求a、b的值. 第一课时作业设计答案: 一、1.A 2.D 3.B 二、1 a≥0)2 3.没有 三、1.设底面边长为x,则0.2x2=1,解答: 2.依题意得: 230 x x +≥ ? ? ≠ ? , 3 2 x x ? ≥- ? ? ?≠ ? ∴当x>- 3 2 且x≠0 时, x +x2在实数范围内没有意义.3. 1 3 4.B

5.a=5,b=-4 第二课时作业设计 一、选择题 1是( ). A .4 B .3 C .2 D .1 2.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题 1.()2=________. 2_______数. 三、综合提高题 1.计算 (12 (2)-2 (3)( 12 )2 (4)( 2 (5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) 1 6 (4)x (x ≥0) 3=0,求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5 第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数 三、1.(12=9 (2)-2=-3 (3)( 12 )2= 14×6=3 2 (4)(2=9×2 3 =6 (5)-6 2.(1)5=)2 (2)3.4=2 (3) 1 6 =2 (4)x=2(x ≥0)

新人教版八年级数学上册导学案(全-有答案)

第一章轴对称与轴对称图形 1.1我们身边的轴对称图形 教学目标: 1、观察、感受生活中的轴对称图形,认识轴对称图形。 2、能判断一个图形是否是轴对称图形。 3、理解两个图形关于某条直线成轴对称的意义。 4、正确区分轴对称图形与两个图形关于某条直线成轴对称。 5、理解并能应用轴对称的有关性质。 教学重点: 1、能判断一个图形是否是轴对称图形。 2、轴对称的有关性质。 难点: 1、判断一个图形是否是轴对称图形。 2、正确区分轴对称图形与两个图形关于某条直线成轴对称。 教学过程: 一、情境导入 教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。 学生欣赏,思考:这些图形有什么特点? 二、探究新知 1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自 己的手完全重合在一起;这些都是对称,你还能举出例子吗? 学生分组思考、讨论、交流,选代表发言。 教师巡回指导、点评。 2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底 的中点的连线对折,直线两旁的部分能完全重合吗? 学生活动:观察、小结特点。 3、教师给出轴对称图形的定义。 问题: ⑴“完全重合”是什么意思? ⑵这条直线可能不经过这个图形本身吗? ⑶圆的直径是圆的对称轴吗? 学生分组思考、讨论、交流,选代表发言,教师点评。 ⑴指形状相同,大小相等。 ⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。 ⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。 4、猜想归纳: 正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论? 学生思考、讨论、交流。 5、你还能举出生活中轴对称图形的例子吗? 6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与 右边的图形有着怎样的关系? 7、教师给出两个图形关于某条直线成轴对称的定义。

新人教版八年级数学上导学案(全册)

第十一章三角形 11.1与三角形有关的线段 11.1.1 三角形的边 学习目标: 1、明确三角形的相关概念;能正确对三角形进行分类; 2、能利用三角形三边关系进行有关计算。 新课导学: 三角形的有关概念——阅读课本第1至3页,回答以下问题: (1)三角形概念:由不在同一直线上的条线段连接所组成的图形。 (2)三角形的表示法(如图1)三角形ABC可表示为:; (3)ΔABC的顶点分别为A、、; (3)ΔABC的内角分别为∠ABC,,; (4)ΔABC的三条边分别为AB,,;或,、; (5)顶点A的对边是,顶点B的对边分别是,顶点C的对边分别是。 三角形的分类: (1)下图中,每个三角形的内角各有什么特点? (2)下图中,每个三角形的三边各有什么特点? (3)结合以上图形你认为三角形可以如何分类?试一试 ①按角分类: ②按边分类: (4)在等腰三角形中,叫做腰,另外一边叫做,两

第1题 腰的夹角叫做 , 叫做底角。 (5)等边三角形是特殊的等腰三角形,即底边和腰 的等腰三角形。 3、三角形的三边关系 问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近?请将你的设计方案填写在下表中: (3)阅读课本第3页,填写:三角形两边的和 (4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ① BC + AB AC (填上“> ”或“ < ” ) ② AB + AC BC (填上“> ”或“ < ” ) ③ 4、例题:用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少? 解:设底边长为xcm ,则腰长是 cm 因为三角形的周长为 cm 所以: 所以x= cm 答:三角形的三边分别是 、 、 课堂练习: A 组 1.①图中有 个三角形,分别为 ②△ABC 的三个顶点是 、 、 ; 三个内角是 、 、 ; 三条边是 、 、 ; 2、如图中有 个三角形,用符号表示 3.判断下列线段能否组成三角形: B 地 A 地

人教版数学八年级上册学案(全册)

11.1 与三角形有关的线段 11.1.1 三角形的边 学习目标: 1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力; 2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形 三边之间的不等关系. 学习重点:三角形三边之间的不等关系. 学习难点:应用三角形的三边之间的不等关系判断三条线段能否组成三角形 教学过程: 一、学前准备 1.三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗? 2.能从右图中找出4个不同的三角形吗? 二、探究新知: 1、你所知道的三角形的定义是什么? 问题:根据你的理解,下列的图形是三角形吗? 三角形的定义: 2、三角形的有关概念: ①边: 。 ②角: 。 ③顶点: 。 问题:右图中三角形的三个顶点分别是 , 三条边分别是 , 三个内角分别是 。 3、三角形的表示: 如右图,以A 、B 、C 为顶点的三角形记作 ,读作 。 4、 边都相等的三角形叫做等边三角形;有 条边相等的三角形叫做等腰三角形。 A B C D E F G A B C a b c A B D C E

问题:那么等边三角形是否属于等腰三角形呢? 三角形的分类: ①按三个内角的大小分类:、和。 ②按边进行分类。 5、自主探究 (1)任意画一个△ABC,从点B出发,沿边到点C,有几条路线? (2)各条路线的长有什么关系?说明理由. 结论:三角形任意两边之和;三角形任意两边之差。 6.例题讲解 例:有一条长为18cm的细绳围成一个等腰三角形 (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长为4cm的等腰三角形吗?为什么? 三、练习内容 1、课本练习

新人教版数学八年级下册导学案全册

二次根式知识点归纳和题型归类 一、知识框图 二、知识要点梳理 知识点一、二次根式的主要性质: 1.; 2.; 3.; 4.积的算术平方根的性质:; 5. 商的算术平方根的性质:. 6.若,则. 知识点二、二次根式的运算 1.二次根式的乘除运算 (1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;

(3) 乘法公式的推 广 : 2.二次根式的加减运算 先化简,再运算, 3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里; (2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。) 1.下列各式中一定是二次根式的是( )。 A 、; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。 (1) (2) 1 21 +-x (3) (4) (5)121 3-+ -x x (6) . (7 )若 ,则x 的取值范围是 (8)若1 313++=++x x x x ,则x 的取值范围 是 。 3.若13-m 有意义,则m 能取的最小整数值是 ;若是一个正整数,则正整数m 的最小值是________. 4.当x 为何整数时, A B C D 有最小整数值,这个最小整数值为 。 5. 若2004a a -=,则2 2004a -=_____________;若433+-+-=x x y ,则=+y x 6.设m 、n 满足3 2 9922-+-+-=m m m n ,则mn = 。 7.若m =m 的值. 8. 若三角形的三边a 、b 、c 满足3442 -++-b a a =0,则第三边c 的取值范围是 9.已知ABC △的三边a b c ,, 满足2|2|1022a b a ++=+,则ABC △为( ) 10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<)0()0(0) (a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解 题

最新人教版八年级数学下册导学案

八年级数学下册导学案 制作人:数学组

目录 $16.1二次根式(一)导学案 (4) $16.1二次根式(二)导学案 (8) $16.2二次根式的乘除(一)导学案 (12) $16.2二次根式的乘除(二)导学案 (16) $16.2二次根式的乘除(三)导学案 (20) $16.3二次根式的加减(一)导学案 (23) $16.3二次根式的加减(二)导学案 (26) $17.1勾股定理(一)导学案 (29) $17.1勾股定理(二)导学案 (35) $17.1勾股定理(三)导学案 (39) $17.2勾股定理的逆定理(一)导学案 (43) $17.2勾股定理的逆定理(二)导学案 (47) $18.1.1平行四边形的性质(一)导学案 (50) $18.1.1平行四边形的性质(二)导学案 (55) $18.1.2平行四边形的判定(一)导学案 (61) $18.1.2平行四边形的判定(二)导学案 (66) $18.2.1矩形(一)导学案 (70) $18.2.1矩形(二)导学案 (75) $18.2.2菱形(一)导学案 (80) $18.2.2菱形(二)导学案 (84) $18.2.3正方形导学案 (87) $19.1.1变量与函数(一)导学案 (91) $19.1.1变量与函数(二)导学案 (95) $19.1.2函数的图象(一)导学案 (100) $19.1.2函数的图象(二)导学案 (106) $19.1.2函数的图象(三)导学案 (110) $19.2.1正比例函数导学案 (114) $19.2.2一次函数(一)导学案 (119) $19.2.2一次函数(二)导学案 (124) $19.2.2一次函数(三)导学案 (128) $19.2.2一次函数(四)导学案 (132) $19.2.3一次函数与一元一次方程导学案 (135) $19.2.3一次函数与一元一次不等式导学案 (139) $19.2.3一次函数与二元一次方程组导学案 (144) $19.3课题学习选择方案(一)导学案 (149) $19.3课题学习选择方案(二)导学案 (153) $20.1.1平均数(一)导学案 (156) $20.1.1平均数(二)导学案 (161)

新人教版八年级数学上轴对称全章导学案

13.1 .1 轴对称 一、学习目标 1、认识轴对称和轴对称图形,并能找出对称轴; 2、知道轴对称和轴对称图形的区别和联系。 3、掌握轴对称的性质; 二、自主探究合作展示 探究(一)自学课本58页,完成以下问题。 1、什么是轴对称图形?你能举几个轴对称图形的例子吗? 2、试一试:下面的图形是轴对称图形吗?如果是,画出它的对 称轴。 (1)(2)(3)(4)(5)探究(二)自学课本59页,完成以下问题。 1、什么叫做两个图形成轴对称?你能举几个生活中两个图形成轴对称的例子吗? 探究(三) 成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?

(A) (B) (C) (D) 归纳: 区别: 轴对称图形指的是_____个图形沿一条直线折叠,直线两旁的部分能够互相_________。 轴对称指的是_____个图形沿一条直线折叠,这个图形能够及另一个图形_________。 联系:把成轴对称的两个图形看成一个整体,它就是一个_______________;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线对称(简称轴对称) 练习 1、我国的文字非常讲究对称美,下面四个图案中不是轴对称图形的是( ). 2、下列图形中不是轴对称图形的有() A 1个 B 2个 C 3个 D 4个 3、以下汽车标志中,和其他三个不同的是() A B C D 4、下列图形中对称轴最多的是( )

A.圆 B.正方形 C.角 D.线段 5、写出英文26个大写字母中是轴对称图形的字母,写出三个是轴对称图形的汉字: 6、美国哈佛大学在一次数学考试中,有这样一道填空题:要求在横线上填上适当的图形.你能完成吗? 探究(四)轴对称的性质 1、如图(1),△ABC和△A′B′C′关于直线MN对称, 点A′、 B′、C′分别是点A、B、C的对称点,线段AA′、BB′、 CC′ 图(1) 及直线MN有什么关系? (1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿 MN折叠后,点A及A′重合吗? 于是有PA=,∠MPA==度 (2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗? (3)那么MN及线段AA′,BB′,CC′的连线有什么关系呢? 2、垂直平分线的定义: 经过线段并且这条线段的直线,叫做这条线段的垂直平分线. 3、轴对称的性质: 如果两个图形关于某条直线对称,那么是任何一对对应点所连

相关主题
文本预览
相关文档 最新文档