当前位置:文档之家› 运动控制仿真实验报告

运动控制仿真实验报告

运动控制仿真实验报告
运动控制仿真实验报告

运动控制仿真实验报告

姓名:班级:学号:

——晶闸管三相全控桥式整流仿真实验

——实用 Buck 变换仿真实验

晶闸管三相全控桥式整流仿真实验(大电感负载)

原理电路:

R2

晶闸管三相可控整流仿真实验2原理电路框图

输入三相交流电,额定电压380伏(相电压220伏),额定频率50Hz,星型联接。输入变压器可省略。为便于理解电路原理,要求用6只晶闸管搭建全控桥。

实验内容:

1、根据原理框图构建Matlab仿真模型。所需元件参考下表:

仿真元件库:Simulink Library Browser

示波器Simulink/sink/Scope

要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。

要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。

交流电源SimPowerSystems/Electrical Sources/AC Voltage Source

设定频率、幅值、相角,相位依次滞后120度。

晶闸管SimPowerSystems/Power Electronics/Thyristor

6脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator 设定为50Hz,双脉冲

利用电压检测构造线电压输入。Block端输入常数0.

输出通过信号分离器分为6路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1到6排列,注意按号分配给主电路对应晶闸管。

电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch

设定参数

负载切换开关SimPowerSystems/Elements/Breaker

设定动作时间

信号合成、分离Simulink/Signal Routing/Demux,Mux

电流傅立叶分解SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier 设定输出为50Hz,基波

有效值SimPowerSystems/Extra Library/Discrete Measurements/Discrete RMS value 设定为50Hz

位移功率因数计算Simulink/User-Difined Functions/Fcn

将度转换为弧度后计算余弦

常数Simulink/Sources/Constant

增益Simulink/Math Operations/Gain

乘除运算Simulink/Math/Divide

显示Simulink/sinks/Display

电压检测SimPowerSystems/Measurements/Voltage Measurement

电流检测SimPowerSystems/Measurements/Current Measurement

2、带阻感负载,电感0.1H, 设定触发角为30度:起动时基本负载20欧,0.3秒后并联一

个2欧姆电阻。

仿真设定:Configuration Parameters/Solver options

Type Variable-step Solver Ode23s

Max step size 1e-6 Relative tolerance 1e-5,其它不变

仿真时间0.6秒。

在MATLAB搭建的仿真电路如图:

仿真电路解释:

:代表6个晶闸管全控桥。

:代表触发角为30度,和6路脉冲分配。

:代表负载部分,R=20Ω,R1=2Ω,R4=0.1H(R4为电感),step为阶跃信号,0.3秒后产生阶跃,闭合开关。

:代表测量值。Ia代表a相电流有效值。I1代表输入电流的基波幅值,angle代表触发角,Vo输出电压有效值。

分析下列波形:

1)输入相电压、相电流;

a相的电流ia和三相电压波形如下:

2)输出电流(滤波前、后;突加负载前后)、输出电压;

输出电流:

输出电压:

3)1号晶闸管电压、电流;

4)输入电流的有效值、输入电流基波幅值、相角和输入功率因数。可以利用仿真库中相应检测元件自动检测、计算。

由图可知:输入电流的有效值140A,输入电流基波幅值189.1A,相角30.01°,输入功率因数cos30.01=0.866

5)输出电压平均值在轻载和重载下的稳态值。

输出电压平均值在轻载和重载下的有效值都为319.9V,平均值大约为为314.6V

6)将功率因数、输出电压平均值与教材公式计算的理论值比较。

有效值为U2=220/2,Ud=2.34U2cos30=315.2V

由于电感不可能无穷大,电感上存在压降,所以实际输出电压小于理论电压

3、

1>改变触发角大于 60 度,重复以上实验,分析实验结果。将触发角改为80°时,输出电压波形

输出电压平均值变小。由于电感的作用,出现了负的部分

输出电流波形:

放大后如图:

1 号晶闸管电压、电流:

2>输入电流的有效值、输入电流基波幅值、相角和输入功率因数由系统检测元件检测如下:

由图可知:输入电流的有效值28.09A,输入电流基波幅值37.94A,相角79.98°,输入功率因数1+cos(140)=0.234

3>输出电压平均值在轻载和重载下的稳态值:

有效值为:127.4V,平均值大约为:63.1V

理论值Ud=2.34U2(1+COS(140))=85.16V

由于电感不可能无穷大,电感上存在压降,所以实际输出电压小于理论电压

4、将电感减小到 1mH,重复上述实验,分析与大电感时的异同。(触发角30°)输出电压ud波形。

输出电流加载前后变化:

放大后如图:

由于电感太小,无法使负载电流连续。

1 号晶闸管电压、电流;

输入电流的有效值、输入电流基波幅值、相角和输入功率因数由系统检测元件检测如下:

由图可知:输入电流的有效值141.5A,输入电流基波幅值190.8A,相角29.25°,输入功率因数cos29.25=0.872

输出电压平均值大约为为314.8V

理论计算值Ud=2.34U2COSα=315.2V

由于电感不可能无穷大,电感上存在压降,所以实际输出电压小于理论电压

实验总结:

本实验仿真了晶闸管三相全控桥式整流在带阻感负载下的波形,讨论了不同电阻,不同电感,不同触发角对实验结果的影响,通过计算和对负载波形的观察可以得出,实验结果在误差范围内与理论上一致。

——实用Buck变换仿真实验

原理电路

E

实验内容:

1、依照原理电路搭建仿真模型。VT 采用场效应管。选择开关频率为50Hz,输入直流电压

200V,电感0.2mH,电容100uF,负载基本电阻20欧姆,加载并联电阻2欧姆。

3、根据原理框图构建Matlab仿真模型。所需元件参考下表:

仿真元件库:Simulink Library Browser

示波器Simulink/sink/Scope

要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。

要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。

直流电源SimPowerSystems/Electrical Sources/DC Voltage Source

设定电压。

场效应管SimPowerSystems/Power Electronics/Mosfet

取消检测输出口

调制波(三角波)发生器Simulink/Sources/Repeating Sequence

设定为50kHz,Time values=[0 5e-6 10e-6 15e-6 20e-6] , Output values=[0 1 0 -1 0] 常数Simulink/Sources/Constant

设定范围可在(-1,1)区间变化,初始设定值=-0.5 ,对应占空比0.25

加法器Simulink/Math/add 设定为-+。

过零比较器Simulink/Logic and Bit operations/Compare To Zero

电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch

设定参数

负载切换开关SimPowerSystems/Elements/Breaker

设定动作时间

增益Simulink/Math Operations/Gain

显示Simulink/sinks/Display

电压检测SimPowerSystems/Measurements/Voltage Measurement

电流检测SimPowerSystems/Measurements/Current Measurement

平均值SimPowerSystems/Extra Library/Discrete Measurements/Mean value

2、仿真设定:Configuration Parameters/Solver options

Type Variable-step Solver Ode23s

Max step size 1e-6 Relative tolerance 1e-5,其它不变

仿真时间0.1秒。加载时间0.07秒。

仿真电路图如下图:

2>实验结果分析: 场效应管的稳态工作电流、二极管电流、电感电流、电感电压、输出电流、输出电压;

场效应管的稳态工作电流:

放大后:

二极管电流:

放大后:

电感电流:

放大后:

电感电压:

放大后:

输出电流与输出电压:

3>分析加载前后输出电压电流的变化。对输出电压的平均值与理论计算值的误差进行讨论

输出电压的平均值:

由图可知,输出电压平均值为46.16V,由于占空比为25%,所以理论值为50V

实际输出出电压小于理论输出电压。

原因:电感L并不可能无穷大,所以在电感L上存在压降。

4、增加检测观察场效应管和二极管在开关过程中的工作电压;

由上面图,导通时,场效应管的电压为23V,二极管的电压为-177V;断开后,电感L和电容C通过二极管续流,此时二极管的工作电压就为0V,而场效应管的工作电压为200V。

5、改变占空比到50%(对应常数0)重复上述实验,分析实验结果;

场效应管的稳态工作电流、二极管电流、电感电流、电感电压、输出电流、输出电压;

场效应管的稳态工作电流:

放大后:

二极管电流:

放大后:

电感电流:

放大后:

电感电压:

放大后:

输出电流与输出电压:

3>分析加载前后输出电压电流的变化。对输出电压的平均值与理论计算值的误差进行讨论

输出电压的平均值:

由图可知,输出电压平均值为87.56V,由于占空比为50%,所以理论值为100V

实际输出出电压小于理论输出电压。

原因:电感L并不可能无穷大,所以在电感L上存在压降。

6、增加检测观察场效应管和二极管在开关过程中的工作电压;

由上面图,导通时,场效应管的电压为23V,二极管的电压为-177V;断开后,电感L和电容C通过二极管续流,此时二极管的工作电压就为0V,而场效应管的工作电压为200V。

7、设计电压闭环,采用pi 调节器通过闭环自动控制使输出电压平均值在负载变化前后自

动保持为50伏电压输出。

电路原理图为:

如图所示:调节P为0.1,I为5,采样频率为500Khz,

得到的输出电压如图:

结论:

P的影响:增大P可以加快系统的响应速度,但是当P过大时,系统可能会变得不稳定。当只有比例环节时,系统会有稳态误差

I的影响:积分环节可以消除稳态误差,当I过大时,系统的超调会过大,响应速度变慢。

实验结论:本实验仿真了实用Buck变换仿真实验,讨论了不同占空比和不同负载下的二极管电流、电感电流、电感电压、输出电流、输出电压,场效应管的稳态工作电流波形。得到的实验结果在误差范围内验证了理论分析的结果。同时也设计的电压环的闭环PI调节,增加了该次实验的应用性,与自控原理相结合,体现了学科交叉性。

交通仿真实验报告

交通仿真实验报告 篇一:交通仿真实验报告 目录 1 上机性质与目的.................................. 2 2 上机内容....................................... 2 3 交叉口几何条件、信号配时和交通流数据描述.......... 3 3.1 交叉口几何数据................................ 3 3.2 交叉口信号配时系统............................ 3 3.3 交叉口交通流数据.............................. 4 4 交叉口交通仿真.................................. 4 4.1 交通仿真步骤.................................. 4 4.2 二维输出..................................... 13 4.3 3D输出...................................... 14 5 仿真结果分析................................... 15 6 实验总结和体会 (15) 实验上机名称:信号交叉口仿真 1 上机性质与目的 本实验属于计算机仿真实验,借助仿真系统模拟平面信号交叉口场景,学生将完成从道路条件设计到信号相位配置等一系列仿真实验。 实验目的: 1. 了解平面信号交叉口在城市交通中的地位; 2. 了解平面信号交叉口的主要形式、规模等基本情况; 3. 了解交叉口信号相位配时及对交叉口通行能力的影响;

电力电子电路分析与仿真实验报告模板剖析

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号: 年月日

实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。

运动控制实验报告通用范本

内部编号:AN-QP-HT390 版本/ 修改状态:01 / 00 In Order T o Standardize The Management, Let All Personnel Enhance The Executive Power, Avoid Self- Development And Collective Work Planning Violation, According To The Fixed Mode To Form Daily Report To Hand In, Finally Realize The Effect Of Timely Update Progress, Quickly Grasp The Required Situation. 编辑:__________________ 审核:__________________ 单位:__________________ 运动控制实验报告通用范本

运动控制实验报告通用范本 使用指引:本报告文件可用于为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的效果。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 实验一晶闸管直流调速系统电流-转速调节器调试 一.实验目的 1.熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。2.掌握直流调速系统主要单元部件的调试步骤和方法。 二.实验内容 1.调节器的调试 三.实验设备及仪器 1.教学实验台主控制屏。2.MEL—11组件3.MCL—18组件4.双踪示波器5.万用表

机器人控制技术基础实验报告

华北电力大学 实验报告 | | 实验名称:机器人控制技术基础 课程名称:机器人控制技术基础 实验人:张钰信安1601 201609040126 李童能化1601 201605040111 韩翔宇能化1601 201605040104 成绩: 指导教师:林永君、房静 实验日期: 2016年3月4日-3月26日 华北电力大学工程训练中心

第一部分:单片机开发板 实验一:流水灯实验 实验目的:通过此实验,初步掌握单片机的 IO 口的基本操作。 实验内容:控制接在 P0.0上的 8个LED L0—L8 依次点亮,如此循环。 硬件说明: 根据流水灯的硬件连接,我们发现只有单片机的IO口输出为低电平时LED灯才会被点亮,我们先给P0口设定好初值,只让其点亮一盏灯,然后用左右移函数即可依次点亮其他的灯。 源程序如下: #include sbit led_1=P0^0; sbit led_2=P0^1; sbit led_3=P0^2; sbit led_4=P0^3; sbit led_5=P0^4; sbit led_6=P0^5; sbit led_7=P0^6; sbit led_8=P0^7; void main() { for(;;) { led_1=0; display_ms(10);

led_1=1; led_2=0; display_ms(10); led_2=1; led_3=0; display_ms(10); led_3=1; led_4=0; display_ms(10); led_4=1; led_5=0; display_ms(10); led_5=1; led_6=0; display_ms(10); led_6=1; led_7=0; display_ms(10); led_7=1; led_8=0; display_ms(10); led_8=1; } } 第二部分:机器人小车 内容简介:机器人小车完成如图规定的赛道,从规定的起点开始,记录完成赛道一圈的时间。必须在30秒之内完成,超时无效。其中当小车整体都在赛道外时停止比赛,视为犯规,小车不规定运动方向,顺时针和逆时针都可以采用,但都从规定的起点开始记录时间。 作品优点及应用前景: 单片机可靠性高,编程简单单片机执行一条指令的时间是μs级,执行一个扫描周期的时间为几ms乃至几十ms。相对于电器的动作时间而言,扫描周期是

交通运输系统仿真实验报告

一、系统描述 1.1.系统背景 本系统将基于下面的卫星屏幕快照创建一个模型。当前道路网区域的两条道路均为双向,每个运动方向包含一条车道。Tapiolavagen路边有一个巴士站,Menninkaisentie路边有一个带五个停车位的小型停车场。 1.2.系统描述 (1)仿真十字路口以及三个方向的道路,巴士站,停车点;添加小汽车、公交车的三维动画,添加红绿灯以及道路网络描述符; (2)创建仿真模型的汽车流程图,三个方向产生小汽车,仿真十字路口交通运行情况。添加滑条对仿真系统中的红绿灯时间进行实时调节。添加分析函数,统计系统内汽车滞留时间,用直方图进行实时展示。 二、仿真目标 1、timeInSystem值:在流程图的结尾模块用函数统计每辆汽车从产生到丢弃的,在系统中留存的时间。 2、p_SN为十字路口SN方向道路的绿灯时间,p_EW为十字路口EW方向道路的绿灯时间。 3、Arrival rate:各方向道路出现车辆的速率(peer hour)。

三、系统仿真概念分析 此交通仿真系统为低抽象层级的物理层模型,采用离散事件建模方法进行建模,利用过程流图构建离散事件模型。 此十字路口交通仿真系统中,实体为小汽车和公交车,可以源源不断地产生;资源为道路网络、红绿灯时间、停车点停车位和巴士站,需要实施分配。系统中小汽车(car)与公共汽车(bus)均为智能体,可设置其产生频率参数,行驶速度,停车点停留时间等。 四、建立系统流程 4.1.绘制道路 使用Road Traffic Library中的Road模块在卫星云图上勾画出所有的道路,绘制交叉口,并在交叉口处确保道路连通。 4.2.建立智能体对象 使用Road Traffic Library中的Car type模快建立小汽车(car)以及公共汽车(bus)的智能体对象。 4.3.建立逻辑 使用Road Traffic Library中的Car source、Car Move To、Car Dispose、

运动控制系统实验报告

运动控制系统实验报告 专业班级 学号 姓名 学院名称 运动控制仿真实验报告 一、实验内容与要求 1.单闭环转速负反馈 2.转速电流双闭环负反馈

3.晶闸管相控整流双闭环直流调速系统仿真模型搭建 具体要求:针对1 2 (1)仿真各环节参数 (2)仿真模型的建立 (3)仿真结果,分为空载还是负载,有无扰动 (4)仿真结果分析 二、Simulink 环境下的仿真 1.单闭环转速负反馈 1.1转速负反馈闭环调速系统仿真各环节参数 直流电动机:额定电压N U =220V ,额定电流dN I =55A ,额定N n =1000r/min ,电动机电动 势系数e C =0.192V ·min/r 。 假定晶闸管整流装置输出电流可逆,装置的放大系数s K =44,滞后时间常数 s T =0.00167s 。 电枢回路总电阻R=1.0Ω,电枢回路电磁时间常l T =0.00167s ,电力拖动统机电时间 常数m T =0.075s 。 转速反馈系数α=0.01V ·min/r 。 对应额定转速是的给定电压 n U =10V 。

1.2仿真模型的建立 图1-1单闭环转速负反馈直流调速系统的仿真模型 PI 调节器的值定为 =0.56, = 11.43。 图1-2单闭环转速负反馈直流调速系统加入扰动负载时的仿真模型 1.3仿真结果 p K 1

图1-3空载启动不加扰动转速和电流波形 图1-4空载启动加负载扰动转速和电流波形 1.4仿真结果分析 (1)空载启动无扰动:由空载启动不加扰动转速和电流波形可知,当 =0.56, = 11.43。系统转速有较大的超调量,但快速性较好的。空载启动电流的最大值有230A 左右,而额定电流 dN I =55A ,远远超过了电动机承受的最大电流。 (1)空载启动加负载扰动:由空载启动加负载扰动转速和电流波形可知,在空载启动1S 后加负载扰动,在1S 到1.5S 时间段,转速和电流有明显的下降,但系统马上进行了调节。 p K 1

智能控制理论基础实验报告

北京科技大学 智能控制理论基础实验报告 学院 专业班级 姓名 学号 指导教师 成绩 2014 年4月17日

实验一采用SIMULINK的系统仿真 一、实验目的及要求: 1.熟悉SIMULINK 工作环境及特点 2.掌握线性系统仿真常用基本模块的用法 3.掌握SIMULINK 的建模与仿真方法 二、实验内容: 1.了解SIMULINK模块库中各子模块基本功能 微分 积分 积分步长延时 状态空间模型 传递函数模型 传输延迟 可变传输延迟 零极点模型

直接查询表 函数功能块MATLAB函数 S函数(系统函数) 绝对值 点乘 增益 逻辑运算 符号函数 相加点 死区特性 手动开关 继电器特性 饱和特性 开关模块 信号分离模块 信号复合模块 输出端口 示波器模块 输出仿真数据到文件

通过实验熟悉以上模块的使用。 2. SIMULINK 的建模与仿真方法 (1)打开模块库,找出相应的模块。鼠标左键点击相应模块,拖拽到模型窗口中即可。 (2)创建子系统:当模型大而复杂时,可创建子系统。 (3)模块的封装: (4)设置仿真控制参数。 3.SIMULINK仿真实际应用 PID控制器的仿真实现。 控制对象的开环传递函数如下图: 加入PID控制器,求系统单位负反馈闭环单位阶跃响应,要求通过调节器的作用使系统满足超调量20%,上升时间3s,调节时间10s的要求。使输出曲线如下图。要求加入的PID控制器封装成一个模块使用。 三、实验报告要求: 1.针对具体实例写出上机的结果,体会其使用方法,并作出总结。

控制对象的开环传递函数如下图: 加入PID控制器,求系统单位负反馈闭环单位阶跃响应,要求通过调节器的作用使系统满足超调量20%,上升时间3s,调节时间10s的要求。使输出曲线如下图。要求加入的PID控制器封装成一个模块使用。PID如下: 图1-PID控制器仿真 设计的PID控制器参数为,P-0.3,I-0.5,D-0.4,尽可能的达到超调量20%,上升时间3s,调节时间10s的要求,仿真曲线图如下: 图2-PID控制器仿真曲线图 才实验开始的初期,我觉得这个实验过于简单,但是上手之后,我发现它是

交通仿真实验报告

土木工程与力学学院交通运输工程系 实 验 报 告 课程名称:交通仿真实验 实验名称:基于VISSIM的城市交通仿真实验 专业:交通工程 班级: 1002班 学号: U201014990 姓名:李波 指导教师:刘有军 实验时间: 2013.09 ---- 2013.10

实验报告目录 实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 实验报告二: 控制方式对十字交叉口运行效益影响的仿真分析实验报告三: 信号交叉口全方式交通建模与仿真分析 实验报告四: 信号协调控制对城市干道交通运行效益的比较分析实验报告五: 公交站点设置对交叉口运行效益的影响的仿真分析实验报告六: 城市互通式立交交通建模与仿真分析 实验报告七: 基于VISSIM的城市环形交叉口信号控制研究 实验报告成绩

实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 一、实验目的 熟悉交通仿真系统VISSIM软件的基本操作,掌握其基本功能的使用. 二、实验内容 1.认识VISSIM的界面; 2.实现基本路段仿真; 3.设置行程时间检测器; 4.设置路径的连接和决策; 5.设置冲突区 三、实验步骤 1、界面认识: 2、(1)更改语言环境—(2)新建文件—(3)编辑基本路段—(4)添加车流量 3、(1)设置检测器—(2)运行仿真并输出评价结果 4、(1)添加出口匝道—(2)连接匝道—(3)添加路径决策—(4)运行仿真 5、(1)添加相交道路—(2)添加车流量—(3)设置冲突域—(4)仿真查看 四、实验结果与分析

时间; 行程时间; #Veh; 车辆类别; 全部; 编号: 1; 1; 3600; 18.8; 24; 可知:检测器起终点的平均行程时间为:18.8; 五、实验结论 1、检测器设置的地点不同,检测得到的行程时间也不同。但与仿真速度无关。 2、VISSIM仿真系统的数据录入比较麻烦,输入程序相对复杂。 实验报告二: 控制方式对十字交叉口运行效益影响的仿真分析 一、实验目的 掌握十字信号交叉口处车道组设置、流量输入、交通流路径决策及交通信号控制等仿真操作的方法和技巧。 二、实验内容 1.底图的导入 2.交叉口专用车道和混用车道的设置方法和技巧 3.交通信号设置 4.交叉口冲突区让行规则设置

运动控制实验报告分析

运动控制系统实验报 告 姓名刘炜原 学号 201303080414

实验一 晶闸管直流调速系统电流 -转速调节器调试 一. 实验目的 1 ?熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2?掌握直流调速系统主要单元部件的调试步骤和方法。 三. 实验设备及仪器 1?教学实验台主控制屏。 2. ME —11 组件 3. MC —18 组件 4. 双踪示波器 5. 万用表 四. 实验方法 1. 速度调节器(ASR 的调试 按图1-5接线,DZS (零速封锁 器)的扭子 开关扳向“解除”。 (1) 调整输出正、负限幅值 “ 5”、“ 6”端 接可调电容, 使ASR 调节器为PI 调节器,加入 一定的输入电压(由MC —18的给 定提供,以下同),调整正、负限 幅电位器RR 、 RP ,使输出正负值 等于:5V 。 (2) 测定输入输出特性 将反馈网络中的电容短接 (“ 5”、“6 ”端短接),使 ASR 调节器为P 调节器,向调节器输入 端逐渐加入正负电压,测出相应的 输出电压,直至输出限幅值,并画 出曲线。 (3) 观察PI 特性 拆除“ 5”、“6”端短接线,突加 二.实验内容 1?调节器的调试 C B RF 4 2 HP1 RP2 6 4 2 3 1 NMCL-31A 可调电容,位于 NMCL-18的下部 封锁 -S 2 反 号 Q 9 ASR ( ??) DZS (零速封锁 解除 ACR 电就声书器) 11 12 图1-5速度调节器和电流调节器的调试接线图

给定电压(_0.1V),用慢扫描示波器观察输出电压的 变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容 箱改变数值。 2.电流调节器(ACR的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于_5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“ 9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“ 9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变 数值。

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段: 1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,

(最新整理)交通仿真实验报告

(完整)交通仿真实验报告 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)交通仿真实验报告)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)交通仿真实验报告的全部内容。

土木工程与力学学院交通运输工程系 实 验 报 告 课程名称:交通仿真实验 实验名称:基于VISSIM的城市交通仿真实验 专业:交通工程 班级: 1002班 学号: U201014990 姓名:李波

指导教师: 刘有军 实验时间: 2013。09 -——- 2013.10 实验报告目录 实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 实验报告二: 控制方式对十字交叉口运行效益影响的仿真分析 实验报告三: 信号交叉口全方式交通建模与仿真分析 实验报告四: 信号协调控制对城市干道交通运行效益的比较分析 实验报告五: 公交站点设置对交叉口运行效益的影响的仿真分析 实验报告六: 城市互通式立交交通建模与仿真分析 实验报告七: 基于VISSIM的城市环形交叉口信号控制研究 实验报告成绩

实验报告一: 无控交叉口冲突区设置与运行效益仿真分析 一、实验目的 熟悉交通仿真系统VISSIM软件的基本操作,掌握其基本功能的使用。 二、实验内容 1。认识VISSIM的界面; 2.实现基本路段仿真; 3.设置行程时间检测器; 4.设置路径的连接和决策; 5。设置冲突区 三、实验步骤 1、界面认识: 2、(1)更改语言环境—(2)新建文件—(3)编辑基本路段-(4)添加车流量 3、(1)设置检测器—(2)运行仿真并输出评价结果 4、(1)添加出口匝道—(2)连接匝道-(3)添加路径决策-(4)运行仿真 5、(1)添加相交道路—(2)添加车流量-(3)设置冲突域—(4)仿真查看 四、实验结果与分析

运动控制仿真实验报告

运动控制仿真实验报告 姓名:班级:学号: ——晶闸管三相全控桥式整流仿真实验 ——实用 Buck 变换仿真实验 晶闸管三相全控桥式整流仿真实验(大电感负载) 原理电路:

R2 晶闸管三相可控整流仿真实验2原理电路框图 输入三相交流电,额定电压380伏(相电压220伏),额定频率50Hz,星型联接。输入变压器可省略。为便于理解电路原理,要求用6只晶闸管搭建全控桥。 实验内容: 1、根据原理框图构建Matlab仿真模型。所需元件参考下表: 仿真元件库:Simulink Library Browser 示波器Simulink/sink/Scope 要观察到整个仿真时间段的结果波形必须取消对输出数据的5000点限制。 要观察波形的FFT结果时,使能保存数据到工作站。仿真结束后即可点击仿真模型左上方powergui打开FFT窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display即可看到结果。 交流电源SimPowerSystems/Electrical Sources/AC Voltage Source 设定频率、幅值、相角,相位依次滞后120度。 晶闸管SimPowerSystems/Power Electronics/Thyristor 6脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator 设定为50Hz,双脉冲 利用电压检测构造线电压输入。Block端输入常数0. 输出通过信号分离器分为6路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1到6排列,注意按号分配给主电路对应晶闸管。 电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch 设定参数 负载切换开关SimPowerSystems/Elements/Breaker 设定动作时间 信号合成、分离Simulink/Signal Routing/Demux,Mux 电流傅立叶分解SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier 设定输出为50Hz,基波 有效值SimPowerSystems/Extra Library/Discrete Measurements/Discrete RMS value 设定为50Hz 位移功率因数计算Simulink/User-Difined Functions/Fcn 将度转换为弧度后计算余弦

运动控制综合实验报告

班级:学号:姓名:指导老师:

实验一不可逆单闭环直流调速系统静特性的研究一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图4-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—31A组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流励磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

智能控制导论实验报告(2015) (zm)

《智能控制导论》上机实验报告 专业班级:自动化121 姓名:蒋德鹏 学号:201210401117 指导教师:詹跃东 昆明理工大学信息工程与自动化学院自动化系 2015年5月

洗衣机的模糊控制系统仿真 一、实验软件 Matlabb/Simulink 编程语言. 二、实验目的 1. 熟悉智能控制系统中的建模与控制过程; 2. 熟悉专家控制、模糊控制和神经网络的建模和控制算法的应用; 3. 熟悉专家控制、模糊控制和神经网络的编程语言的应用。 三、需要的预备知识 1. 熟悉Matlabb/Simulink 编程语言; 2. 熟悉专家控制、模糊控制和神经网络建模与控制方法; 3. 熟悉Matlabb/Simulink 的应用; 4. 熟悉Matlabb/Simulink 常用人机接口设计。 四、实验数据及步骤 1. 实验内容 洗衣机的模糊控制系统仿真; 2. 实验原理 模糊控制的基本原理和基本流程; 基本原理:模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它从行为上模仿人的模糊推理和决策过程。该方法首先将操作人员或专家经验编程模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。图为模糊控制原理框图。 图一 模糊控制原理框图 给定值 模糊化 模糊推理 规则库 逆模糊 传感器 执行机构 被控对象 精确量 模糊控制器

基本流程: 2. 实验步骤 (1)确定洗衣机模糊控制的结构 如图二所示为洗衣机模糊控制推理框图。 图二 洗衣机模糊控制推理框图 开始 确定模糊控制器的结构 定义输入、输出模糊集 定义隶属函数 污泥X 油脂 Y 洗涤时间Z 洗衣机模糊控 制器 建立模糊控制规则 模糊推理 Matlab 仿真 结束

HFSS波导仿真实验报告参考模板

《电磁场与电磁波》课程 仿真实验报告 学号U201213977 姓名唐彬 专业电子科学与技术 院(系)光学与电子信息学院2014 年12 月 3 日

1.实验目的 学会HFSS仿真波导的步骤,画出波导内场分布图,理解波的传播与截止概念。 2.实验内容 在HFSS中完成圆波导的设计与仿真,要求完成电场、磁场、面电流分布、传输曲线、色散曲线和功率的仿真计算。 3.仿真模型 (1)模型图形 (2)模型参数

(3)仿真计算参数 根据圆波导主模为TE 11, 1111 '=1.841 c f a p ==为半径, a=1mm,代入公式得截止频率f=8.8GHz,因此设置求解频率为11GHz,起始频率为9GHz,终止频率为35GHz。 4.实验结果及分析 4..1电场分布图

图形分析:将垂直于Z周的两个圆面设为激励源,利用animate选项可以发现,两个圆面上的电场强度按图中的颜色由红变蓝周期性变化,图形呈椭圆形,且上底面中心为红色时,下底面中心为蓝色。即上底面中心的电场强度最大时,下底面中心的电场强度为最小。这是由于波的反射造成的。对于圆波导的侧面,由动态图可知电场强度始终处于蓝绿色,也就是一直较小。这说明电场更多的是在两底面,即两激励源之间反射,反射到侧面上的电场较少。 4..2磁场分布图

图形分析:根据电场与磁场的关系式——课本式(9.46)可知,电场的大小是磁场大小的c倍(c为真空中的光速),电场方向与磁场方向处处垂直,在图中也可看出,波导中磁场的最大值出现在侧面,两底面的中心的颜色为蓝绿色,且底面的两边为双曲线的形状,这就是磁场与电场相互垂直的结果。另一方面,根据图中各个颜色代表的场强大小也可以近似验证,电场与磁场的大小的确是c倍的关系。而且在导体中的电磁波,磁场与电场还存在相位差,这一点也可从两者的动态图中验证该结论。

交通仿真transcad实验报告

《交通仿真技术与应用》课程实验报告 姓名: 学号:

实验一实验名称:熟悉Transcad地理文件编辑实验内容: 1、导入背景图片 2、新建线类型地理文件(线层和点层) 3、编辑线类型地理文件 4、为路段图层输入属性数据 5、新建和编辑面类型地理文件 6、矩阵文件建立与数据导入 7、创建相应的专题地图 实验结果:

实验总结: 在这次试验中,我们掌握了面类型和线类型地理文件的创建与编辑方法。理解地图与图层的概念,学会用样式、标注、图例等修饰地图。掌握数据表文件的创建与编辑方法。理解表格、字段、记录的含义与关系,掌握将数据表连接到地图的方法。掌握矩阵文件的创建与编辑方法。学会如何导入、导出矩阵数据。掌握专题地图的制作方法,包括色彩专题图、点密度专题图、等级符号专题图以及期望线图等。

实验二 实验名称:用回归模型进行出行生成预测 实验内容: 1、 基础数据准备及录入 2、 回归模型参数估计 3、 回归模型进行预测 4、 平衡产生量与吸引量 5、 出行生成结果预测分析 实验结果: 回归预测模型的标定,检验其可靠性。 出行产生吸引预测值: n I r 'LLXa VErunaki i rnuu*! 叫 1: S~31 X ULEJ 1 Ih. - " A 1 IDUJ" J 7niterlD| GOP| P Bate| Tia* II ^r TT 山| Aiea People A Ei?e| Pmple^Ft*| fiDP Fui F Fm A Fw| 1 H3S 1 20 1G49 175B 550 30 2085 2184 b [LW 4 3b n?st b +B JD12 翱 0L 72 b 1100 55 斟阳 1200 rt) ?1B/ 4?3S & 0 98 & IMO CD 站as 皇宙 讣a 70 ]?!? 3 0L71 3 1200 G5 第闊 3793 12B0 ?D 4S1B ; 49M 工 0L94 2 1600 so 狎53 心p IZOOT 100| 5732 5739 Saur 诧 4f 戏 H$fin SS F Ratio ladrl Z &. T5345e4-OD0 2_ 3?i£73e-H]O6 氐Mlgzs 3 https://www.doczj.com/doc/2410317771.html,Sl^OM 348M1 lot al 5昭?阳1刊匕40囲 IS qjaared =加射“ A4j R S1 fJoxR Estznietc 54-i Error 1 gtert coii^wr tM- 44J People -?.钏也2 4J1S3B 7, ;、 ■GDP 9 乩'?416 "3. TCjgj 1.痂冏 iREC-Uitldn TillE 样E UJ :0D!Ull. OUO JLeld N-aie leai Std Tk 『 PeqF>le 1?3, 33 396.86B ■GCP 52..別CO at. mr A _b?as - 3BdS. 33 113t M Sauree : M Ne-an SS F Katia ladel 2 匚:-:■:.: -■ ■ ■■ 占科贮LEi W T.目茁闊 Irrnr 3 i. a&mdw&s 伽GL T'Jlul 6. 4<-88^H-W H - ||-:- Std. Err ar 1 St B1 CaHFTiNT S2S- 664 Faxoie -S,-31790 6 20C59 Wk S04L01 COP 9 艮 71W 75.1949 1. 31:T2 Irenx'ioTi Tiw WEF iXJ :C'D :QD. 000 Std DeV 胡f %卍 21. E217 』1阪胡 立辑 |R 刪忻 常珀企 逵创Hi FLel d Naue Tetifple GCP FBhH'd E1 art a nc 卩了 口匚 sedijr-E Linear N D de 1 Es~i i nzrl L on with. KeEre ssEon flo>ziEl DCI Apri 1 DE. 201 E> -iUEzSy PK Rtgrtisiflft lo fel of /LPftBS fca U JZ ODC (All HecardnJ e p '”吐-id?4- 曰 Ejj E Io . 13 5 3 F 開 Iifct-er.Jef..i flELd. i£ f_Ba=.e Il ep tn den i £■ eld 1: A.BztsT R S-q-jared 二 CL 23?tl Adj F. EquHed =金-¥田6

数控机床仿真实验报告模板参考

本科生实验报告

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左 右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准); 页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 。

实验一数控车床操作加工仿真实验 一、实验目的 1、掌握手工编程的步骤。 2、掌握数控加工仿真系统的操作流程。 二、实验内容 1、了解数控仿真软件的应用背景。 2、掌握手工编程的步骤。 3、掌握SEMENS 802Se T 数控加工仿真操作流程。 三、实验设备 1、AUTO CAD 2014。 2、南京宇航数控加工仿真软件。 四、实验操作步骤 1、实验试件 试件的形状、尺寸如图1-1所示 2、加工采用的刀具参数 刀具及相关参数如表1-1所示 3、工序卡片根据零件材料、加工精度、加工路线、刀具参数表和切削用量等内容,确定加 工工序卡,如表1-2所示。 4、程序 5、加工仿真操作步骤

五、加工视窗 Yhcnc 输出信息 消息模式 欢迎使用YHCNC, 更多资料请登录https://www.doczj.com/doc/2410317771.html, 2017-03-29 15:20 。。。 评分模式 欢迎使用YHCNC, 更多资料请登录https://www.doczj.com/doc/2410317771.html, 2017-03-29 15:20 。。。 六、思考题 1、数控加工中的误差来源有哪些? 答:

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

2020年智能控制实验报告

智能控制实验报告 姓名 学院 专业自动化班级 学号 指导教师 成绩 2019 年 12 月 25 日 实验一 模糊控制在角度随动系统中的应用一、实验目的与意义学习 Matlab 中建立模糊控制器的方法;了解模糊控制在角度随动系统中的 应用。 二、实验内容在 Matlab 中建立模糊控制器,将生成的模糊规则表插入程序代码中,交叉 编译代码,下载到目标版中进行测试。 1 、Matlab 文本模式建立模糊控制器(必做) 2 、利用 Matlab 模糊逻辑工具箱建立模糊控制器(选做) 3 、模糊控制器 Simulink 仿真(必做) 4 、嵌入式程序交叉编译(选做) 三、实验结果 1 、matlab 文本模式建立模糊控制器 %Fuzzy Controller Design clear all; close all; %新建 FIS a=newfis("myfuzzy"); %输入e,范围[-48,48],7 个模糊语言,NB,NM,NS,Z,PS,PM,PB

a=addvar(a,"input","e",[-48 48]); %Parameter e a=addmf(a,"input",1,"NB","trimf",[-48 -36 -24]); a=addmf(a,"input",1,"NM","trimf",[-36 -24 -12]); a=addmf(a,"input",1,"NS","trimf",[-24 -12 0]); a=addmf(a,"input",1,"Z","trimf",[-12 0 12]); a=addmf(a,"input",1,"PS","trimf",[0 12 24]); a=addmf(a,"input",1,"PM","trimf",[12 24 36]); a=addmf(a,"input",1,"PB","trimf",[24 36 48]); %输入ec,范围[-64,64],7 个模糊语言,NB,NM,NS,Z,PS,PM,PB a=addvar(a,"input","ec",[-64 64]); %Parameter ec a=addmf(a,"input",2,"NB","trimf",[-64 -48 -32]); a=addmf(a,"input",2,"NM","trimf",[-48 -32 -16]); a=addmf(a,"input",2,"NS","trimf",[-32 -16 0]); a=addmf(a,"input",2,"Z","trimf",[-16 0 16]); a=addmf(a,"input",2,"PS","trimf",[0 16 32]); a=addmf(a,"input",2,"PM","trimf",[16 32 48]); a=addmf(a,"input",2,"PB","trimf",[32 48 64]); %输出u,范围[-90,90],7 个模糊语言,NB,NM,NS,Z,PS,PM,PB a=addvar(a,"output","u",[-90 90]); %Parameter u a=addmf(a,"output",1,"NB","trimf",[-90 -65 -45]); a=addmf(a,"output",1,"NM","trimf",[-65 -45 -25]); a=addmf(a,"output",1,"NS","trimf",[-45 -25 0]); a=addmf(a,"output",1,"Z","trimf",[-25 0 25]); a=addmf(a,"output",1,"PS","trimf",[0 25 45]); a=addmf(a,"output",1,"PM","trimf",[25 45 65]); a=addmf(a,"output",1,"PB","trimf",[45 65 90]); %模糊规则表,7*7=49 行,5 列 rulelist=[1 1 1 1 1; 1 2 1 1 1; 1 3 1 1 1; 1 4 2 1 1; 1 5 2 1 1; 1 6 3 1 1; 1 7 4 1 1;

相关主题
文本预览
相关文档 最新文档