当前位置:文档之家› 模拟电路仿真软件的研究

模拟电路仿真软件的研究

模拟电路仿真软件的研究
模拟电路仿真软件的研究

1 引言

1.1 本课题研究的目的和意义

随着电子计算机技术的发展,计算机辅助设计方法已经进入电子设计的领域并广泛应用。模拟电路中的电路分析、数字电路中的逻辑模拟、电路板印制和集成电路图设计都采用计算机辅助工具来加快设计效率,提高设计成功率。而大规模集成电路的发展,使得原始设计方法无论从效率还是精度上都无法适应当前电子工业的要求,采用计算机辅助设计进行仿真已经势在必行。同时,微机以及适合于微机系统的电子设计自动化软件的发展使得计算机辅助设计技术逐渐成为提高电子线路设计的速度和质量的不可缺少的重要工具,逐渐开发出适合各个领域系统的软件。

电路的仿真技术也越来越受到人们的重视。仿真技术逐步成为电子工程领域进行电路分析与辅助设计的重要工具。应用电路仿真软件快速分析电路的性能参数,有利于设计方案的确定和设计参数的选择,从而提高设计效率。克服传统实验研发周期长的缺点,使设计者可以更直接地将精力集中在设计层面上,缩短了整体设计周期。真因如此在仿真系统方面,软件种类繁多,应用甚广。应用在模拟电路仿真方面的主要有EWB, SPICE,PROTEL,MATLAB等。它们实现了功能从简单到复杂,操作由繁杂到智能,界面也变得越来越形象化[18]。

研究电路仿真软件是为了设计电路及其系统的快速性和精确性引入的。使设计人员在设计时能简单、方便、有效地对电路精确设计测试。仿真软件的应用将大大有助于设计人员和教学的效率,已经成为科研和教学上必不可少的工具。

1.2 国内外文献综述和发展前景

模拟电路仿真软件研究是关于模拟电路仿真软件理论、实现和应用等几个方面的研究,它在理论上的研究推动了软件的应用。同时仿真软件的应用也推动了仿真软件的理论研究。而仿真软件的实现则是理论与应用之间的桥梁。

在电子技术的的发展历程中,按计算机辅助技术介入的深度和广度,出现了三种设计方案,或者说三个阶段:第一种方法是所谓传统的设计方法,涉及的电子系统一般较为简单,工作量不大,从方案的提出、验证、修改到完全定性都采用人工手段完成;第二种方法是所谓的计算机辅助设计(CAD)方法,就是由计算机完成数据处理、模拟评价、设计验证等部分工作,它是在电子产品由简单到复杂、电子

设计工作量由小到大发展过程中产生的;的三种方法是所谓的EDA方法,它是在电子产品向更复杂、更高级、向数字化、集成化、微型化和低功耗方向发展过程中逐渐产生并完成的[19]。

MATSIM和Pspice就是第三种设计方法涉及到的软件,它采用自上而下的设计方法,从系统入手,现在顶层进行功能划分、行为描述和结构设计,然后在底层进行方案设计与验证、电路设计与PCB设计等,实现从设计、仿真、测试一体化。就EDA发展现状来看,数字系统的设计基本上实现了设计自动化;模拟电路因其复杂,全自动设计还需从事EDA技术的研究人员乃至从事集成电路工艺制造设计师们继续不断地努力,使EDA仿真软件朝着更高方向发展,而这一方向表现在:

(1)超大规模集成电路的集成度和工艺水平的提高,可以在一个芯片上完成系统的集成。

(2)成本大大降低系统体积越来越小,集成度性能越来越好。

(3)高性能EDA长足发展,自动化程度及智能程度越来越高,可以进行功能强大的嵌入式系统设计。

本设计就EDA仿真软件中的MULTISIM与Pspice对模拟电路仿真展开讨论。这两种软件对模拟电路的仿真有很好的模拟效果,成为模拟电路的仿真的标准软件。

本文前半部分介绍了MULTISIM和PSpice的基本功能,后半部分是对它们在模拟电路中的仿真运用,说明两款软件的优点和缺点。

2 仿真软件的介绍

2 .1 Multisim 的介绍及应用

2.1.1 EWB与MULTISIM简介

EWB(Electrical Workbench,虚拟电子工作台)是加拿大IIT公司与20世纪80年代末推出的电子线路仿真软件。该软件可对模拟、数字、模拟/数字混合电路进行仿真,克服了实验室条件对传统电子设计工作的限制。广泛应用于电子工程设计领域。从6.0版本开始,EWB进行了全套规模改动,仿真设计模块更名为MULTISIM,Electronics Workbench Layout 模块更名为ULtibord.2001年推出了最先版本MULTISIM 2001。它包含有电子电路仿真设计模块Multisim、PCB设计软件Ultiboard、不限引擎Ultiroute及通信电路分析及设计模块CommSIM四个部分,四个部分可相互独立分别使用。

Multisim 是一个完整的设计工具系统,提供了一个庞大的元件数据库,并提供原理图输入接口、全部的数模SPICE仿真功能、VHDL/Verilog 设计接口与仿真功能、FPGA/CPLD综合、RF射频设计能力和后处理功能、还可以进行从原理图到PCB布线工具包的无缝数据传输。它提供的单一易用的图形输入接口可以满足使用者的设计要求。

Multisim 9 用软件的方法使虚拟电子与电工元器件以及电子与电工仪器和仪表,通过软件将元器件和仪器集合威尔一体。它是一个原理电路设计、电路功能测试的虚拟仿真软件[19]。它与其他软件相比较最显著的特点是:

(1)人机界面方便直观。绘制电路图所需要的元器件、测试调试仪器都可以通过鼠标单击图标直接调用,而且模拟仪器的操作界面(如开关、按钮)接近实物。(2)操作简单,简便易学。只要具备一般的电子技术基础知识,几小时内就可以掌握并熟练运用,不需要专门的培训。

(3)仿真效果非常好,与实际测试结果非常接近,并且采用了与实际规格相似的仪器和元器件。通过EWB的仿真模拟,就可以了解电路的性能,并且熟悉了仪器的正确使用方法,与实际操作类似。

(4)元器件库内容丰富,并可以根据需要随时扩展。EWB元件库内有数千种元器件供设计人员选用,其参数设置、规格模型以及理想状态都非常接近实际的元器件。

(5)不仅可以对模拟信号仿真模拟,还可以对数字信号和数模混合信号进行完整模拟,在系统中任意地集成数字及模拟器件,自动地对信号进行转换,实时测试系统功能供设计人员参考。

(6)在对电路进行仿真时还可以存储实验数据、波形、元器件清单、工作状态等,并可打印输出。

(7)提供了静态分析、动态分析、是时域分析、频域分析、噪声分析、失真分析、离散傅立叶分析、温度分析等各种分许方法。

(8)还可人为设置故障(如短路、开路、接触不良等),并进行数据分析。

2.1.2 Multisim界面及操作介绍

Multisim的主界面与Windous界面一样,同样有菜单栏、工具栏等,Multisim 界面还还含有元件栏和仪表栏,方便用户对电路图的设计与调试。

在Multisim中,当遇到电路规模很大,全屏显示不方便或者电路的某一部分在一个或多个电路多次使用时就需要建立子电路。建立子电路时,在其余电路部分相连的端子上必须连接输入/输出端符号。用鼠标左键拉出个长方形,把用来组成子电路的部分全部选定。启动Place菜单中的Replace by Subcircuit,打开对话框,在其编辑栏内输入子电路名称,单击OK即可创建子电路。

Multisim的元件库主要包含3个数据库:Multisim Database ,用来存放程序自带的元件模型;User Database,用来存放用户使用Multisim 提供的编辑器自行开发或修改的元件模型。Corporate Database ,用于多人共同开发项目建立共用的元件库,另外,还支持用户自定义元件。

2.1.3 Multisim 的基本分析方法

Multisim中提供了很多分析方法,这些方法都是利用仿真产生数据让后再去执行要做的分析。

如果在multisim中进行分析,只需启动Simulate→Analyses命令或单击工具栏中的按钮,它提供了19种分析方法:直流工作点分析、交流分析、瞬态分析、傅立叶分析、噪声分析、噪声系数分析、失真分析、直流扫描分析、灵敏度分析、参数扫描分析、温度扫描分析、极点零点分析、传输函数分析、最坏条件分析、蒙特卡洛分析、扫描宽度分析、批分析等。这些分析可以让用户

直观地了解电路性能。

2.2 OrCAD PSpice 的介绍和基本功能

2.2.1 PSpice 的发展

PSpice是有美国 MicroSim公司在Spice2 G版本的基础上升级并用于PC上的Spice版本。1998年,著名的EDA商业软件开发商OrCAD公司与MicroSim 公司合并,自此MicroSim公司的PSpice产品正式并入OrCAD公司的商业EDA系统中。不断发展的PSpice相继推出PSpice9.1 、PSpice9.2。它可以对模拟电路进行直流交流、瞬态等基本电路特性分析的基础上,实现蒙特卡洛分析、最坏情况分析以及优化设计等较为复杂的电路特性分析;不但能够对模拟电路进行仿真,而且能够对数字电路、数/模混合电路进行仿真;集成度大大提高,电路图绘制完成后可直接进行电路仿真,并随时观测与分析仿真结果[20]。

2.2.2 PSpice的仿真步骤

用PSpice进行电路仿真的基本步骤:(1)设计电路的结构,设置元器件参数。画电路图,标注个元件名称及参数值,标注个元件节点及节点编号等;建立输入文件。(2)确定分析类型。确定所要分析的对象的物理意义和基本特性。(3)执行PSpice仿真程序.(4)对已建立的电路原理图进行电路规则检查,产生数据文件,若采用图形方式显示分析结果,则可调用图形后处理程序完成。

PSpice程序仿真流程图如图2.1所示。

图2.1 PSpice程序仿真流程图

2.2.3 PSpice电路仿真系统的结构

OrCAD PSpice有六大功能模块,其中核心模块是PSpiceA/D,其余功能模块分别是:原理图绘图编辑模块(Schematics Editor)、激励源波形编辑模块(Stimulus Editor)、模型参数编辑模块(Model Editor)、模拟显示和分析模块(PSpice/Probe)及电路设计优化模块(Optimizer)。PSpice主要包括Schematics、PSpice A/D、Probe、Stmed(Stimulus Editor)、Model Editor(Parts)等五个软件包[20],这些程序之间的关系如图3.2所示。

图2.2 PSpice模块之间的关系

2.2.4 OrCAD/PSpice的原理图输入

(1)利用Capture CIS绘制电路原理图

启动Capture CIS编辑器,便可进入OrCAD Capture程序主窗口,主要工作窗口是专案管理视窗(PCB)、绘图窗口(Schematics)和信息查看窗口(Session Log)。

(2)用网单文件输入电路原理图

输入格式:输入描述语句用PSpice专用的输入电路描述语言编写的,输入文本文件由若干条输入描述语句组成,一般由标题行、注释行、元件行及结束行组成。

PSpice的输出格式包括表格方式和文件方式。表格方式以文本方式显示或打印输出结果。曲线方式有两种:a.用字符号代点的低解析度图形方式;b.高解析度图形方式。

2.2.5 节点规定及处理

在PSpice对电路进行分析前,首先要对电路的节点进行编号,对于节点,PSpice有如下规定:规定接地点(公共段)为零节点;节点标号必须为0~9999之间的整数;不能有悬乎节点,有些情况不能满足时,通常连接一个超大的电阻接地;避免节点短路,当电感线圈与电压源并联时将出现节点短路,引起错检提示并中断分析时,处理方法是:在电感支路串入一任意阻值的电阻。

3.仿真软件对几种模拟电路的仿真

这里用几个仿真案例说明两种仿真软件对不同电路的仿真特点:

3.1 Multisim与PSpice分别对放大电路的仿真

3.1.1 用Multisim作放大电路的仿真功能分析:

Muhisim软件是专业的仿真软件,该软件包含有系列的仿真功能.在其界面里可以轻松地绘制电路图,并在需要测试的位置接入所需的测量仪器,方便快捷地完成测试。如图3.1.1所示为用Muhisim软件绘制的电路图:

图3.1.1 用两种软件仿真的放大电路原理图

本图所需的测试是当在输入端输入不同频率的激励源时,在输出端输出的波形情况。

图 3.1.2 示波器输出波形

放大电路是一个能使输入信号的幅值放大但相位相反的电路,偏置电路采用

R1和R2组成的分压电路,发射极接有R4电阻器用于稳定放大器静态工作点。因此用双踪示波器来观察放大器的输入信号V1和输出信号电压波形;上图即为在

U处加入一个2KHz频率电压源时的输出波形,另外用波特仪连接输入端观察该频i

率下的波形如下:

图 3.1.3 放大电路波特图

在Multisim中提供了直流工作、交流、瞬态傅立叶、噪声等19中分析,这里选择几种针对模拟电路的分析对软件作测试。

①直流工作点分析

软件在进行其他分析前,先进行直流工作点分析,以确定瞬态的初始条件和交流小信号情况下非线性器件的线性化模型参数。通过计算出静态工作点,与仿真出的结果进行比较。如下为Multisim作的直流分析表,与理论计算结果接近,因此该软件可以对电路直流工作点做分析。

图3.1.4 Multisim下分析的直流工作点

②交流/动态分析

小信号频率响应的情况下,在分析时直流电源置零,交流信号源、电容和电感等都处在交流模式。在晶体管放大电路中,增益已经已知,观察电路波形图加以验证,按下仿真按钮,在显示图上获得被分析点的频率特性波形,交流分析结果显示如下幅频特性和相频特性两个图形,看到输入波形经过放大电路的处理幅值已经放大,Multisim可以对放大电路进行交流分析[12]。

图3.1.4 Multisim 下交流分析波特图

③电路噪声分析

噪声分析用于检测电子线路输出信号的噪声功率幅度,用于计算、分析电阻或晶体管的噪声对电路的影响。在分析时,假定电路中个噪声源是互不相关的,总的噪声是各噪声在该节点的和。先对电路选定节点进行噪声仿真计算如下表所示,再对本电路进行噪声分析结果曲线显示如图:

图3.1.5 用Multisim 测试总输入/输出噪声

设置一个噪声源由分布电容i C 产生,改变i C 使输出产生影响,将i C 分别设置为5、10、100、200、400pF ,从图中看到随着i C 的增大,等效输入噪声迅速增加。

图3.1.6 Multisim下噪声分析曲线图

④.瞬态分析

瞬态分析是对所选定的电路节点的时域响应,即观察该节点在显示周期中每一时刻的电压波形。在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感元件都是作为能量存储模式元件。

进入瞬态分析状态,设置起始时间0s,终止时间0.002s,并设置对输入输出节点1.3进行仿真如下图所示:

图 3.1.7 Multisim下电路输入输出瞬态波形图

可以看出在2ms内电路输入输出瞬态波形可以较好的拟合。

⑤.灵敏度分析

灵敏度分析是指电路特性对电路中元件参数的敏感程度。灵敏度分析包括直流

灵敏度分析和交流灵敏度分析。直流灵敏度分析的仿真结果以数值的形式显示,交流灵敏度分析仿真的结果以曲线的形式显示。

灵敏度分析是计算电路的输出变量对电路中元器件参数的敏感程度为验证在不同电阻之下电路放大功能的变化,调节可变电阻,使阻值按5%变化,先选择对电路的直流灵敏度分析,产生表格如下:

图3.1.8 直流电压灵敏度

再进行交流分析,本电路对节点1、2、3、做灵敏度分析得到图表如下:

图3.1.9交流电压灵敏度

对于Multisim中的直流灵敏度分析,可以给出具体的数据,与理论值比较后发现数值几乎接近,相比较直流分析,交流分析能够得出直观的波形图,形象地显示出电路中不同参数对电力输出的影响。

3.1.2 用OrCAD PSpice仿真三极管放大电路

PSpice是最早的电路分析软件,本文用其中的Capture CIS模块作为原理图输入,它只能用作原理图的输入,仿真是需要调用OrCAD PSpice中的Spice模块。

图3.1.10 用Capture CIS输入的电路原理图

此原理图是所需的测试是当在输入端输入不同频率的激励源时,在输出端输出的波形情况。

图3.1.12 示波器仿真图

可以得到波形是输入波形幅值的两倍,但相位相反的输出波形。符合此放大电路的特性,说明PSpice适合晶体管放大电路的仿真。

在PSpice中也提供了多种分析功能如:直流电路的模拟分析、直流电路的扫描分析、交流电路的模拟分析、瞬态分析、噪声/傅立叶分析等。

①.直流工作点分析

用PSpice进行电路仿真之前,先确定电路原来李图中包含有进行仿真所有的

信息,(1)电路原理图中的所有元件必须引用相应的仿真元件模型。(2)在电路中,必须放置并连接合适的信号源。(3)必须对需要进行仿真波形分析节点添加网络标号,(3)还需为仿真电路设置初始状态。

图3.1.13 PSpice下放大电路的直流分析波形图

在电路中加载不同信号源后,用虚拟仪器接放大器的输出输入端,其中一组数据的仿真波形如上,随着信号源电压的不断增加,输入输出负载线也随着增加,拖动游标记录值,与理论值几乎接近,与在Multisim下仿真的数值也相近,但用PSpice仿真的值更接近些。

②. 交流电路的模拟分析

PSpice中的交流扫描分析是针对电路性能因信号频率改变而变动所作的分析,它能够获得电路的幅频响应和相频响应以及转移导纳等特性参数。

图3.1.14 参数设置

图3.1.15 交流分析波形

进行参数设置后,调用Spice仿真如上所示,波特图显示出电路幅频相频特性,与Multisim中的动态分析效果相似,也与电路实际性能相符。

③. 电路噪声分析

噪声分析用于检测电子线路输出信号的噪声功率幅度,用于计算、分析电阻或晶体管的噪声对电路的影响。在分析时,假定电路中个噪声源是互不相关的,总的噪声是各噪声在该节点的和。先对电路选定节点进行噪声仿真计算如下表所示,再对本电路进行噪声分析结果曲线显示如图:

图3.1.16 总输入/输出噪声结果

然后再调整可变电阻阻值,观察波特仪显示的图形,发现电路的输入输出以及节点2可以很好拟合。

图3.1.17 噪声分析曲线图

④. 瞬态分析

瞬态分析是对所选定的电路节点的时域响应,即观察该节点在显示周期中每一时刻的电压波形。在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感元件都是作为能量存储模式元件。

进入瞬态分析状态下,设置起始时间0s,终止时间0.002s,并设置对输入输出节点1.3进行仿真如下图所示,在图形上,曲线比较完整的反映出节点在一周期内的变化,比Multisim更接近理论值。

图3.1.18 输入/输出节点的瞬态分析曲线

3.1.3小结

本节是对模拟电路中的放大电路的仿真,放大电路作为模拟电路中典型电路,

其特性主要有静态工作点,电压放大倍数,频率特性以及输入输出电阻等,这里由于结合仿真软件主要对直流/交流瞬态作分析,可看出这种分析形象、直观,可得出正确的结论,同时从测量值与理论值的比较可看出,误差较小。

3.2.仿真软件对滤波器电路的仿真

本设计采用二阶滤波器作为被仿真的对象,采用的二阶滤波器是二阶无限增益反馈型有源RC 滤波器,其中的运算放大器充当压控电压源。这种压控电压源的输入阻抗为无穷大、输出阻抗为零、增益为有限值或无穷大。

3.2.1.二阶低通滤波器的仿真分析

图3.2.1 二阶有源低通滤波器原理图 此电路的结构上半部分是一个同相比例放大电路,由两个电阻R1、R4和一个理想运算放大器构成。R1与R4均为16K Ω。下半部分是一个二阶RC 滤波电路,由两个电阻R2,R3及两个电容C1,C2构成。其中R2,R3均为4k Ω,C1,C2均为0.1μF 。电路由一个幅值为1mV ,频率可调的交流电压源提供输入信号,用一个阻值为1 K Ω的电阻作为负载[4]。

(1)理论值计算:频率特性 2100()()3()1()3UP U A Uo jw A jw w w U jw j j w w ==++即2

00

()31()up u A A jw f f j j f f =++ 其中Wo=0122500/f r s RC π=

= 通带电压放大倍数up A ,在低频下,两个电容相当于开路,次电路为同相比例

器。11/2up F A R R =+=

特征频率fo 与通频带截至频率fp :01389.12f Hz RC π=

? 根据fp 的定义,当f=fp

时,应有:2003|1()|p

p f f j f f -+=00.37147.3p f f Hz ??

(2)软件分析

波形比较分析 在理论值的基础上,用Multisim 和OrCAD PSoice 对二阶有源低通滤波电路进行分析。将示波器的A 、B 端分别连接到电路的输入端与输出端,下图为输入信号频率为1kHZ,幅度为1mV 时二阶低通滤波器电路的输入输出情况。图中横坐标为时间,纵坐标为电压幅度。选择示波器扫描频率为1ms/div 。纵轴每格均代表1mV ,输出方式为Y/T 方式。幅度大的为输入信号,幅度小的为输出信号。

图3.2.2 在Multisim 下电路输入/输出波形

图3.2.3 在PSpice 下输入/输出波形

输出信号的频率与输入信号一致,说明二阶低通滤波电路不会改变信号频率。从上图还可以看出,在输入频率信号频率较大(如1KHz )时输出信号的幅度明显小于输入信号的幅度。而低频情况下的理论计算结果Aup=2;即在低频情况下输出信号的幅度应为输入信号的两倍。很显然,输入信号频率较大时电路的放大作用已

经不理想。

调节输入频率,使之分别为800Hz ,600Hz ,400Hz ,300Hz ,200Hz ,150Hz ,1Hz 。由虚拟示波器得到输入频率为1 Hz 时的输出电压12o U mV ,即Aup=2,与理论计算值相吻合。而输入频率为150Hz 时U02=1.5mV 。此时Uo2最接近截至时的输出电压Up=0.707,Uo1=1.414mV.这说明截至频率fp 接近150Hz 。

(3)交流分析比较 进入交流分析状态,参数设置如下:起始频率为1Hz ,终止频率为10MHz ,扫描方式使用十进制,选择输出节点为分析节点,得到电路幅频特性曲线如图:

图3.2.4 在PSpice 下电路交流分析图

图3.2.5 在Multisim 下电路交流分析图 (4)通带电压放大倍数Aup 的测量

从特性曲线可以看出,在低频状态下频率变化对Aup 的影响不大,频率较大

时Aup 随频率增加而急剧减小。高频状态下输出电压则接近于0。从对话框中可 知纵坐标最大值为6.269 8 dB ,即Aup=2,与理论计算值相符[4]。

(5)通带电压放大倍数Aup 的测量,

P 为纵坐标从最大值(6.269 8 dB)下降3 dB 时所对应的频率,即纵坐标为

3.269 8 dB 所对应的频率。将图3.2.2中右侧标尺移至3.269 8 dB 附近,选其局部进行放大;再将该标尺精确移至纵坐标为3.269 8 dB 处,得到的横坐标为148.495 2 Hz ,即^一148.495 2 Hz 。这与理论计算得到的,147.3p f Hz 基本一致。

(5)参数扫描分析

当某元件的参数变化时,利用模拟软件中的参数扫描分析功能可以得到电路输入输出的特性的变化情况。

从主菜单栏中选择参数分析,参数设置如下:设备项中选择电容设备,元件名选择1C 参数选择电容量,电容量使用1e —006F ,1e —007F ,1e —008F 三个值。点击more 选项,选择AC Analysis(交流分析),再选择节点3作为输出节点。点击simulate 进行仿真,得到c ,取上述三个不同值时电路的幅频特性曲线:

图3.2.6 1C 取不同值时二阶低通滤波器电路幅频特性

三条曲线由下至上对应的电容分别为1e —006F 、1e —007F 、1e —008F ,对应的截至频率分别为33.550Hz ,148.4937Hz ,193.375 6 Hz 。很显然,1C 减小引起电路的截止频率增大,通频带变宽。而cl 的变化对电压增益基本无影响。

采用类似方法,我们得到21,2,3,C R R R 和4R 对电路性能的影响如下:2C 和2,R 的变小均会引起电路的截止频率增大和通频带变宽。而2C ,2,R 和3R 的变化对电压增

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

实验一、电路模拟基础

实验一、电路模拟基础 概要 该实验包括用户基础界面,ADS文件的创建过程包括建立原理图、仿真控件、仿真、和数据显示等部分的内容。该实验还包括调谐与谐波平衡法仿真的一个简单例子。 目标 ●建立一个新的项目和原理图设计 ●设置并执行S参数模拟 ●显示模拟数据和储存 ●在模拟过程中调整电路参数 ●使用例子文件和节点名称 ●执行一个谐波平衡模拟 ●在数据显示区写一个等式 目录 1.运行ADS (2) 2.建立新项目 (3) 3.检查你的新项目内的文件 (5) 4.建立一个低通滤波器设计 (5) 5.设置S参数模拟 (6) 6.开始模拟并显示数据 (7) 7.储存数据窗口 (9) 8.调整滤波器电路 (10) 9.模拟一个RFIC的谐波平衡 (12) 10.增加一个线标签(节点名称),模拟,显示数据 (16)

步骤 1.运行ADS 在开始菜单中选择“Advanced Design System2005A → Advanced Design System”(见图一)。 图一、开始菜单中ADS 2005A的选项 用鼠标点击后出现初始化界面。 图二、ADS 2005初始化界面 随后,很快出现ADS主菜单。 图三、ADS主菜单

如果,你是第一次打开ADS,在打开主菜单之前还会出现下面的对话框。询问使用者希望做什么。 图四、询问询问使用者希望做什么的对话框 其中有创建新项目(Create a new project);打开一个已经存在的项目(Open a existing project);打开最近创建的项目(Open a recently used project)和打开例子项目(Open an example project)四个选项。你可以根据需要打开始当的选项。同样,在主菜单中也有相同功能的选项。如果,你在下次打开主菜单之前不出现该对话框,你可以在“Don’t display this dialog box again”选项前面的方框内打勾。 2.建立新项目 a.在主窗口,通过点击下拉菜单“File→New Project…”创建新项目。 图五、创建新项目对话框 其中,项目的名称的安装目录为ADS项目缺省目录对应的文件夹。(一般安装时缺省目录是C:\user\default,你可以修改,但是注意不能用中文名称或放到中文名称的目录中,因为那样在模拟时会引起错误)。在项目名称栏输入项目名称“lab1”。 对话框下面的项目技术文件主要用于设定单位。在微带线布局时有用,我们选择mil。

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

模拟电路_Multisim软件仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件, 本章节讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验 1.实验目的 用Multisim 的仿真软件对数字电路进行仿真研究。 2.实验内容 实验19.1 交通灯报警电路仿真 交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。出故障时报警灯亮。 设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。字母Z 表示报警灯,高电平表示报警。则真值表如表 19.1所示。 逻辑表达式为:RY RG G Y R Z ++= 若用与非门实现,则表达式可化为:RY RG G Y R Z ??= Multisim 仿真设计图如图19.1所示: 图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。用发光二极管LED1的亮暗模拟报警灯的亮暗。另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500 表19.1 LED_red LED1 图19.1

欧姆电阻。 在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。 实验19.2数字频率计电路仿真 数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。如果用2位数码管,则测量的最大频率是99Hz。 数字频率计电路Multisim仿真设计图如图19.2所示。其电路结构是: 用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。三输入与非门7410(U6A)为控制闸门。 运行后该频率计进行如下自动循环测量: 计数1秒→显示3秒→清零1秒→…… 改变被测脉冲频率,重新运行。

怎样利用电路仿真软件进行模拟电路课程的学习

怎样利用电路仿真软件进行模拟电路课程的学习电路分析实验报告 实验二 学习用multisim软件对电路进行仿真 一.实验要求与目的 1.进一步熟悉multisim软件的各种功能。 2.巩固学习用multisim软件画电路图。 3.学会使用multisim里面的各种仪器分析模拟电路。 4.用multisim软件对电路进行仿真。 二、实验仪器 电脑一台及其仿真软件。 三.实验内容及步骤

(1)在电子仿真软件Multisim 基本界面的电子平台上组建如图所示的仿真电路。双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”栏改成“1”,将“Label”选项卡的“RefDes”栏改成“RP。 ” 2)调节RP大约在35%左右时,利用直流工作点分析方法分析直 流工作点的值。直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 自动将电路分析条件设为电感、交流电压源短路,电容断开。 单击Multisim 菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。单击Simulate 按钮进行直流工作点分析。分析结果如图3所示。列出了

单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。 表1 静态工作点数据 电压放大倍数测试 (1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。 (2)开启仿真开关,双击虚拟函数信号发生器图标“XFG1”,将打开虚拟函数信号发生器放大面板,首确认“Waveforms”栏下选取的是正弦信号,然后再确认频率为1kHZ”;再确认幅度为 10mVp,如图5所示。 四.仿真分析 动态测量仿真电路

Proteus在模拟电路中仿真应用

Proteus在模拟电路中仿真应用Proteus在很多人接触都是因为她可以对单片机进行仿真,其实她在模拟电路方面仿真能力也很强大。下面对几个模块方面的典型带那路进行阐述。 第1部分模拟信号运算电路仿真 1.0 运放初体验 运算,顾名思义,正是数学上常见的加减乘除以及积分微分等,这里的运算电路,也就是用电路来实现这些运算的功能。而运算的核心就是输入和输出之间的关系,而这些关系具体在模拟电路当中都是通过运算放大器实现的。运算放大器的符号如图1所示。 同相输入端, 输出信号不反相 反相输入端, 输出信号反相 输入端 图1 运算放大器符号 运算器都工作在线性区,故进行计算离不开工作在线性区的“虚短”和“虚断”这两个基本特点。与之对应的,在Proteus中常常用到的放大器有如图2几种。 3 2 1 4 1 1 U1:A TL074 3 2 6 7 415 U5 TL071 3 2 6 7 415 U6 741图2 Proteus中几种常见放大器 上面几种都是有源放大器件,我们还经常用到理想无源器件,如图4所示,它的位置在“Category”—“Operational Amplifiers”—“OPAMP”。

图4 理想无源放大器件的位置 1.1 比例运算电路与加法器 这种运算电路是最基本的,其他电路都可以由它进行演变。 (1)反相比例运算电路,顾名思义,信号从反相输入端进入,如图5所示。 RF 10K R1 2K Volts -5.00 R1(1) 图5 反相比例运算电路 由“虚断”“虚短”可知:f o i 1 *R u u R =- 我们仿真的值:11(1)1 ,2,10i f U R V R K R K ====,

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

模拟电路仿真实验

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

多级负反馈放大器的研究 一、实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1.测试开环和闭环的电压放大倍数、输入电阻、反馈网络的电压反馈系数的通频带; 2.比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3.观察负反馈对非线性失真的改善。 二、实验原理及电路 (1)基本概念: 1.在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输入回路,用来影响其输入量(放大电路的输入电压或输入电流)的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 2.交流负反馈有四种组态:电压串联负反馈;电压并联负反馈;电流串联负反馈;电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;若反馈量取自输出电流,则称之为电流反馈。输入量、反馈量和净输入量以电压形式相叠加,称为串联反馈;以电流形式相叠加,称为并联反馈。 3.在分析反馈放大电路时,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路;“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,否则为串联反馈。 4.引入交流负反馈后,可以改善放大电路多方面的性能:提高放大倍数的稳定性、改变输入电阻和输出电阻、展宽通频带、减小非线性失真等。实验电路如图所示。该放大电路由两级运放构成的反相比例器组成,在末级的输出端引入了反馈网路C f 、R f2和R f1,构成了交流电压串联负反馈电路。 R110kΩ R2100kΩ R3 10kΩ R43.9kΩ R53.9kΩ R63.9kΩ R7200kΩ R81kΩ R94.7kΩR10300kΩ U1A LM324N 3 2 11 41 U1C LM324N 10 9 11 4 8 C110uF C210uF C3 10uF J1 Key = Space J2 Key = A VCC 10V VEE -10V 1 4 10 8 11 12 13 7 3 6 5VEE VCC 2 9

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共 射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 2.834 6.126 2.2040.63 3.92210k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

模拟电子技术课程设计(Multisim仿真).

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

模拟电子电路multisim仿真(很全 很好)

仿真 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1. 静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2. 动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3. 参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失

真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4. 频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。 由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。 1.1.2共集电极基本放大电路(射极输出器) 图7.1-7为一共集电极基本放大电路,用仪器库的函数发生器为电路提供正弦输入信号VI(幅值为1V,频率为10 kHz)采用与共射极基本放大电路相同的分析方法获得电路的静态工作点分析结果。用示波器测得电路的输出,输入电压波形,选用交流频率分析项分析出电路的频率响应曲线及相关参数。

模拟电路实验仿真

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

基于Multisim的模拟电路仿真技术

本科毕业设计(论文) 题目基于Multisim的 模拟电路仿真技术 部系地方生部 专业电子信息工程 学员郑怿 指导教员梁发麦 中国人民解放军海军航空工程学院 2007 年7 月

基于Multisim的模拟电路仿真技术 摘要:介绍了Multisim 软件的功能和特点,提出运用Multisim 实现模拟电路的仿真方法。通过几个电子原理性电路的仿真实例阐述了模拟电路建立、元器件的选用和仿真参数的设置方法等关健问题,同时得到了正确的仿真结果。 关键词:模拟电路;Multisim ;仿真技术;EDA 从20 世纪80 年代以来,电子系统日趋数字化、复杂化和大规模集成化。同时深亚微米半导体工艺、B 表面安装技术的发展又支持了产品集成化程度的进步,使电子产品进入了片上系统(SOC )时代。另外电子产品厂商不懈追求缩短产品设计周期,从而获取高收益。在这些因素的影响下,EDA 技术应运而生。EDA ( Electronic Design Automation ,电子设计自动化)技术是一门综合了现代电子与计算机技术,以计算机为平台对电子电路、系统或芯片进行设计、仿真和开发的计算机辅助设计技术。利用EDA 技术对电力电子电路进行仿真一直是研究电力电子技术的工程技术人员所期望实现的目标。Multisim 就为此提供了一个良好的平台。在这个平台上可以容易地实现了基本的电力电子电路的仿真,包括不控整流电路、可控整流电路、逆变电路等电路的仿真分析。仿真得到的结果与理论分析的结果基本一致,这对电子电路的设计具有重大的意义。本文主要介绍利用Multisim 10平台对基本电子电路进行仿真的方法,得出与理论相符合的结果,有利于实际的工程设计。 1 Multisim 的功能和特点 加拿大Interactive Image Technologie 公司在1958 年推出了一个专门用于电子电路仿真和设计的EDA 工具软件EWB ( Electronics Workbench )。由于EWB 具有许多突出的优点,引起了电子电路设计工作者的关注,迅速得到了推广使用。但是随着电子技术的飞速发展,EWB 5 . x 版本的仿真设计功能已远远不能满足复杂的电子电路的仿真设计要求。因此IIT 公司将用于电路级仿真设计的模块升级为Multi sim ,并于2001 年推出了Multisim 的最新版本Multisim 2001 。 Multisim 2001 继承了 EWB 界面形象直观、操作方便、仿真分析功能强大、分析仪器齐全、易学易用等诸多优点,并在功能和操作上进行了较大改进。主要表现为:增加了射频电路的仿真功能;极大扩充了元器件库;新增了元件编辑器;扩充了电路的测试功能;增加了瓦特表、失真仪、网络分析仪等虚拟仪器,并允许仪器仪表多台同时使用;改进了元件之间的连接方式,允许任意走向;支持VHDL 和Verilo g 语言的电路仿真与设计;允许把子电路作为一个元器件使用,允许用户自定义元器件的属性等。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 (一)模拟电路举例: 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

模拟电子秤仿真实验报告

阿坝师范高等专科学校电子信息工程系课程设计模拟电子秤仿真设计 学生姓名樊益明 专业名称计算机控制技术 班级计控班 学号20113079 阿坝师范高等专科学校电子信息工程系 二○一三年四月

模拟电子秤设计报告 一、设计原理及要求 设计原理: 电子秤系统设计框图大致如图 1 所示: 四个定值电阻加一 个电位器,模拟应 变式传感器,采 集微小的电压信号 利用差分放大电 路,对采集到的微小 电压放大到0~~5V 51单片机:处理和控制单元,整个模拟 仿真的灵魂原件。1、将ADC0832 转化来 的数据处理后存放在重量(Wight )并用 LCD 显示;2、将键盘输入的数据赋给单 价(Price);3、将总价(Total_price ) 计算出来,并显示 图 1 系统整体设计框图 设计要求: 1、要求单价由键盘输入; 2、重量的精度能够达到十分之一千克; 3、按键有提示音; 4、有去皮的功能; ADC0832:8位2进 制模数转换器;将放大 的电压信号转化为数值 信号,方便单片机的处 MM74C92:2 键盘解码器, 方便了对4x4 键盘的扫描。 键盘的作用主 要在单价的输 入上。

二、主要硬件及仿真软件 硬件: (一)、ADC0832 ADC0832 是一种8 位分辨率、双通道A/D 转换芯片。由于它体积小,兼容性,性价比高而深受单片机爱好者及企业欢迎。图 2.1为ADC0832 在Proteus中的逻辑符号 图 2.1 ADC0832 逻辑符号 芯片接口说明: CS 片选使能,低电平芯片使能; CH0 模拟输入通道0,或作为IN+/- 使用。 CH1 模拟输入通道1,或作为IN+/- 使用。 GND 芯片参考0 电位(地)。 DI 数据信号输入,选择通道控制。 DO 数据信号输出,转换数据输出。 CLK 芯片时钟输入。 Vcc/REF 电源输入及参考电压输入(复用)。 单片机对ADC0832 的控制原理: 正常情况下ADC0832 与单片机的接口应为 4 条数据线,分别是CS、CLK 、DO、DI但由于DO 端与DI 端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO 和DI 并联在一根数据线上使用。(见图 3.6)当ADC0832 未工作时其CS 输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D 转换时,须先将CS 使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI 端则使用DI 端输入通道功能选择的数据信号。在第 1 个时钟脉冲的下沉之前DI 端必须是高电平,表示启始信号。在第2、3 个脉冲下沉之前DI 端应输入 2 位数据用于选择通道功 能,其功能项见表1。

【免费下载】模拟电子技术基础仿真实验

模拟电子技术基础仿真实验报告 2013020913018 张东恒 研究二极管对直流量和交流量表现的不同特点仿真电路如下: 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

自动控制原理实验一 典型环节的电路模拟与软件仿真

实验一 典型环节的电路模拟与软件仿真 一、实验目的 1.熟悉THSSC-4型信号与系统·控制理论·计算机控制技术实验箱及上位机软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟; 3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。 二、实验设备 型信号与系统·控制理论·计算机控制技术实验箱; 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线; 3.双踪慢扫描示波器一台(可选); 三、实验内容 1.设计并组建各典型环节的模拟电路; 2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响; 3.在上位机仿真界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。 四、实验原理 自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益 的。 本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。图中Z 1和Z 2表示由R 、C 构成的复数阻抗。 1.比例(P )环节 图1-1 比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。它的传递函数 与方框图分别为: K S U S U S G i O ==)()()( 当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。 图1-2 2.积分(I )环节 积分环节的输出量与其输入量对时间的积分成正比。它的传递函数与方框图分别为: Ts S U S U s G i O 1)()()(== 设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

相关主题
文本预览
相关文档 最新文档