当前位置:文档之家› TLD-110中性车辆检测器说明书(中英文)

TLD-110中性车辆检测器说明书(中英文)

TLD-110中性车辆检测器说明书(中英文)
TLD-110中性车辆检测器说明书(中英文)

线圈型车辆检测器使用说明

NO:9001- 0110-232

■ 安装检测器 ■ 接线图

车辆检测器必须安装在离检测线圈尽可能近的防水、防潮的干燥环境里。安装位置必须选择在远离热源、强磁场的地方,其四周应与其它装置保持至少10毫米的距离(请勿紧贴机箱安装)。检测器能否良好工作在很大程度上取决于它所连接的检测地感线圈。埋设线圈的几个重要参数包括:环境(回避高温、强磁、可移动金属等)、材料、线圈形状大小、匝数、埋设方法(参见《线圈安装指南》)。

■ 使用及工作指示

接通电源后,检测器将会自动校

准。校准过程约3秒。校准进行时,面板上的LED 会闪烁(亮0.5秒,灭0.5秒)几次。在校准期间,不应有车停在线圈上。当校准成功后,面板上的“检测”指示灯熄灭,当

线圈上有车通过时,面板上的“检测”指示灯亮起,且存在输出继电器2(3、4脚)吸合导通;若在校准过程中未检测到线圈或线圈电感值不在允许范围内,对应的LED 指示灯会不停地闪烁。其闪烁情况如下:

线圈未连接: 线圈电感太小: 线圈电感太大:

■ 工作频率调节

本产品提供两种频率选择,用户可以更改线圈的工作频率以避免相邻线圈或环境频率的干扰。先取下检测器顶端的黑色面盖,拔动主板上的拔码开关DIP5即可调整工作频率。DIP5拔至ON 时为低频,DIP5拔至OFF 时为高频。

■ 灵敏度调节

灵敏度调节使用面板上的滑动开关,有三档:H 为高灵敏度,M 为中灵敏度,L 为低灵敏度。在试运行时,先将灵敏度设在较低档位,在实际测试后如果车辆检测没有反应,则应将灵敏度调高一档,如此反复,直至车检器稳定、正常工作。

[注意]:如果线圈不能正常工作,应首先检查线圈埋设情况(连接线是否双绞、破损等);然后再调整工作频率或灵敏度级别。

■ 继电器输出方式

继电器2(3、4、11脚)输出方式由拔码开关DIP3决定:当DIP3拔至OFF 时为存在输出,即如有车辆进入线圈时,3、4脚吸合导通,直至车辆离开线圈;当DIP3拔至ON 时,继电器2的输出与继电器1的输出方式相同(由DIP1和DIP2决定)。

继电器1(5、6、10脚)为多功能输出,其输出方式由主板上拔码开关DIP1和DIP2决定。DIP1为OFF 、DIP2为OFF 时,在车辆离开线圈300毫秒后,5、6脚吸合导通1秒后断开;DIP1为ON 、DIP2为OFF 时,如有车辆进入线圈,5、6脚立即吸合导通并于300毫秒后断开; DIP1为OFF 、DIP2为ON 时,如有车辆进入线圈300毫秒后,5、6脚吸合导通直至车辆离开; DIP1为ON 、DIP2为ON 时,如有车辆进入线圈,5、6脚立即吸合导通并于车辆离开后再延时300毫秒后断开;

■ 检测器复位

当检测器上电时,或改变面板上灵敏度开关时,检测器会进行复位操作。在复位后,检测器会被初始化为无车状态。

■ 技术参数

工作电压: 230V AC 、115V AC 、24V DC/AC 、12V DC/AC 可选,详见机身标签 电压公差:

交流: +10% / -15%

直流: ±15%

额定功率: 4.5W

输出继电器: 240V/5 A AC ; 工作温度: -20℃至+65℃; 存储温度:

-40℃至+80℃;

工作频率: 20KHz 至170KHz ; 反应时间: 100毫秒; 存在时间: 无限存在 灵 敏 度: 三级可调

线圈电感量: 50uH 至1000uH (最佳100uH 至300uH ); 线圈连接线: 最长20米,每米至少双绞20次; 尺寸 (含底座): 78×40×108毫米 (长×宽×高

)

VEHICLE LOOP DETECTOR USER ’S GUIDE

NO :9001-0110

■ Install Detector

■ Wiring Diagram

The loop detectors must only be placed in dry rooms or control cabinets that are protected against all types of moisture and wetness. A distance of at least 10 mm from other devices must be maintained on each side. The ambient temperature must not exceed 65° C. The installation of the induction loop is described in other operating instructions.

■ Operation and Indication

When the power is applied, the red Power LED will glow and the detector is tuning, the green Check LED blink about 3 seconds. The green LED will also glow whenever a vehicle is detected passing over the inductive loop. If a loop fault exists the green LED will come on and flash indicating a fault.

Loop no connected: Loop too small: Loop too large:

■ Frequency

To eliminate interference of two neighbouring wire loops or loop detectors, the frequency can be altered by DIP5 on the main board in the box.

■ Sensitivity

The response sensitivity can be set using the threestage switch on the front. The sett ing “L” corresponds to the lowest sensitivity. “M” is the medium sensitivity and “H ” is the highest sensitivity.

After the sensitivity has been set, a reset and a calibration automatically takes place.

【Attention 】 If the detector isn ’t working normally, you must check the loop and wiring at first, and then alter the frequency or the sensitivity.

■ Output Relay

The output of relay 2 can be programmed by means of DIP3 Switch.

If DIP3 is “OFF ” site, the output is presence output. When a vehicle is detected passing over the inductive loop, the relay 2 is energized( Pin3 and Pin4 is shorted) until the vehicle is detected leaving the loop. If DIP3 is “ON ” site, the output of redlay 2 is same as relay 1.

The output of relay 1 can be programmed by means of DIP1 and DIP2 Switch. DIP1 DIP2 Output mode of relay1

OFF OFF When a vehicle is detected leaving the loop, relay1 is energized 1 S after 300 mS. ON OFF When a vehicle is detected passing the loop, relay1 is energized at once and

disconnect after 300ms.

OFF ON When a vehicle is detected passing the loop after 300ms, relay1 is energized until the

vehicle is detected leaving the loop.

ON ON When a vehicle is detected passing the loop, relay1 is energized until the vehicle is

detected leaving the loop after 300 mS.

■ Reset

The detector automatically reset and tune to the inductive loop when the power is applied, whether on initial installation or after any break in power supply. Should it be necessary to retune the detector, as may be required after changing any of the switches or after moving the detector from one installation to another.

■ T echnical Data

Supply voltage :

230V AC , 115V AC, 24V DC/AC, 12V DC/AC

( See the label on the detector) V oltage tolerance AC: +10% / -15% V oltage tolerance DC: ±15% Power Consumption: 4.5V A Output relays: 240V/5A Operating temperature: -20°C to +65°C Storage temperature: -40°C to +85°C Frequency range: 20 kHz to 170 kHz

Reaction time: 100ms Signal holding time: Unlimited

Sensitivity: Adjustable in 3 increments

Loop inductance: Total loop plus connection wiring: 50μH to 1000μH. Ideal is 100μH to 300μH

Loop connection wiring: Maximum length 20 meters, twisted at least 20 times per meter Size of Housing:

78x40x108 mm (L x W x H)

用火焰光度检测器的气相色谱法测定硫化物

用火焰光度检测器的气相色谱法测定硫化物,在国内色谱生产厂家中已有部分涉及,但因在定性、稳定性及计算方法等多方面的技术限制,一直未能推广,GC微量硫分析仪是在我公司原有火焰光度检测器的基础上,经过不断改进,定型为微量硫专用分析仪,具有较高的灵敏度,稳定性好,定性、定量准确,操作简便等优点。 1.原理: 硫化物在富氢火焰中能够裂解生成一定数量的硫分子,并且能在该火焰条件下发出394纳米的特征光谱,经干涉滤光片除去其它波长的光线后,用光电倍增管把光信号转换成电信号并加以放大,然后经微机处理并打印出结果。因为光电倍增管本身的放大能力以及我们研制的FPD的特殊性,所以保证了GC微量硫分析仪的高选择性和高灵敏度。 被分析气体样品经色谱柱分离后,不同的硫化物在不同的时刻进入FPD,从而在工作站上出现不同保留时间的色谱峰。因为硫化物响应与硫浓度的平方成正比,所以工作站必须根据开方峰面积和校正系数计算出分析结果并根据保留时间,直接标定和显示各种硫化物的实际含量。 2.定性定量: 用色谱法分析硫化物,定性问题一直未能很好地解决。众所周知,硫化物的存在形式多种多样,而在实际工作中又不可能拥有众多硫化物的标样,这就给广大的硫分析工作者造成了极大的难题。但是,在实际工作中,多数情况下只需要对硫化物进行大致的定性。如只需要看无机硫,低沸点有机硫,高沸点有机硫的的分布情况,以便指导脱硫工作的进行。这种情况在许多化工厂是很普遍的。鉴于这种情况,一般分析人员采用的定性手段为:对无机硫,如硫化氢、二氧化硫,可以用GDX301柱子进行分离以便定性;对低沸点有机硫,如甲硫醇、甲硫醚、硫氧化碳可以用TCP柱子分离以进行定性;而对高沸点有机硫,一般不作定性,大多数采用反吹方式测定其总含量。也可直接用反吹法分析总硫,这也是本仪器的一大特点。 一般而言,在样品气中,如原料天然气、炼厂尾气、煤造气生成的原料气,无机硫、低沸点的有机硫含量占很大比例(几乎达90%以上),因此采用以上方法进行定性定量分析是切实可行的。它不仅简化了分析程序,而且分析结果也比较准确。这样做,不仅可监视样气中的硫含量,而且也为选择脱硫剂和脱硫路线提供了理论依据。 3.色谱柱的选用: 本仪器随机配备了两根色谱柱: A. TCP柱 4×0.5,2米,20%TCP,白色101担体,60~80目。 B. GDX柱,4×0.5,2米,GDX301,60~80目。 一般选用TCP柱做有机硫分析,用GDX柱做无机硫分析。在既有无机硫,又有有机硫的样品分析时,可用双柱TCP柱和GDX柱,两次进样,此时应选02方式。而在进行总硫分析时,可选GDX柱用反吹法来做,选06,07方式或选用01,03(只显示不能画峰图,主要用于在线分析)。选用00,02方式做硫化氢,硫氧化碳和有机总硫。 4.进样: 由于硫化氢具有较强的化学活性,很容易被其他物质吸附而使其含量降低,从而影响测定的准确度。因此在测定过程中,采用吸附性较低的玻璃注射器采集样品,且要求样品的贮存时间不能太长,仪器中凡是样品经过的管线均经过钝化处理。也可采用特殊处理的六通阀自动进样。 5.仪器特点: ①独特的火焰光度检测器结构,操作简便,稳定时间快,采用特殊的火焰结构消除烃类化合物的干扰,使选择性大幅提高; ②在光信号的收集上,采用聚焦的方式,使捕捉到的信号大幅增加,灵敏度成倍数提高; ③采用优质材质及精湛的加工工艺,密封性很好,在实际操作中,抗外界干扰能力大幅提高,稳定性较好; ④在检测器底部,采用加热功能,有效去除冷凝水,使分析精度有很大提高; ⑤整机稳定性较好,操作简便,易于掌握。 6.参考谱图: 常见有机硫在TCP柱上保留时间

交通检测器的种类及其优缺点

交通检测器的种类及其优缺点 检测器的概述 目前国内外在交通检测系统或交通信息采集系统中,大量应用了电磁传感技术、超声传感技术、雷达探测技术、视频检测技术、计算机技术、通信技术等高新科学技术。相应地,交通信息检测器主要有:电感环检测器(环型感应线圈)、超声波检测器、红外检测器、雷达检测器、视频检测器等。 交通检测器以车辆为检测目标,检测车辆的通过或存在状况,对于异常交通流信息如拥堵、事故等也能进行实时监测,也检测路上车流的各种参数,如车流量、车速、车型分类、占有率、排队等,其作用是为控制系统提供足够的信息以便进行最优的控制。 检测器的分类 检测器种类很多,其工作原理大致可分为两类:○ 1检测能使某种开关触点闭合的机械力;○ 2检测因车辆的运动或存在引起的能量变化。压力检测器就是利用机械力检测的例子,而利用能量变化进行检测则有环形线圈检测器超声波检测器等等。 按照能否检测静止车辆来分,检测器可分为两类。有些检测器如环形线圈、磁强计检测器能检测存在于检测区域的静止或运动的车辆,这类检测器称为存在型检测器;而另一类检测器只能检测运动通过检测区域的车辆,这类检测器称作通过型检测器。 检测器还可以检测和交通有关的环境条件,以便在出现有害的环境条件时能够对交通进行控制或提出警告。 常用检测器的原理及优缺点介绍 超声波检测器 工作原理:根据光沿直线传播的原理,当光遇到障碍物时就会被反射回来,同理当超声波遇到障碍物(车辆)时就会产生一反射波,反射波传送回接收端,根据时间差就可以判断是否有车辆通过。正常情况下,没有车辆时超声波返回到超声波检测器用的时间比有车辆通过时用的时间要长,当接收到反射波的事件变短就可以判断出车辆通过。 超声波车辆检测器的工作原理可分为两种:传播时间差法和多普勒法。 (1) 传播时间差法 这是一种将超声波分割成脉冲射向路面并接收其反射波的方法。当有车辆时,超声波会经车辆提前返回,检测出超前于路面的反射波,就表明车辆存在或通过。 如图3-3a 所示,若超声波探头距地面高度为H ,车辆高度为h ,波速v ,发自探头的超声波脉冲的反射波从路面和车辆返回的时间分别为t 和t ’,则: t =v H 2 t ’=()v h H -2(3-13) 可见时间t ’与车辆高度h 向对应。这个特点即用来判别车辆存在,也可用于估计车高。从图3-3b 还可看出,调整启动脉冲的启动时间和宽度,能够限制输出信号发生的时间t ’的

COD在线检测仪使用说明书

COD在线检测仪使用说明书 目录 一、 JHC-Ш型CODcr在线检测仪使用说明书 (3) 1. 主要技术指标 (3) 2. 有机化合物的测定国标方法 (4) 3. 仪器结构简介 (5) 4. COD自动检测仪工作步骤 (6) 5. 各子系统功能工况祥解 (9) 6. 微机控制系统原理 (11) 7. 主菜单选择及功能 (12) 8. 仪器维护与保养 (13) 9. 仪器故障显示及处理 (14) 二、 COD 在线分析仪试剂配比 (15) 三、易损易耗件一览表 (16) 一、主要技术参数与特点 1.技术参数 测量范围(mg/L):30~950(扩展型1000~4000或4000~10000) 测量误差:≤±10% 重复误差:≤±5% 适用环境温度:5~40℃ 电源电压(v) :220±10% 功率(kw):1.5 主机类型:日本三菱公司原装PLC 显示方式:彩色触摸显示屏 打印机:16位微打(并行口) 数据远传接口:RS232,Modem 注:根据GB11914-89国家标准,检测COD在50mg/L以下的水样时,需要用低浓度标准溶液。其测量误差大于本指标。 2.技术特点: ⑴仪器测试原理、方法、步骤完全符合国家标准,检测数据准确可靠。 ⑵仪器主机采用三菱PLC、彩色触摸屏,图形画面活泼多彩,生动直观,全中文显示,一目了然,操作更方便。 ⑶仪器具有较强的远程通讯功能。通过电话线或无线电与远程终端联系。 ⑷仪器若发生故障,现场主机会自动拨通值班电话,向终端计算机报告故障情况。终端计算机可随时拨通现场电话与现场主机通讯,监控现场仪器的工作情况,调取现场主机一月内任意时间的检测数据结果。 ⑸仪器采用全气动移液、定量、加液结构,解决了强腐蚀性药剂对自控元器件的影响,使系统运行更可靠。 ⑹仪器集水样采集与COD检测于一体,回流消解采用独特的风冷加静止水套冷却方式,无需自来水水源,使现场应用更为方便。 ⑺由PLC控制的精密注射泵完成氧化还原滴定的数据计量,由光电信号准确测得滴定终点,

火焰光度检测器fpd ()

火焰光度检测器-FPD(SFPD 、DFPD 、PFPD) 一.概述 1.FPD是1966年问世的,它是一种高灵敏度、高选择性的检测器,对含磷、硫的有机化合物和气体硫化物特别敏感。 2.主要用来检测 ⑴ 油精馏中硫醇、COS、H2S、CS2、、SO2; 0 水质污染中的硫醇; ⑵ 空气中H2S、SO2、CS2; 0 农药残毒; 0 天然气中含硫化物气体。 3.FPD检测硫化物是目前最好的方法,为了提高FPD灵敏度和操作特性,在单火焰气体的流路形式上作了多种尝试,随后设计出了双火焰光度检测器(DFPD),但没有从根本上解决测硫灵敏度 和操作特性欠佳的缺点,最近几年在市场上又推出了脉冲火焰光度检测器(DFPD),无论在测硫、 测磷的灵敏度和选择性都有了成百倍的提高。也可以说,在测磷方面已没有必要再推荐氮磷检 测器了,测硫也基本上满足了当前各领域分析的要求。 二.FPD简明工作原理 FPD实质上是一个简单的发射光谱仪,主要由四部分组成: 1.光发射源是一个富氢火焰(H2 :O2> 3 :1),温度可达2000 ~ 3250 ℃ ; 2.波长选择器,常用波长选择器有干涉式或介质型滤光片; 3.接收装置包括光电倍增管(PMT)和放大器,作用是把光的信号转变成电的信号,并适当放大; 4.记录仪和其它的数据处理。 FPD简明工作原理为:当含磷、硫的化合物,在富氢火焰中燃烧时,在适当的条件下,将发射一系列的特征光谱。其中,硫化物发射光谱波长范围约在300 ~ 450nm之间,最大波长约在 394nm 左右;磷化合物发射光谱波长范围约在480 ~ 575nm之间,最大波长约在526 nm左右。 含磷化合物,一般认为首先氧化燃烧生成磷的氧化物,然后被富氢焰中的氢还原成HPO,这个被火焰高温激发的磷裂片将发射一定频率范围波长的光,其光强度正比于HPO的浓度,所以 FPD 测磷化合物响应为线性。 含硫的化合物在富氢火焰中燃烧,在适当温度下生成激发态的S2*分子,当回到基态时,也发射某一波段的特征光。它和含磷的化合物工作机理的不同是:必须由两个硫原子,并且在适当的温度 条件下,方能生成具有发射特征光的激发态S2*分子,所以发射光强度正比于S2*分子,而S2*分子与SO2的浓度的平方成正比,故FPD测硫时,响应为非线性,但在实际上,硫发射光谱强度(IS2 * )与 n 含硫化物的质量、流速之间的关系为IS2=I0[SO2],式中:n不一定恰好等于2,它和操作条件以及化合物的种类有很大的关系,特别是在单火焰定量操作时,若以n = 2计算将会造成很大的定量误差。三. 双火焰光度检测器(DFPD) 双火焰光度检测器(DFPD),克服了单火焰的响应依赖于火焰条件与样品种类的缺点,使响应仅和样品中的硫(磷)的质量有关,并在检测硫时基本遵循平方关系。DFPD工作原理是使用了两个空 气-氢气火焰,将样品分解区域与特征光发射测量区域分开,即从柱流出的样品组分首先与空气混合,然后与过量的氢气混合,在第一个火焰喷嘴上燃烧。第一个火焰将烃类溶剂和复杂的组分分解成比 较简单的产物,这些产物和尚未反应的氢气再与补充的空气相混合,这时的氢气含量仍稍过量,既

便携式离子火焰检测器及其使用方法与制作流程

本技术公开了一种便携式离子火焰检测器及其使用方法,包括防护壳,防护壳的内腔设置有火焰检测器本体,火焰检测器本体的两端均贯穿至防护壳的外侧,所述防护壳顶部的左侧和底部的左侧均固定连接有安装板。本技术通过设置防护壳、盒体、安装板、安装孔、火焰检测器本体、垫板、烟雾传感器、第一圆孔、风机、料仓、管盖、进料管、电磁阀、连接管、温度传感器、喷头、支撑板、袋装干燥剂、盒盖、通孔、挡板、壳体、定位套、拨板、开口、连接块、弹簧、滑块、定位块、平板电脑、安装座、蜂鸣器、闪光灯、报警器和电源模块的配合使用,解决了现有的便携式离子火焰检测器不具备防爆功能的问题,该便携式离子火焰检测器,具备防爆功能的优点。 技术要求

1.一种便携式离子火焰检测器,包括防护壳(1),其特征在于:所述防护壳(1)的内腔设置有火焰检测器本体(5),所述火焰检测器本体(5)的两端均贯穿至防护壳(1)的外侧,所述防护壳(1)顶部的左侧和底部的左侧均固定连接有安装板(3),所述安装板(3)的右侧开设有安装孔(4),所述防护壳(1)内腔顶部的两侧分别固定连接有烟雾传感器(7)和温度传感器(15),所述防护壳(1)的顶部连通有喷头(16),所述喷头(16)的顶部连通有连接管(14),所述连接管(14)的顶部连通有风机(9),所述风机(9)的顶部连通有电磁阀(13),所述电磁阀(13)的顶部连通有料仓(10),所述料仓(10)的顶部连通有进料管(12),所述进料管(12)的顶部套设有管盖(11),所述防护壳(1)的后侧固定连接有安装座(31),所述安装座(31)的右侧固定连接有平板电脑(30),所述安装座(31)的底部固定连接有报警器(34),所述防护壳(1)正表面的两侧均固定连接有定位套(23),所述安装座(31)内腔的前侧活动连接有挡板(21),所述挡板(21)的前侧固定连接有壳体(22),所述壳体(22)正表面的两侧均活动连接有拨板(24),所述壳体(22)的前侧开设有开口(25),所述开口(25)内腔的两侧均活动连接有连接块(26),所述连接块(26)的前侧与拨板(24)固定连接,所述壳体(22)的内腔设置有弹簧(27),所述弹簧(27)的两侧均固定连接有滑块(28),两个滑块(28)相反一侧的后侧均固定连接有定位块(29),所述定位块(29)远离滑块(28)的一端贯穿壳体(22)并延伸至定位套(23)的内腔; 所述平板电脑(30)的输入端电连接有电源模块(35),所述平板电脑(30)的输出端分别与风机(9)、电磁阀(13)和报警器(34)电连接,所述平板电脑(30)分别与烟雾传感器(7)和温度传感器(15)双向电连接。 2.根据权利要求1所述的一种便携式离子火焰检测器,其特征在于:所述防护壳(1)内腔的底部固定连接有盒体(2),所述盒体(2)内腔的顶部活动连接有盒盖(19),所述盒盖(19)的顶部开设有通孔(20),所述通孔(20)的数量为若干个,且均匀分布于盒盖(19)的顶部,所述盒盖(19)底部的两侧均活动连接有支撑板(17),所述支撑板(17)靠近盒体(2)内壁的一侧与盒体(2)的内壁固定连接,所述盒体(2)内腔的底部活动连接有袋装干燥剂(18)。

几种主要车辆检测器的对比

几种主要检测技术的对比 道路交通信息采集是智能交通系统的一项重要内容。在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。 下面对几种检测技术的优缺点做具体分析 随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。 1.地感线圈 环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。 环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。 缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。 2.微波车辆检测器 微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,

TLD100-110车辆检测器技术手册V200印刷版

TLD-100/110系列车辆检测器 技术手册 版本 2.00

TLD-100/110型智能车辆检测器,主要用于车辆存在检测。适用于停车场、公路车辆收费站以及交通信号灯控制等系统。TLD-100和TLD-110系列均为单通道型,它只能联接一个电感线圈,但有两个输出继电器可提供两组输出信号;TLD-100和TLD-110系列分别提供不同的输出信号供用户选择。 工作电源:AC220V、AC110V、AC/DC24V、 AC/DC12V 可选择,2.5W功率 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:100毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线) 最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总 电阻小于10欧姆。 储存温度:-40oC到+85oC

工作温度:-40oC到+65oC 相对湿度:最大95% 外形尺寸:85×74×36mm 3.1 检测器的安装 车辆检测器必须安装在离探测线圈尽可能近的、防水防潮的干燥环境里。在安装车辆检测器时,应与其它设备或装置保持一定的距离(约10—20mm)以方便维护。 检测器能否良好工作在很大程度上取决于它所连接的感应线圈。线圈的几个重要参数包括:线圈材料,线圈形状和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。 3.2 车辆检测器接线示意图

图一、TLD-100/110接线端子接线示意图 3.3 工作频率设定 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆开胶壳。DIP开关6(LA)用于设置频率;开关在“ON”位置时表示低频工作方式,在“OFF”位置表示高频工作方式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:TLD-100和TLD-110在出厂时已设为高频。当两个检测器的安装距离较近时,用户可以将两个检测器设置成不同的频率。

【开题报告】固体废物中有机磷农药的测定气相色谱-火焰光度检测器法

开题报告 化学 固体废物中有机磷农药的测定气相色谱-火焰光度检测器法一、选题的背景与意义 有机磷农药是为取代有机氯农药发展起来的,它比有机氯农药较易降解,残留期较短,是现有农药中品种最多、使用最广的一类,约有100多种。环境中有机磷农药的污染和毒害已日益引起人们的广泛关注。有机磷农药毒性较高,是急性中毒类农药,如对硫磷和内吸磷等都是剧毒品。 有机磷农药常被用作杀虫剂喷洒在果树、蔬菜上,残留在水果、蔬菜上的农药或进入环境的农药进入有机体,对人、畜毒性较大,大部分对生物体内胆碱酯酶有抑制作用,抑制胆碱酯酶使其失去分解乙酰胆碱的能力,造成乙酰胆碱积累,引起神经功能紊乱,从而导致肌体的损害。 有机磷农药的各类环境质量标准和污染物排放(控制)标准,均没有针对固废。现收集到与土壤或固废相关的标准,见表1。 表1 有机磷农药相关环境质量或排放标准 环境质量或排 放标准标准号排放限值 浓度单 位 土壤环境质量 标准 GB15618-1995 无相关排放标准 乐果对硫 磷 甲基对硫磷 马拉硫 磷 浸出液 危险废物毒性 标准浸出毒性 鉴别GB5085.3-2007 8 0.3 0.2 5 mg/L 生活垃圾填埋 污染控制标准 GB16889-2008 无相关排放标准展览馆用地土 壤环境质量标 准 HJ350-2007 无相关排放标准城镇垃圾农用GB8172-1987 无相关排放标准

控制标准 在现行的有机磷农药的监测分析方法中,主要采用有机溶剂提取,净化步骤除去干扰物,用气相色谱氮磷检测器(NPD)或火焰光度检测器(FPD)检测,再根据色谱峰的保留时间定性,外标法定量。此方法仅适应于水和土壤中有机磷农药的分析,尚未制定固体废物中有机磷农药的标准分析方法。 现根据对目前农田里常用有机磷农药的使用情况调研以及相关有机磷农药的标准,筛选出12种左右的有机磷农药,分别为甲拌磷、乐果、二嗪农、乙拌磷、异稻瘟净、甲基对硫磷、马拉硫磷、对硫磷、毒死蜱、稻丰散、丙溴磷、乙硫磷,对这12种有机磷农药制定标准方法。 三、研究的方法与技术路线: 考虑到快速溶剂萃取法(ASE)具有萃取速度快、溶剂用量少、效率高、密封性能好造成环境污染小的特点,决定样品的前处理采用ASE提取,经浓缩定量后采用GC-FPD的方法检测固体废物中的有机磷农药。 技术路线: 四、研究的总体安排与进度:

紫外线火焰检测器ZWJ说明书

ZWJ-306紫外线火焰监测器 产品名称:ZWJ-306紫外线火焰检测器关键字搜索:ZWJ-306紫外线火焰检测器、紫外线火焰监测器、火焰检测器、火焰监测器 一、概述: ZWJ-306紫外线火焰监测器主要用于燃气、燃油工业燃烧器的火焰监测,燃料燃烧时辐射一定频率的光谱,UV传感器对燃烧光谱不间断采集分析,经智能频率合成模块计算输出模拟火焰信号,火焰信号经电容自动跟随漂移反馈模块电路处理得出稳定火焰信号,从而实现UV传感器至监测器间的分布电容自动匹配,传感器与监测器间的连接距离最远可达600M米而无需调整电容匹配电位器,同时监测器还设置监测灵敏度调节电位器和熄火延时关阀调节电位器,进一步方便用户使用。 传感器信号线(4号线)抗对地、对火线短路,抗分布电容并自动调整,检测灵敏度高,抗干扰性强,不受日光、红外热辐射、炉堂高温等的影响,确保燃烧系统安全运行。本产品获中国专利,专利号为2004200414545。 二、主要技术参数: 工作电源:200V~240V·AC 50/60Hz 功耗:<3W 传感器工作电流:<50μA 传感器光谱范围:185~280nm 检测距离:不小于2m(1支火焰高度为45mm蜡烛) 检测响应时间:<0.2S 熄火延时关阀时间:1~7秒可调 点火时间:5~7秒 传感器与监测器连接电缆:不小于600m

三、监测器工作程序: 通电后,监测器同时输出定时点火信号(端子5、6)及燃料阀打开信号(端子6、7),若点火成功,则点火信号关闭后继续输出燃料阀打开信号; 若点火失败,则关闭点火信号及燃料阀打开信号,并输出无源报警信号。 四、监测器接线端子定义如下: 1、电源火线 2、电源零线 2、3、4对应接UV传感器线码2、3、4 5、6输出点火信号,220V·AC容量5A 6、7输出阀开信号,220V·AC,容量5A 8、9输出无源常开,有火闭合 9、10输出无源常闭,有火断开 五、尺寸: 壳体:ABS工程塑料(防水型) 颜色:灰色 体积:158×90×41mm 安装尺寸:182×52mm矩形安装(长宽预留200×100) 安装孔:φ7.0mm 探头安装螺纹:M20×1.5 探头直径:φ36mm 探头长度:138mm 六、安装: 紫外线火焰监测器是一种非接触式火焰监测器,用户安装时请将探头对准火焰。 探头使用的最高温度为100℃,用户在燃烧器或其他高温设备上使用时,探头前的检测通道必须通风冷却,防止炉膛高温传导辐射损坏传感器,冷却风要求干燥、洁净。 检测通道直径不小于Φ18,探头的安装螺纹为M20×1.5。 七、调试: 该监测器具有布线分布电容自动跟踪调整处理芯片,能在布线分布电容不大于0.47uF的条件下,自动调节以匹配布线分布电容,UV传感器和监测器连线最大可超过600米,具有更宽的适用范围,现场安装使用特别方便,无需用户调整匹配电位器。 模块左上方的蓝色方形电位器可以调节监测器的灵敏度及布线分布电容自动跟踪深度,出厂已调好,用户无需调节。

静电测试仪使用说明书

Hand-held static sensor locates and meas-ures static voltages, tests air ionizers.New from 3M,the 718 Static Sensor can help companies competing in the global high-tech marketplace prevent cost-ly losses due to electro static discharge (ESD) damage by playing a vital and valuable role in their own ESD control program. Easy to use,the hand-held 3M ?718 Static Sensor is designed to measure static voltages on objects and sur-faces arising from electrostatic charge buildups,and can help identify ESD trouble-spots — ensuring product relia-bility and customer satisfaction which translates into com-pany profits. As a bonus,when used in conjunction with the 3M TM Model 718A Air Ionizer Test Kit,the 718 can also be used to verify the operation of air ionizers.718 Static Sensor Features ? Small-size,lightweight,conductive plastic housing ? Membrane switches for Power,Range/Zero,and Hold functions. ? Digital,LCD (liquid-crystal) display is easy to read and updates quickly. ? Ranging system assists user in making quick and easy measurements ? Measurements accurate to 5% ? Output jack available for continuous measurements Convenient Size/Low Power Requirements The 718 is small enough to be carried in a pocket and weighs less than 5 oz. (142 g),including battery. The light-weight plastic housing is conductive,allowing a properly-grounded user to dissipate all electrostatic charges from the surface of the meter.Meter Functions The meter is equipped with three membrane switches which control different functions. The POWER switch turns the instrument on and off. The RANGE/ZERO button performs two functions; when pressed momentarily it switches between the two measurement ranges of 0-2,000 volts and 0-20,000 volts,and if held for longer than 3 seconds,it resets the voltage display to 0 volts. The HOLD button allows the user to freeze a measurement on the LCD for later review.Ranging System Included with the 3M 718 Static Sensor is a ranging system consisting of two light-emitting diodes (LEDs) which each emit a circular red light onto the surface being measured for static. When the two lights intersect and form a single focused light,the measurement distance is the prescribed 1 inch (2.54 cm). Accuracy The Model 718 Static Sensor is accurate to within ±5% of the displayed measurement,at a distance of one inch (2.54 cm) from the target. Accuracy will vary as the dis-tance between measured object and instrument changes from the one inch (2.54 cm) specification.Analog Output Jack The analog output jack located in the front of the unit pro-vides a convenient hook-up,via a 3/32 inch (2.5 mm)monophone jack,to a recorder/data acquisition console. The 3M 718 Static Sensor may then be used for remote monitoring or permanent recording of electrostatic voltage readings. 3M 718 Static Sensor Specifications Dimensions 0.85" (H) x 2.4" (W) x 4.15" (L) 2.2 cm (H) x 6.1 cm (W) x 10.5 cm (L)Weight 4.5 oz. (128 g) with battery Power Requirements One 9-volt alkaline battery Measurement Ranges 0 – 2 kV Low Range 0 - 20 kV High Range V oltage Display 3) digit liquid crystal display V oltage Output 1/1000 of measured voltage @ low range 1/10,000 of measured voltage @ high range Distance Indicator LED targets. Aligned targets indicate 1 in. (2.54 cm) measurement distance Measurement Accuracy Within 5% of actual voltage Certifications UL,C-UL,CE,CB-scheme,NOM 3 718 Static Sensor 718A Air Ionizer Test Kit 718 Range Finder Unfocused 718 Range Finder at 1" away 3M 718 Static Sensor 1 2 3

fpd检测器

书名:气相色谱检测方法(第二版)作者:吴烈钧编著 火焰光度检测器 第一节引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出气相色谱FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的气相色谱检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。 第二节工作原理和响应机理 一、工作原理 图6-1为FPD系统示意图。它主要由二部分组成:火焰发光和光、电信号系统。 火焰发光部分由燃烧器(4)和发光室(2)组成,各气体流路和喷嘴等构成燃烧器,又称燃烧头。通用型喷嘴由内孔和环形的外孔组成。气相色谱柱流出物和空气混合后进入中心孔,过量氢从四周环形孔流出。这就形成了一个较大的扩散富氢火焰、烃类和硫、磷确化合物在火焰中分解,并产生复杂的化学反应,发出特征光。硫、磷在火焰上部扩散富氢焰中发光,烃类主要在火焰底部的富氧焰中发光,故在火焰底部加一不透明的遮光罩(3)挡住烃类光,可提高FPD的选择性。为了减小发光室的体积,可在喷嘴上方安一玻璃或石英管(1),以降低检测器的响应时间常数。 右为光、电信号部分,为了避免发光中产生的大量水蒸气,燃烧产物和高温对光、电系统的影响,用石英窗(5)和散热片(6)将发光室和光电系统隔开。因FPD不是将所有的光变成电信号,而是用滤光片(7)选择硫、磷特征光。图6-2为硫、磷和碳的相对光谱响应曲线,当硫化物进人火焰,.形成激发态的S2*分子,此分子回到基态发射出波长为320~480nm的光,

检测仪使用说明书

检测仪使用说明书 一.概述 核酸蛋白检测仪、紫外检测仪是液湘色谱仪中的一种紫外检测装置,核酸蛋白检测仪、紫外检测仪是根据生命科学的发展对于现代色谱仪器的要求而改进设计的一种新型紫外检测仪。该仪器在创新方面的主要特点为: 1.该仪器除配有输出10mV记录仪信号外,还配有输出适合计算机积分仪的输口,这 样很方便构成色谱工作站系统。(可同时进行计算机和记录仪信号输出,亦可省去记录仪) 2.该仪器的数字显示设计为固定光吸收,A显示计算机用和可变量程光吸收A显示记 录仪用两种可选模式,这样可方便于规范化读数(特别是可应用于药品生产的GMP 工艺规范化管理),同时亦可根据科研需要进行可变量程的高灵敏度读数,这样可方便于对低浓度样品检测。 3.该仪器采用新型进口IP28光电倍增管和改进型电路结构,使仪器工作更为稳定可 靠。 该仪器配有上层析柱、恒流泵、部分收集器等等,即组成一套完整的液色湘色谱分离分析系统。它可应用于现代生物学研究,药物测定、农业科研、化工、食品及医疗单位对具有紫外吸收的样品作定量分析。本仪器主要元器件均采用进口,仪器全部采用LED数字显示,使用方便。 二.主要技术性能 (1)核酸蛋白检测仪提供波长:254nm、280nm。 (2)紫外检测仪提供波长:220nm、254nm、280nm、340nm。 (3)量程范围:0~100%T、0~2A、0~1A、0~0.5A、0~0.2A、0~0.1A、0~0.05A。 (4)流式样品池:容积100微升、光程3毫米。 微量样品池:容积30微升、光程10毫米。 (5)记录仪输出:10mV (6)积分仪输出:0.1A/mV (7)数显模式:固定A量程读数(0~2.0A);可变A量程读数(0~2.0A、0~1.0A、0~0.5A、0~0.2A、0~0.1A、0~0.05A)。 (8)量程在0.05A档时:噪音≦0.002A。 (9)工作环境温度:0℃~35℃。 (10)仪器可连续工作。 (11)电源:220VAC±10%50HZ。 (12)单体外形尺寸:280×180×158(mm)。 (13)主机重量:5㎏。 三.工作原理 从光源发出的光经狭缝,滤色器聚焦到样品池上,此单色光通过样品池射到光电倍增管的光阴极面上,使光束由于样品浓度不同所引起透光强度的变化转换成光电流变化,此光电流经放大器放大,并输入到对数转换器、使透光率T转换成光吸收A输出即A=lgT/1=ε·CL式中ε为待测样品的摩尔消光系数,C为样品浓度,采用摩尔/升单位,L为光程,用厘米作单位。根据上式只要测出了A、L和ε就可求出样品浓度C。若从放大器直接输入到记录仪,则在记录仪上绘出的是样品透光率T变化的图谱,若从对数转换器输入到记录仪上,在记录仪上绘出的是样品光吸收变化的图谱。 四.仪器结构 核酸蛋白检测仪、紫外检测仪是单光路结构,由紫外检测器、和记录仪部分组成现将其构造分别说明如下: 1.紫外检测仪: 它由光源、干涉滤色片、样品池、光电倍增管、放大和对数板、低压板和高压板等组成。面板上有四氟塑料管的进样口和出样口,A调零以及调节“光量”大小旋(光

车辆检测技术的介绍

车辆检测技术的介绍 摘要:车辆检测是智能交通的组成部分,是实现智能化监测、控制、分析、决策、调度和疏导的依据。本文分析了智能交通中常用的车辆检测方式、环境适应性和优缺点及线圈检测和视频检测的应用。 1.引言 智能交通系统(Intelligent Transportation Systems,ITS)在我国得到了广泛应用。车辆检测是智能交通系统的组成部分,通过车辆检测方式采集有效的道路交通信息,获得交通流量、车速、道路占有率、车间距、车辆类型等基础数据,有目的地实现监测、控制、分析、决策、调度和疏导。目前,车辆检测器的种类很多,如有线圈检测、视频检测、微波检测、激光检测、声波检测、超声波检测、磁力检测、红外线检测等。本文列举了几种国内智能交通中常用的车辆检测方式、环境适应性以及优缺点。 2.车辆检测方式特点比较 2.1线圈检测方式 通过一个电感器件即环形线圈与车辆检测器构成一个调谐电子系统,当车辆通过或停在线圈上会改变线圈的电感量,激发电路产生一个输出,从而检测到通过或停在线圈上的车辆。线圈检测技术成熟、易于掌握、计数非常精确、性能稳定。缺点是交通流数据单一、安装过程对可靠性和寿命影响很大、修理或安装需中断交通、影响路面寿命、易被重型车辆、路面修理等损坏。另外高纬度开冻期和低纬度夏季路面以及路面质量不好的地方对线圈的维护工作量比较大的。 2.2视频检测方式 视频检测方式是一种基于视频图像分析和计算机视觉技术对路面运动目标物体进行检测分析的视频处理技术。它能实时分析输入的交通图像,通过判断图像中划定的一个或者多个检测区域内的运动目标物体,获得所需的交通数据。该系统的优点是无需破坏路面,安装和维护比较方便,可为事故管理提供可视图像、可提供大量交通管理信息、单台摄像机和处理器可检测多车道。它的缺点是精度不高,容易受环境、天气、照度、干扰物等影响,对高速移动车辆的检测和捕获有一定困难。因为,拍摄高速移动车辆需要有足够快的快门(至少是1/3000S )、

GC126-FPD火焰光度检测器使用说明书

1 GC126-FPD火焰光度检测器 1.1引言 1.1.1 GC126-FPD火焰光度检测器概述 GC126-FPD火焰光度检测器是GC126气相色谱仪中选配的特种检测器之一,是专门用于检测含磷化物及含硫化物;是一种高选择性及高灵敏度的检测器。它只对含磷化物、硫化物有响应,而其它元素对它无干扰或干扰很小,因此这种检测器可以应用在石油化工中的含硫化物的微量检测。特别是自然界生物体内含磷、含硫化合物很多,新合成有机磷化物、硫化物、农药中的大量杀虫剂、杀菌剂都是含磷、含硫的有机化合物,而这些农药的残留量测定必须依赖于对磷、硫有高灵敏度及高选择性的火焰光度检测器(特别是对硫化物唯有采用火焰光度检测器测定)。 故火焰光度检测器可以广泛应用在生物、农业、环保、化工、医药、食品等行业的质量检验。 GC126-FPD火焰光度检测器有两个单元所组成,其一是火焰光度控制器包括微电流放大器和负高压稳压输出;其二是火焰光度检测器。本使用说明书仅对GC126-FPD火焰光度检测器的结构原理、操作方法和仪器保养、检修作较详细的说明。 1.1.2 GC126-FPD火焰光度检测器基本参数 1.1. 2.1 技术指标 检测限:对磷:Dt≤2×10-11g/s(p)(甲基对硫磷) 对硫:Dt≤1×10-10g/s(s)(甲基对硫磷) 基线噪声:≤10μV P;108;衰减1/32 (1mV量程) S;108;衰减1/8 (1mV量程) 基线漂移:≤30μV/30min 线性范围:对磷:103 对硫:102 启动时间:检测器开机≤2h应能正常工作。

1.1. 2.2 检测器使用要求 电源电压:220V±22V,50Hz±0.5Hz 功率:≤100W 环境温度:+5℃~35℃ 相对湿度:≤85% 环境条件:检测器安装室内应没有腐蚀性气体及不致使电子器件的放大器、色谱数据处理机及色谱工作站正常工作的电场和电磁场存在,检 测器安装后工作台应稳固,不能有振动,以免影响检测器正常工 作。在接氢气瓶或氢发生器的室内2m内不得有火种存在或发火 装置的可能性。 1.1. 2.3 外形体积 510mm(长)×370mm(宽)×200mm(高) 1.1. 2.4 重量 1kg(该重量是指本检测器所带附件及备件经包装后的重量参考值)。 1.1. 2.5 检测器成套性 GC126-FPD火焰光度检测器一台 附件、备件清单、合格证、说明书与检测器同装纸箱。 1.1.3 开箱与验收 收到仪器后,应该校对检测器型号与选购的检测器订单是否相符合。同时开箱检查仪器在运输过程中是否有损坏,若有明显损坏现象应立即与本厂质量检验科联系酌情处理。检测器自用户购买日起14个月内,厂方免费为用户进行非用户人为所至的故障修理。

油火检探头说明书

4.2 火焰检测系统 我厂用的火焰监示系统包括FORNEY 公司生产的DPD(数字剖面)火焰检测器和DP 7000 数字剖面放大器, 4.2.1火焰检测器 1)概述 FORNEY 公司生产的数字剖面火焰监测器(简称DPD 火检)可用于鉴别单燃烧器或多燃烧器燃烧环境中目标火焰的存在于否。DPD 火焰检测器采用了微处理器技术和专用软件,对目标火焰的频率和振幅特性不断地进行监测。 每个火焰有其独特的剖面特性,就犹如“指纹”一样。在“学习”模式下,DPD 火检对目标火焰交流信号的频谱进行实时分析以确定被监测火焰的类型(如:燃烧器有火、相邻燃烧器窜火、背景火焰、无火)以及火焰频谱的特定剖面形状;在“运行”模式下,火焰检测器则不断地将目标火焰信号与所学的剖面特性进行比较从而准确地判断火焰的状态。 2)特点: 智能显示——用于快速设置、精确瞄准以及火焰信号显示。 八位持续滚动的LED 显示提供火检所有设定值和火焰状况的瞬时读数显示。 编程简单可靠 按钮键盘可直接对火检进行编程和显示。但是为了避免未经授权的参数改动,在火检的后盖板下面装有编程驱动”Program Enable”锁定按钮。 灵活的运行参数 可选择火焰熄火响应时间(FFRT):2-6 秒 可选择背景火焰熄火响应时间(BFRT):2-8 秒 可选择有火信号延时:2-4 秒 可选择华氏或摄氏温度显示 适用于任何结构的燃烧器 适用于低Nox、枪式、摆动式、棒式、环式、层燃式等结构的燃烧器。 适用于任何燃料 Super-blue 型DPD 火焰检测器可适用于大多数燃料的火焰监测,而Classic 型DPD 火检适用于煤/油的火焰,我厂所用是Classic 型DPD 火检。 在摆动式燃烧器或者空间受限制的应用中可选用光纤 光纤可穿过拥挤的燃烧器空间使火焰检测器实现远程安装。 串行通讯——对火焰参数进行直接、实时的监测和分析 通过RS485 接口将参数上载/下载至计算机或其它智能设备。 24 伏直流工作电压

相关主题
文本预览
相关文档 最新文档