当前位置:文档之家› 超小型仿生扑翼飞行器扑翼结构有限元分析

超小型仿生扑翼飞行器扑翼结构有限元分析

超小型仿生扑翼飞行器扑翼结构有限元分析
超小型仿生扑翼飞行器扑翼结构有限元分析

目录

摘要 (1)

ABSTRACT (2)

0 引言 (4)

1 国内外仿生扑翼飞行器研究的发展综述 (6)

1.1 国外研究的现状 (6)

1.2 国内研究的现状 (10)

1.3 课题研究的主要内容 (11)

2 超小型仿生扑翼飞行器扑翼有限元模型的建立 (11)

2.1 有限元分析的概述 (11)

2.1.1 有限元分析的原理 (11)

2.1.2弹性力学基础 (14)

2.2 ANSYS软件的介绍 (21)

2.2.1 前处理模块PREP7 (22)

2.2.2 求解模块SOLUTION (23)

2.2.3 后处理模块POST1和POST26 (24)

2.3 扑翼有限元模型的建立 (24)

2.3.1 超小型仿生扑翼飞行器扑翼几何物理模型的建立 (25)

2.3.2 单元类型的选择 (28)

2.3.3 单元特性的定义 (30)

2.3.4 有限元网格划分 (31)

2.4 本章小结 (32)

3 超小型仿生扑翼飞行器扑翼的静态力学特性讨论 (33)

3.1 超小型仿生扑翼飞行器扑翼的结构线性静力学分析 (33)

3.2 超小型仿生扑翼飞行器扑翼的结构非线性静力学分析 (37)

3.3 初探材料特性对仿生扑翼刚度等性能的影响 (40)

3.4 本章小结 (45)

4 结论 (45)

参考文献 (47)

译文 (50)

原文说明 (60)

摘要

超小型仿生扑翼飞行器是一种模仿鸟类或昆虫飞行的新概念飞行器,在应用技术上超出了传统的飞机设计和气动力的研究范畴,同时开创了微机电系统技术(MEMS)在航空领域的应用。设计和制造具有良好动力学特性的高效仿生扑翼,是超小型仿生扑翼飞行器研究中的一个关键环节,同时也是目前非常富有挑战性的研究难题。

本文利用有限元的基础理论,对仿照蜻蜓翅翼,设计的仿生扑翼进行结构静力学等内容的分析,研究了超小型仿生扑翼飞行器扑翼的结构特性等。文中的建模、分析方法及所得结论,为超小型仿生扑翼飞行器扑翼的设计、制作和应用提供了一定的理论依据。

本文基于蜻蜓真实的翅翼样本,利用ANSYS10.0软件,分别建立了仿生扑翼1和仿生扑翼2的几何结构模型,并通过选择适当的单元类型及设定特性参数,完成三维仿生扑翼1和仿生扑翼2的有限元模型。在此基础上,对超小型仿生扑翼飞行器扑翼进行静态特性分析,分别对仿生扑翼1和仿生扑翼2进行线性和非线性力学分析,比较两种情况下结构的变形及应力等静态性能,并初步探讨了改变材料特性对仿生扑翼刚度变形的影响,总结出仿生扑翼的几何外形和结构布局以及材料都会对扑翼的刚性产生一定的影响。

关键词:超小型飞行器,仿生扑翼,有限元分析

仿生扑翼飞行器的发展与展望

仿生扑翼飞行器的发展与展望 摘要:本文简要介绍了仿生扑翼飞行器的概念、特点及其历史,概述了仿生扑翼飞行器在国内外早期和当前的研究现状及未来的发展趋势。在此基础上,就目前研究中迫切需要解决的一些关键技术进行了讨论,并结合目前研究情况,对我国仿生扑翼飞行器的未来发展前景进行了展望。 关键词仿生;扑翼飞行器;微型飞行器;关键技术 Abstract:The concept,characteristics and usage of flapping-wing air vehicle are briefly introduced.The present research situation and future development trend of FA V are summarized. According to these,several key technologies of FA V are discussed.Taking into account the present situation .the future on the research of FA V in China is outlined. Key words:Bionics ; Flapping-wing air vehicle ; Micro air vehicle ; Key technology 1仿生飞行的历史与进展 1.1向鸟类学习 在中国两千年以前的航空神话和传说中,就有“人要是长着翅膀,就能在空中飞行”、“人骑着某种神奇的动物,可以飞行”等反映古人飞行理想和愿望的文字记载。多数昆虫长着一左一右两个或4个翅膀,他们都是飞行家,飞行技术非常高明。但因为昆虫比较小,翅膀的运动速度太快,不易被观察,在古人眼里,只认为鸟类是可以模仿的、最好的飞行家。传说中春秋时代(公元前770-前481)后期,鲁国著名的能工巧匠公输盘(有些史籍也记作“公输班”)研究并花费3年时间制造了能飞的木鸟,又名木鸢。如图所示 1.2实现飞行 1783年,法国蒙哥尔费兄弟发明热气球并载人飞行,开始了人类真正的空中航行。在人类利用轻于空气的航空器获得成功的 同时,也对重于空气的航空器一飞机进行探索和试验。英国的乔治.凯利(Cayley G)率先提出利用固定机翼产生升力的概念,他把鸟的飞行原理从上升和推进两种功能区别 开来,设计制造了能载人的滑翔机。1903 年莱特兄弟在滑翔机基础上加装自制内燃 机制成的“飞行者”1号试飞成功,持续时间59秒,标志着动力飞机飞行成功,开辟了人类的飞行新纪元,人类翱翔蓝天的梦想 得以真正实现。 1.3微型飞行器 1992年,美国国防高级研究计划局召开了关于未来军事技术的研讨会,第一次提出了微型飞行器MAY(Micro Air Vehicle)的概念,并提出其量级与昆虫及小鸟相似。从现有的研究情况看,微型飞行器按其飞行方式可分为传统的固定翼布局、旋翼布局和仿生扑翼式布局3类。固定翼式和旋翼式微型飞行器的研究迄今为止都达到了相当的水平。2000年8月,“Black Widow”原型机经过不断改进后,留空时间达到30分钟,最大活动半径为1.8km,最大飞行高度约235m,飞行重量为80克。旋翼微型飞行器因能垂直起降和悬停,比较适宜于在室内等狭小空间或较复杂地形环境中使用。回顾人类飞行的历史,研究者们重新认识到,纵观自然界的飞行生物,无一例外均采用扑翼的飞行方式,扑翼飞行是生物进化的最优飞行方式。于是人们又开始着眼于扑翼飞行器的研究。微型扑翼飞行器的机动性、灵活性及低能耗等方面可与蜻蜓、蜜蜂、或蜂鸟等飞行生物相媲美。经过近20年来研究者们的共同努力,微型扑翼飞行器在仿生学飞行机理、能

哈工大飞行器结构设计大作业指导书_最终版

《飞行器结构设计》课程大作业指导书 哈尔滨工业大学航空宇航制造系 2015年4月16日

一、要求与说明 1. 学生必须按照相关规范,在规定的时间内完成两个备选题目之一的大作业,并提交纸质和电子版文件。 2. 要求每名学生独立完成作业内容,如有抄袭、伪造等作弊行为则取消成绩,大作业的分数计入期末考核成绩。 二、题目 三、内容要求及规范 (二)分离机构连接计算与结构设计 1、设计的目的与意义 连接于分离机构的计算与设计是飞行器结构与机构分系统设计的重要部分,连接分离机构直接影响分离面处的连接刚度,而连接分离面又是飞行器载荷较为严重的部位。因此,为保证连接的可靠性,必须对分离机构中的关重件进行计算与校核,特别是起到连接与分离作用的爆炸螺栓组件。本设计作业的主要目的是通过对典型连接分离机构的计算与设计,使学生掌握此类结构设计的基本原理和方法,同时加深对飞行器结构设计的具体认识,为开展相关技术领域的研究与设计奠定基础。 2、设计输入条件 假设某型号导弹在发射阶段,由于横向载荷的作用,在连接面A1-A2会产生M=1500Nm的弯矩,同时已知气动过载的等效轴向载荷为F=800N,以压力形式作用于一二级分离面上,分离舱段对接框为环形接触面,被连接件间均采用石棉垫片。图2所示为轴向连接式对接框结构尺寸,图3所示为卡环式对接框尺寸,

两个舱段的平均壁度为6mm。假设舱段承力结构材料均为TC4,在设计过程中不考虑横向载荷产生的剪力,为使分离面紧密贴合,取安全系数f=1.5。此外,假定轴向连接分离机构由6个爆炸螺栓连接,卡环式连接分离机构由2个爆炸螺栓连接,爆炸螺栓螺杆材料为45号钢,且尺寸、规格同C级六角头螺栓。 图1 导弹一二级分离面受力示意图 3、设计任务 1)根据设计的输入条件,选择轴向连接或外置卡环式连接分离方式中的一种进行计算分析与结构设计。要求详细计算用于连接和分离的爆炸螺栓所受的工作总拉力,以及螺栓最大预紧力,并根据爆炸螺栓材料的屈服极限条件确定螺栓尺寸和规格。 2)按照计算分析的结果以及选择的爆炸螺栓结构尺寸,设计连接分离装置的具体结构,画出装配草图。 2 a) 轴向连接式分离面结构尺寸

仿生扑翼飞行器设计与制作

仿生扑翼飞行器设计与制作 摘要:随着仿生学的发展和材料动力技术的不断进步,人类能更好的模仿生物的运动,向大自然学习,服务人类。像鸟一样的飞行是人类几千年的梦想,近几年科研人员在扑翼飞行器的研究和制造方面有了很大的发展,目前世界上已经出现了许多扑翼飞行器,但其仿生程度任然较低。通过学习和研究我们选用了对称的五杆机构来实现飞行器的机翼的动作,并按照飞行原理设计了飞行器的升力机构和推力机构,最后做出了实物,进行了飞行试验。 关键词:仿生;扑翼飞行器;五杆机构;空气动力学;飞行试验 Designing and producting of the flapping wing flight vehicle in bionics ABSTRACT: Along with the development of bionics and material power technology advances, mankind can better imitate biological movement, learning to nature and servicing human. Flying Like a bird is the dream of human for several thousand years, In recent years researchers Made great progress in the flapping wing flight vehicle research and manufacturing. There are already some kind of the flapping wing flight vehicles in the word recently, but the bionic degree lower still. With the studying and researching we choose the symmetrical five-bar mechanism to realize the action of the wing of the aircraft, According to the principle of fly. I design the lift institutions and thrust institutions. Finally I made the craft, and test it. KEY WORDS:Bionic; The flapping wing flight vehicle; Five-bar mechanism; Aerodynamics; Flight test

扑翼式飞行器的发展与展望

扑翼式飞行器的发展与展望 从古至今,人们从没有放弃过对翱翔梦的追求。不仅在许多的古书名著中都有长着翅膀的角色形象,人们也一直在用实际行动尝试着各种飞行的可能。昆虫和鸟类的超强飞行能力逐渐引起了人们的关注,早在中国的汉代时期、欧洲的中世纪就有人模拟鸟类进行飞行活动的记载。随着科技的快速发展,以及飞行器在军事上和民用上的广泛应用前景,扑翼式飞行器已经成为当今的研究热点。 1扑翼式飞行器的发展史 1.1 扑翼式飞行器的早期发展 历史上记载了许多人们对飞行的各种尝试方法,《墨子?鲁问》中记载,鲁班制造的木鸟可以飞行三天;古代中国甚至有人将大鸟的羽毛贴在身上试图飞起来,但最终都失败了。人们逐渐认识到想要飞行必须加上合适的机械装置。 15世纪70年代,著名发明家莱昂纳多?达芬奇设计出一种由飞行员自己提供动力的飞行器,并称之为“扑翼飞机”。“扑翼飞机”模仿鸟儿、蝙蝠和恐龙时代的翼龙,具有多个翅膀。达芬奇认为扑翼机具备推力和提升力。之后人们仿照它进行了很多尝试,有的可以上下蹦跳几下,有的摔成碎片,结果都失败了。 1874年,法国生物学家马雷用连续拍摄的方式初步掌握了鸟类复杂的飞行扑翼动作,以当时的技术水平,这种高难度的动作是无法实现的,与此同时热气球的出现,就使早起人们对制造飞行器尝试告一段落,研究开始转向了其他领域。 1.2扑翼式飞行器国内外的研究现状 随着仿生技术、空气动力学和微加工技术的日益发展,加之军事和民用的广泛应用前景,扑翼式飞行器再次成为了国内外科学领域研究的热点。1997年,DAPRA投入3500万美元,开始了为期四年的MAV的研究计划。加州理工学院、多伦多大学、佐治亚技术研究所、佛罗里达大学、Vanderbilt大学等单位研制了不同结构的扑翼MAV,翼展一般在15cm左右,多采用电池提供能源,飞行时间约在几分钟到十几分钟。加州大学伯克利分校研制的“机器苍蝇”扑翼MAV 总重约为43mg,直径为5mm~10mm,采用太阳能电池和压电驱动。 西北工业大学研制的扑翼MAV采用聚合物锂电池和微型电机驱动,可实现扑翼15Hz~20Hz左右的频率上下拍动,翼展超过15cm。 2扑翼式飞行器的优势及可行性 按照飞行原理的不同划分,MAV可分为固定翼、旋翼和扑翼三种。同其他形式的微型飞行器相比,扑翼式飞行器可以通过自身机翼扇动产生的上下大气压差来飞行。它具有尺寸小、噪音弱、灵活性强、隐蔽性好的特点。 通过分析昆虫各个部分的结构,选用合理的驱动装置,并由电池或其他化学物质提供能源,仿照昆虫结构,同时辅以MEMS设备和装配技术,便可以加工制造出扑翼式微型飞行器。 3关键技术 3.1 空气动力学问题 微型飞行器不同于普通飞机,它的雷诺数大约在104左右,空气的粘性阻力相对比较大,并且扑翼式飞行器是以模仿鸟和昆虫类扑翅运动为基础,但是昆虫和鸟类的翅膀是平面薄体结构,而非机翼的流线型。我们应充分研究这种非传统

超小型仿生扑翼飞行器扑翼结构有限元分析

目录 摘要 (1) ABSTRACT (2) 0 引言 (4) 1 国内外仿生扑翼飞行器研究的发展综述 (6) 1.1 国外研究的现状 (6) 1.2 国内研究的现状 (10) 1.3 课题研究的主要内容 (11) 2 超小型仿生扑翼飞行器扑翼有限元模型的建立 (11) 2.1 有限元分析的概述 (11) 2.1.1 有限元分析的原理 (11) 2.1.2弹性力学基础 (14) 2.2 ANSYS软件的介绍 (21) 2.2.1 前处理模块PREP7 (22) 2.2.2 求解模块SOLUTION (23) 2.2.3 后处理模块POST1和POST26 (24) 2.3 扑翼有限元模型的建立 (24) 2.3.1 超小型仿生扑翼飞行器扑翼几何物理模型的建立 (25) 2.3.2 单元类型的选择 (28) 2.3.3 单元特性的定义 (30) 2.3.4 有限元网格划分 (31)

2.4 本章小结 (32) 3 超小型仿生扑翼飞行器扑翼的静态力学特性讨论 (33) 3.1 超小型仿生扑翼飞行器扑翼的结构线性静力学分析 (33) 3.2 超小型仿生扑翼飞行器扑翼的结构非线性静力学分析 (37) 3.3 初探材料特性对仿生扑翼刚度等性能的影响 (40) 3.4 本章小结 (45) 4 结论 (45) 参考文献 (47) 译文 (50) 原文说明 (60)

摘要 超小型仿生扑翼飞行器是一种模仿鸟类或昆虫飞行的新概念飞行器,在应用技术上超出了传统的飞机设计和气动力的研究范畴,同时开创了微机电系统技术(MEMS)在航空领域的应用。设计和制造具有良好动力学特性的高效仿生扑翼,是超小型仿生扑翼飞行器研究中的一个关键环节,同时也是目前非常富有挑战性的研究难题。 本文利用有限元的基础理论,对仿照蜻蜓翅翼,设计的仿生扑翼进行结构静力学等内容的分析,研究了超小型仿生扑翼飞行器扑翼的结构特性等。文中的建模、分析方法及所得结论,为超小型仿生扑翼飞行器扑翼的设计、制作和应用提供了一定的理论依据。 本文基于蜻蜓真实的翅翼样本,利用ANSYS10.0软件,分别建立了仿生扑翼1和仿生扑翼2的几何结构模型,并通过选择适当的单元类型及设定特性参数,完成三维仿生扑翼1和仿生扑翼2的有限元模型。在此基础上,对超小型仿生扑翼飞行器扑翼进行静态特性分析,分别对仿生扑翼1和仿生扑翼2进行线性和非线性力学分析,比较两种情况下结构的变形及应力等静态性能,并初步探讨了改变材料特性对仿生扑翼刚度变形的影响,总结出仿生扑翼的几何外形和结构布局以及材料都会对扑翼的刚性产生一定的影响。 关键词:超小型飞行器,仿生扑翼,有限元分析

载人扑翼飞行器研制的可行性报告

载人扑翼飞行器研制的可行性报告 摘要:北京二环到五环频频全线拥堵,上海高峰时段驾车出行举步维艰,深圳交通遭遇黑色周一,道路堵塞已成常态,十五个大城市每日因拥堵蒙受损失十几亿元,拥堵已成为各大城市的流行病,2010年中秋前夜的一场秋雨,北京上海各地出现创纪录大堵车,北京一地160条道路堵塞,济南,成都,长沙也显拥堵现象,交通拥堵已向二三线城市蔓延。随着中国经济社会的高速发展,人民生活水平的快速提高,机动车保有量以及增长速度屡创新高。据调查,现在每增加100万辆车,北京需要增加的公路里程数至少应该达到2800公里,这一数字相当于三环以内已经有的公路网络的容量,因此,很难在道路上面再去拓展,再去增加。各种治堵方案层出不穷,但至目前为止,作用有限,效果不尽人意。故而,对于人们日常出行,如果思考角度从地面二维空间向低空三维空间转变,鉴于三维空间的无限性,通过一种合适的方式和手段,必能解决现有的各种出项困局。 扑翼飞行器是人类最古老的梦想之一,就是能够肩插双翅像鸟一样在天空自由飞翔。与传统的固定翼和旋翼飞行器相比,扑翼飞行器的主要特点是,将升力、悬停、推进、控制功能全面集成于扑翼系统中,可以用很少的能量进行远距离飞行,同时具有高效率、高机动性、低噪音、无须专用起飞着陆场地等。 载人的大致上可以分为两类:一类是手动的,就是动力来源于手臂扑扇;一类是引擎作为动力来源的。在1894年左右,一个叫做奥多Otto Lilienthal的家伙在德国变得非常出名,主要是他几次公开的滑翔飞行,而且都成功了。同时这位老兄也对扑翼飞机进行了数次的实验。最后他还建造了这样的一架飞行器,可惜这位老兄走的太早,这项工程就没有完成。 最近的(意思就是中间的我就不搞文字工作了)在2010.8.2号,多伦多航空学院的一个哥们叫做todd reichert,试飞了一架人力的扑翼飞机,这飞机有个好名字叫做雪鸟。这架翼展达32M重约92.59磅的大家伙使用碳纤维、玻萨轻木、泡沫制作而成的;这个飞机可以飞15.91英里每小时。 2,空气动力学原理 如果你想深入的了解扑翼飞机,编者的建议是去英文网页搜索,那里有很多注释。

【CN109850144A】一种太阳能扑翼仿生飞行器【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910302505.6 (22)申请日 2019.04.16 (71)申请人 吉林大学 地址 130012 吉林省长春市前进大街2699 号 (72)发明人 张志君 陈默 杨贺捷 梁玉辉  辛相锦  (74)专利代理机构 长春吉大专利代理有限责任 公司 22201 代理人 邵铭康 朱世林 (51)Int.Cl. B64C 33/00(2006.01) B64C 33/02(2006.01) B64D 27/24(2006.01) (54)发明名称 一种太阳能扑翼仿生飞行器 (57)摘要 一种太阳能扑翼仿生飞行器属飞行器技术 领域,本发明中扑翼飞行器采用微型直流电机与 二级齿轮减速器的连接来驱动扑翼结构;仿生扑 翼太阳能薄膜翼板提供了铺放柔性薄膜太阳能 电池板的空间;扑翼飞行器尾翼由两个舵机分别 驱动曲柄转动,带动连杆摆动以实现尾翼的上 下、左右四个方向的转动。本发明能实现扑翼飞 行器的节能、高效、可持续,同时鸟类翅膀、尾翼 的结构及运动方式,在本发明的仿生扑翼飞行运 动得以体现,具有结构新颖、传动机构简单可靠、 能源可再生的优点。权利要求书2页 说明书5页 附图9页CN 109850144 A 2019.06.07 C N 109850144 A

权 利 要 求 书1/2页CN 109850144 A 1.一种太阳能扑翼仿生飞行器,其特征在于:由太阳能薄膜右翼板(A)、驱动-传动装置 (B)、太阳能薄膜左翼板(C)和仿生尾翼(D)组成,其中:所述的太阳能薄膜右翼板(A)和太阳能薄膜左翼板(C)为关于机身a-a中轴线的对称结构;太阳能薄膜右翼板(A)中右连杆(2)的a孔(a)与驱动-传动装置(B)中限位杆对a(15)上的i孔(i)和摇臂a(12)上的n孔(n)活动连接;右连杆(2)的b孔(b)经螺栓与摇臂对a(12)上的m孔(m)固接;太阳能薄膜左翼板(C)中左连杆(3)的a1孔(a1)与驱动-传动装置(B)中限位杆对b(36)上的i1孔(i1)和摇臂对b(35)上的n1孔(n1)活动连接;左连杆(3)的b1孔(b1)经螺栓与摇臂对b(35)上的m1孔(m1)固接;仿生尾翼(D)铰接于机身(1)的后端;仿生尾翼(D)中机身(1)的q槽(q)、r槽(r)、s槽(s)经o孔(o)与驱动-传动装置(B)的固定架(20)固接;驱动-传动装置(B)的太阳能充电控制器(32)和蓄电池(33)与侧机架(18)固接;太阳能充电控制器(32)与太阳能薄膜右翼板(A)和太阳能薄膜左翼板(C)的太阳能电池板(4)电路连接,蓄电池(33)一端连接太阳能充电控制器(32),蓄电池(33)另一端连接驱动-传动装置(B)的无刷电机(7)。 2.按权利要求1所述的一种太阳能扑翼仿生飞行器,其特征在于:所述的太阳能薄膜右翼板(A)与太阳能薄膜左翼板(C)为关于机身a-a中轴线的对称结构,其结构相同,方向相反,均由太阳能电池板(4)、翼板(5)、骨架(6)组成,其中骨架(6)上设有p孔(p);太阳能薄膜右翼板(A)上还设有右连杆(2),右连杆(2)左端设有a孔(a)和b孔(b);太阳能薄膜左翼板(C)上还设有左连杆(3),左连杆(3)右端设有a1孔(a1)和b1孔(b1);太阳能薄膜左翼板(C)的骨架(6)经p孔(p)与左连杆(3)固接,翼板(5)由骨架(6)支撑;太阳能电池板(4)粘接于翼板(5)上面;太阳能薄膜右翼板(A)的骨架经p孔与右连杆(2)固接,翼板由骨架支撑;太阳能电池板粘接于翼板上面。 3.按权利要求1所述的一种太阳能扑翼仿生飞行器,其特征在于:所述的驱动-传动装置(B)由无刷电机(7)、右机架(8)、一级小齿轮(9)、一级大齿轮(10)、二级小齿轮a(11)、摇臂对a(12)、轭a(13)、驱动杆对a(14)、限位杆对a(15)、二级大齿轮a(16)、螺栓组a(17)、侧机架(18)、二级小齿轮b(19)、固定架(20)、左机架(21)、一级轴(22)、二级轴(23)、二级大齿轮b(24)、轭b(34)、摇臂对b(35)、限位杆对b(36)、驱动杆b(37)和螺栓组b(38)组成,其中:右机架(8)与左机架(21)为关于机身a-a中轴线的对称结构;右机架(8)上设有c孔(c)、d孔(d)、e孔(e)、f孔(f)、g孔(g)和h孔(h);左机架(21)上设有c1孔(c1)、d1孔(d1)、e1孔(e1)、f1孔(f1)、g1孔(g1)和h1孔(h1);限位杆对a(15)上设有i孔(i);摇臂对a(12)上设有j孔(j)、k孔(k)、m孔(m)和n孔(n);限位杆对b(36)上设有i1孔(i1);摇臂对b(35)上设有j1孔(j1)、k1孔(k1)、m1孔(m1)和n1孔(n1);固定架(20)上设有o孔(o);右机架(8)与左机架(21)平行排列,并经侧机架(18)固接;无刷电机(7)经c孔(c)、d孔(d)、e孔(e)、f孔(f)与右机架(8)螺栓固接;无刷电机(7)经c1孔(c1)、d1孔(d1)、e1孔(e1)、f1孔(f1)与左机架(21)螺栓固接;一级小齿轮(9)固接于无刷电机(7)输出端;一级轴(22)与二级轴(23)平行排布;一级轴(22)上自右至左依次固接二级小齿轮a(11)、一级大齿轮(10)和二级小齿轮b(19),且一级轴(22)两端活动连接于右机架(8)的g孔(g)和左机架(21)的g1孔(g1)上;二级轴(23)上前后固定安装着二级大齿轮a(16)和二级大齿轮b(24),且二级轴(23)两端活动连接于右机架(8)的h孔(h)和左机架(21)的h1孔(h1)上;一级小齿轮(9)与一级大齿轮(10)啮合;二级小齿轮a(11)与二级大齿轮a(16)啮合;二级小齿轮b(19)与二级大齿轮b(24)啮合;限位杆对a(15)固接于右机架(8)右侧;摇臂对a(12)上的n孔(n)经销轴与连杆(1)的a孔(a)、限位 2

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

仿生扑翼飞行器原理

仿生扑翼飞行器原理 一.扑翼飞行器简介 扑翼飞行器是区别于固定翼飞行器、旋转翼飞行器的另一类飞行器,其飞行原理直接来自自然界的鸟类和昆虫的飞行方式。与固定翼和旋转翼相比有明显的优势。与固定翼飞行器相比,它可同时将举升、悬停、推进等功能集中在一个扑翼系统中;与旋转翼飞行器相比,它的能量利用率更高,即可推进飞行,也可滑翔飞行,而且更灵活。 二.飞行器的飞行原理 传统飞行器大致可分为三类:一类是根据牛顿第二定律,即作用力与反作用力定律,获得空气的反作用力进行飞行的,包括各类固定、旋转、扑翼飞行器;第二类是阿基米德原理,获取空气的浮力进行飞行,如各类飞艇,热气球;第三类是根据动量守恒定理飞行的,如,火箭,宇宙飞船的飞行等。 由上可知扑翼飞行器的动力来源是空气对飞行器的反作用力。从简单飞艇入手,飞行器的上升原因是因为空气对其竖直向上的推力大于其自身的重力。要获得前进方向的运动必须还得有一个水平的推力,这样飞行器才能完成基本的飞行。比如固定翼飞行器,一般由引擎提供水平的推力,机翼在高速气流的作用下产生升力,再如直升飞机,由引擎提供升力,螺旋桨与水平面的夹角产生的分力作为推力。 综上所述,扑翼飞行器必须能同时获得空气对其在水平和竖直方向上的足够的反作用力,即升力和推力,才能完成简单飞行。 三.对鸟类飞行的分析

了辉煌的成就,但是鸟类仍 是地球上最棒的‘飞行器’。 这里以鸽子作为研究对象。 鸽子可以在前进方向上以任 何角度飞行,还可以从容的 变化飞行姿势,随时转弯, 随意的起飞降落,同时飞行 动作可以清楚的观察。 鸽子的飞行主要归功于它灵活有力的翅膀和尾翼。下面我们将试着简 单的说明一下鸽子的飞行原理。根据前面的飞行原理,鸽子的翅膀必 须能产生竖直向上的升力和水平的推力(这两个力不一定是严格的水 平和竖直)。 1.升力的产生:在这里我们先假设空气是静止的。鸽子的翅膀可以围 绕身体作一定角度的摆动,向下摆动时翅膀展开,向上摆动时翅膀折 叠成到V形,而且往返摆动的时间不相等(这个有待验证)。由于翅 膀上下摆动时受力面积不同,从而导致翅膀上下摆动时的受力大小不 同,向下摆动时空气对翅膀的反作用力F1(竖直向上)大于向上摆 动时空气对翅膀的反作用力F2(竖直向下), 当F1>G时,产生向上的升力 连续的飞行动作是一个循环的过程,循环单元就是翅膀做一次 上下摆动,向上摆动记作T1,向下摆动记作T2。

基于仿生学的扑翼机设计与仿真

基于仿生学的扑翼机设计与仿真 苏扬、邵冠豪、史佳针、李根、李凯兴 (中国民航大学航空工程学院,天津,300300) 摘要:仿生扑翼飞行器是一种模仿昆虫或鸟类扑翼飞行的新型飞行器。由于具有重量轻、体积小、隐身性、可操作性好和成本低等特点,在国防和民用领域均有十分广泛的应用前景。本文主要介绍了基于仿生学研制的某小型扑翼无人飞行器,并对其设计思想和制作工艺进行详细阐述与说明。 关键词: 仿生学扑翼机无人侦察制作工艺 0 前言 论文详细介绍了一款基于仿生学研制的小型扑翼无人飞行器。该扑翼飞行器可以作为无人侦察机使用,整机重20g,采用四翅扑翼机构,翼展为280mm,整机全长仅190mm。该机采用轻木为材料来制作机身,KT板来制作尾翼。不但价格低廉,加工方便,而且还能很大程度上保持较轻的重量和足够的强度。扑翼传动机构采用3D打印技术进行制作,材料为PLA塑料。整机外形尺寸是以家燕为仿生对象来进行设计的,整机的外形尺寸参数如表1所示。 表 1 扑翼无人飞行器试验机结构参数(单位mm) 名称机身长度机身宽度机身最高处翼展机翼弦长机翼厚度垂尾高度 参数190 40 35 280 85 0.015 55 1 扑翼飞行器的设计与建模 扑翼机构采用四翅机构是由于四翅机构可以利用Wei-Fogh效应而产生较高的升力[2],这会对之后添加工作负载产生很大的帮助。机身结构外形尺寸参数是根据尺度效应[3]来确定的,在最大限度地减重和模仿家燕的同时,还留有一定的可调裕度以适应不同重量的负载。尾翼结构采用应用较为成熟的常规式尾翼。控制方面采用电磁舵机+微型接收机来作为控制舵面的方式。整机三维建模如图1所示。

飞行器结构优化设计课程总结

《飞行器结构优化设计》 ——课程总结 专业航天工程 学号GS0915207 姓名

《飞行器结构优化设计》课程总结报告 通过这门课程的学习,大致了解无论是飞行器、船舶还是桥梁等工程项目的传统结构设计流程:首先是根据技术参数、经验和一些简单的分析方法进行初始的结构设计,然后用较为精确的分析方法对初始设计进行核验,根据核验结果,逐步调整设计参数,直到得到满意的设计方案。但是这种传统设计方法的产品性能优劣主要就取决于设计人员的水平,而且设计周期长,并要耗费大量的人力和物力。随着高速、大容量电子计算机的广泛使用和一些精度高的力学分析数值方法的建立和应用,使得复杂的结构分析过程变得更加高效、精确。 本课程重点就在于介绍结构优化的各种分析方法。这些分析方法都是以计算机为工具,将非线性数学规划的理论和力学分析方法相结合,使用于受各种条件限制的承载结构设计情况。 优化问题的数学意义是在不等式约束条件下,求使目标函数为最小或最大值的一组设计变量值,在实际工程应用中,优化问题所包含的函数通常是非线性的和隐式的。建立在数学规划基础上的优化算法,是依据当前设计方案所对应的函数值与导数值等信息,按照某种规则在多维设计变量空间中进行搜索,一步一步逼近优化解。随着计算机的发展和数学计算方法不断进步,结构分析。优化的方法也是随之水涨船高。 一、有限元素法 这是基于在结构力学、材料力学和弹性力学基础上的一种分析方法。研究杆、梁,经简化薄板组成的结构的应力、变形等问题。其方法是首先通过力学分析将结构离散化成单一元素,然后对单一元素进行分析,算出各单元刚度矩阵后,进行整体分析,根据方程组K·u=P求解。这种方法求解的问题受限于结构的规模、形式和效率。 二、敏度分析 结构敏度是指结构性状函数,如位移、应力、振动频率等对设计变量的导数。近似函数的构成,以及许多有效的结构优化算法,皆要利用这些参数的一阶导数,以至二阶导数信息。 结构敏度分析的基础是结构分析,对于复杂的结构,精确的结构分析工作是

扑翼飞行器研制现状

扑翼飞行器研制现状 UTIAS Ornithopter No.1 多伦多大学有动力单座扑翼飞行器 WIKI UTIAS Ornithopter No.1 Role Experimental ornithopter Manufacturer University of Toronto Institute for Aerospace Studies Designer James DeLaurier First flight 8 July 2006 Number built 1 The UTIAS Ornithopter No.1 (registration C-GPTR) was an ornithopter built in Canada in the late 1990s. On 8 July 2006, it took off under its own power, assisted by a turbine jet engine, making a flight of around 300 metres that lasted 14 seconds. Specifications General characteristics Crew: One pilot Length: 7.47 m (24 ft 6 in) Wingspan: 12.56 m (41 ft 2 in) Gross weight: 322 kg (710 lb)

Powerplant: 1 × K?nig SC-430, 18 kW (24 hp) Performance Cruising speed: 82 km/h (51 mph) Ornithopter Report for 8 July 2006 Hello Everyone We have been runway testing once again. Recall that testing last year was curtailed because of problems with the jet-boost engine. At first this was due to electromagnetic interference: the main engine’s ignition scrambling the jet’s electronic control unit. Measures were taken to correct this, both by us and AMT Netherlands (the engine’s manufacturer). However, after this was dealt with a new problem occurred, where the engine’s glow plug simply wouldn’t ignite. A big clue was that the RPM wasn’t being displayed on the EDT (Electronic Data Terminal), and it turned out that the RPM sensor was damaged. AMT sent us a new one, and the problem was solved. A run-up on 8 June showed no problems with both engines, and the aircraft was then on standby for runway testing. The weather was suitable on Saturday, 8 July, and the team met early in the morning. The first run was at 9:00 and 50 mph was reached with the wings flapping at 0.8 Hz. There were a couple of brief liftoffs, but nothing close to sustained flight. Essentially, this was a repeat of the last run from 2005. The second run was at 9:10 and 51 mph was reached with 1.0 Hz flapping. Again, brief liftoffs were attained, but longer and higher. Runs 3 and 4 (9:20 and 9:38) were virtually identical, with slightly above 50 mph being reached with flapping between 1.05 and 1.1 Hz. Some very large hops were attained, but the engine was throttled back before the hopping continued. The final run was at 10:16, and the wings were given maximum throttle (1.0 Hz). The aircraft then lifted off and stayed off of the runway for a sustained flight of 14 seconds. The height was above one meter and the distance covered was about a third of a kilometer. After about 10 seconds of straight and level flight (amazing looking by the way), a cross wind caused the right wing to begin lifting and the aircraft began to experience roll divergence. Jack Sanderson then throttled back and brought it down, but its roll angle by that time was large enough that it touched the left wing tip and spun around to collapse the nose gear. Jack was fine and the damage isn’t drastic, so the team was in a celebratory mood while walking the aircraft back to the hangar. The important thing to remember is that the aircraft needed the jet boost to stay aloft. It wasn’t a pure flapping-wing flight. We had known that the wing was marginal because it was trying to fly a 770 lb aircraft, whereas it was designed for a 600 lb aircraft. Ornithopter wings are not happy operating at off-design conditions. What we learned is that the wing is actually slightly sub-marginal (not unexpected) and the jet boost was needed. Of course, in all fairness I should say that the jet alone

微型扑翼飞行器的现状及关键技术

无人机 本文2007-08-02收到, 作者分别系海军航空工程学院讲师、副教授和助教 图1 微型蝙蝠飞行器 微型扑翼飞行器的现状及关键技术 郭卫刚 贾忠湖 康小伟 摘 要 微型扑翼飞行器是高新技术的产物,是当前国内外研究的热点。简述了微型扑翼飞行器目前的发展现状,提出发展微型扑翼飞行器的几项关键技术,并对微型扑翼飞行器的发展趋势进行了展望。 关键词 扑翼机 微型飞行器 微机电系统(ME M S) MAV(M icro A ir Veh icle微型飞行器)由于具有特殊的用途(如侦察、电子干扰、搜寻、救援、生化探测等)而倍受关注。根据美国国防高级研究计划局(DARPA)提出的要求,微型飞行器的基本技术指标是:飞行器各个方向的最大尺寸不超过150mm,续航时间20m i n~60m in,航程达到10km以上,飞行速度22k m/h~45km/h,可以携带有效载荷,完成一定的任务[1]。 按飞行原理的不同,MAV分为固定翼、旋翼、扑翼三大类型。固定翼布局有许多问题亟待解决,如升阻比相对较小,在低雷诺数状态下机翼不能提供足够的升力,遭遇突风难以保持稳定等。旋翼布局尽管能够垂直起降和悬停,但其飞行速度低,质量大,仅适宜于在比较狭小的空间或复杂地形环境中使用。而综观生物的飞行,无一例外都是采用扑翼飞行方式。同常规布局相比,扑翼布局仅用一套扑翼系统就可代替螺旋桨或喷气发动机提供推力;扑翼可以使MAV像昆虫和鸟类那样低速飞行、盘旋、急转弯甚至倒飞;扑翼下面可以产生一种涡流,这是扑翼飞行器飞行的必要助推力,扑翼飞行器可以通过自身机翼扇动产生的上下大气压差来飞行。微型扑翼飞行器具有一般航空飞行器无法比拟的机动和气动性能,与无人侦察机相比,具有以下优势:可以低速飞行,可以随意改变方向,可以悬停,还可以向后倒退。 1 研究现状 在DARPA的资助下,微型扑翼飞行器的研究得到了很大进展,主要有加州理工学院与加利福尼亚洛杉矶大学共同研制的微型蝙蝠(M icrobat[2]),斯坦福研究中心和多伦多大学共同研制的引导者(M en-tor),乔治亚理工研究院及其协作者研制的昆虫机(Ento m opter)。 1.1 微型蝙蝠 微型蝙蝠是最早的电动扑翼飞行器,其机翼是采用微电机系统(ME MS)技术加工制作而成的。通过质量轻、摩擦低的传动机构将微电机的转动变为机翼的扑动。 加州理工学院在DARPA的倡议下依据仿生昆 19 飞航导弹 2007年第12期

仿生扑翼飞行器原理

仿生扑翼飞行器原理 This model paper was revised by the Standardization Office on December 10, 2020

仿生扑翼飞行器原理 一.扑翼飞行器简介 扑翼飞行器是区别于固定翼飞行器、旋转翼飞行器的另一类飞行器,其飞行原理直接来自自然界的鸟类和昆虫的飞行方式。与固定翼和旋转翼相比有明显的优势。与固定翼飞行器相比,它可同时将举升、悬停、推进等功能集中在一个扑翼系统中;与旋转翼飞行器相比,它的能量利用率更高,即可推进飞行,也可滑翔飞行,而且更灵活。 二.飞行器的飞行原理 传统飞行器大致可分为三类:一类是根据牛顿第二定律,即作用力与反作用力定律,获得空气的反作用力进行飞行的,包括各类固定、旋转、扑翼飞行器;第二类是阿基米德原理,获取空气的浮力进行飞行,如各类飞艇,热气球;第三类是根据动量守恒定理飞行的,如,火箭,宇宙飞船的飞行等。 由上可知扑翼飞行器的动力来源是空气对飞行器的反作用力。从简单飞艇入手,飞行器的上升原因是因为空气对其竖直向上的推力大于其自身的重力。要获得前进方向的运动必须还得有一个水平的推力,这样飞行器才能完成基本的飞行。比如固定翼飞行器,一般由引擎提供水平的推力,机翼在高速气流的作用下产生升力,再如直升飞机,由引擎提供升力,螺旋桨与水平面的夹角产生的分力作为推力。 综上所述,扑翼飞行器必须能同时获得空气对其在水平和竖直方向上的足够的反作用力,即升力和推力,才能完成简单飞行。 三.对鸟类飞行的分析

尽管人类对飞行器的研究有了辉煌 的成就,但是鸟类仍是地球上最棒的 ‘飞行器’。这里以鸽子作为研究对 象。鸽子可以在前进方向上以任何角度 飞行,还可以从容的变化飞行姿势,随 时转弯,随意的起飞降落,同时飞行动 作可以清楚的观察。 鸽子的飞行主要归功于它灵活有力的翅膀和尾翼。下面我们将试着简单的说明一下鸽子的飞行原理。根据前面的飞行原理,鸽子的翅膀必须能产生竖直向上的升力和水平的推力(这两个力不一定是严格的水平和竖直)。 1.升力的产生:在这里我们先假设空气是静止的。鸽子的翅膀可以围绕身体作一定角度的摆动,向下摆动时翅膀展开,向上摆动时翅膀折叠成到V形,而且往返摆动的时间不相等(这个有待验证)。由于翅膀上下摆动时受力面积不同,从而导致翅膀上下摆动时的受力大小不同,向下摆动时空气对翅膀的反作用力F1(竖直向上)大于向上摆动时空气对翅膀的反作用力F2(竖直向下), 当F1>G时,产生向上的升力 连续的飞行动作是一个循环的过程,循环单元就是翅膀做一次上下摆动,向上摆动记作T1,向下摆动记作T2。

相关主题
文本预览
相关文档 最新文档