当前位置:文档之家› 高中理科数学常见题型篇(直线和圆锥曲线)

高中理科数学常见题型篇(直线和圆锥曲线)

直线和圆锥曲线经常考查的一些题型

直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.

直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。 解决直线和圆锥曲线的位置关系的解题步骤是:

(1)直线的斜率不存在,直线的斜率存在, (2)联立直线和曲线的方程组; (3)讨论类一元二次方程 (4)一元二次方程的判别式 (5)韦达定理,同类坐标变换 (6)同点纵横坐标变换

(7)x,y ,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等

运用的知识:

1、中点坐标公式:1212,y 22

x x y y

x ++=

=,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,

则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,

AB ===

=

或者AB =

==

= 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-

两条直线垂直,则直线所在的向量120v v =

4、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则

1212,b c

x x x x a a

+=-=。

常见的一些题型:

题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点的问题

题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题

题型六:面积问题

题型七:弦或弦长为定值问题 题型八:角度问题

问题九:四点共线问题

问题十:范围问题(本质是函数问题) 问题十一、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、

直角),四边形(矩形、菱形、正方形),圆)

题型一:数形结合确定直线和圆锥曲线的位置关系

例题1、已知直线:1l y kx =+与椭圆22:14x y C m

+=始终有交点,求m 的取值范围

思路点拨:直线方程的特点是过定点(0,1),椭圆的特点是过定点(-2,0)和(2,0),和动点

04m ≠(,且。

解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点

0,4m ≠(,且,如果直线:1l y kx =+和椭圆22

:14x y C m

+=14m ≠,且,

即14m m ≤≠且。

规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+?过定点(,)

:(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2)

证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。

练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。

A .4

B .3

C .2

D .1

分析:作出抛物线232

--=x x y ,

判断点P(3,2)相对抛物线的位置。

解:抛物线232

--=x x y 如图,点P (3,2)在抛物线

的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232

--=x x y 只有一个公共点的直线有一条。故选择D

规律提示:含焦点的区域为圆锥曲线的内部。(这里可以用公司的设备画图) 一、过一定点P 和抛物线只有一个公共点的直线的条数情况:

(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;

(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;

(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。

二、过定点P 和双曲线只有一个公共点的直线的条数情况:

(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;

(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;

(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;

(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;

(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。

题型二:弦的垂直平分线问题

弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题2、过点T(-1,0)作直线l 与曲线N :2

y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。

分析:过点T(-1,0)的直线和曲线N :2

y x =相交A 、B 两点,则直线的斜率存在且不等于0,可以设直线的方程,联立方程组,消元,分析类一元二次方程,看判别式,运用韦达定理,得弦的中点坐标,再

由垂直和中点,写出垂直平分线的方程,得出E 点坐标,最后由正三角形的性质:中线长是边长的2

倍。运用弦长公式求弦长。

解:依题意知,直线的斜率存在,且不等于0。设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2

(1)y k x y x

=+??

=?消y 整理,得2222

(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2

2

4

2

(21)4410k k k ?=--=-+>即2

1

04

k <<

② 由韦达定理,得:212221,k x x k -+=-121x x =。则线段AB 的中点为22

211

(,)22k k k --。 线段的垂直平分线方程为:221112()22k y x k k k --=-- , 令y=0,得021122x k =-,则211(,0)22

E k -

ABE ? 为正三角形,∴2

11

(

,0)22

E k -到直线AB 的距离d AB 。

AB = =

d = = 解得k = 此时0

53

x =。 思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系

倍,将k 确定,进而求出0x 的坐标。

例题3、已知椭圆12

22

=+y x 的左焦点为F ,O 为坐标原点。 (Ⅰ)求过点O 、F ,并且与2x =-相切

的圆的方程;(Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

分析:第一问求圆的方程,运用几何法:圆心在弦的垂直平分线上,圆心到

切线的距离等于圆心到定点的距离;第二问,过定点的弦的垂直平分线如果和x 轴相交,则弦的斜率存在,且不等于0,设出弦AB 所在的直线的方程,运用韦达定理求出弦中点的横坐标,由弦AB 的方程求出中点的总坐标,再有弦AB 的斜率,得到线段AB 的垂直平分线的方程,就可以得到点G 的坐标。

解:(I) ∵a 2

=2,b 2

=1,∴c=1,F(-1,0),l:x=-2. ∵圆过点O 、F,∴圆心M 在直线x=-上2

1 设M(-t ,2

1),则圆半径:r =|(-21)-(-2)|=23

由|OM|=r ,得2

3

)2

1

(2

2=

+-t

,解得t=±2, ∴所求圆的方程为(x+

21)2+(y ±2)2=4

9. (II)由题意可知,直线AB 的斜率存在,且不等于0,设直线AB 的方程为y=k(x+1)(k ≠0),

代入2

2x +y 2=1,整理得(1+2k 2)x 2+4k 2x+2k 2

-2=0

∵直线AB 过椭圆的左焦点F , ∴方程一定有两个不等实根,

设A(x 1,y 1),B(x 2,y 2),AB 中点N(x 0,y 0),则x 1+x 1=-,1242

2

+k k 2012212(),221k x x x k =+=-+002

(1)21

k

y k x k =+=+ ∴AB 垂直平分线NG 的方程为)(1

00x x k

y y --

=- 令y=0,得22002222121C k k x x ky k k =+=-+++222

11

21242

k k k =-=-+++ ∵.02

1,0<<-

∴≠c x k ∴点G 横坐标的取值范围为(0,21

-)。 技巧提示:直线过定点设直线的斜率k ,利用韦达定理,将弦的中点用k 表示出来,韦达定理就是同类

坐标变换的技巧,是解析几何中解决直线和圆锥曲线问题的两大技巧之第一个技巧。再利用垂直关系将弦AB 的垂直平分线方程写出来,就求出了横截距的坐标(关于k 的函数)。直线和圆锥曲线中参数的范围问题,就是函数的值域问题。

练习1:已知椭圆)0(1:2222>>=+b a b

y a x C 过点)23,1(,且离心率21

=e 。

(Ⅰ)求椭圆方程;

(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点)0,8

1(G ,求k 的取值范围。

分析:第一问中已知椭圆的离心率,可以得到,a b 的关系式,再根据“过点)2

3,1(”得到,a b 的第

2

个关系式,解方程组,就可以解出,a b 的值,确定椭圆方程。

第二问,设出交点坐标,联立方程组,转化为一元二次方程,通过判别式得出,k m 的不等式,再根据韦达定理,得出弦MN 的中点的横坐标,利用弦的直线方程,得到中点的纵坐标,由中点坐标和定点

)0,8

1

(G ,得垂直平分线的斜率,有垂直平分线的斜率和弦的斜率之积为-1,可得,k m 的等式,用k 表示m 再代入不等式,就可以求出k 的取值范围。

解:(Ⅰ) 离心率2

1=e ,2213144b a ∴=-=,即22

43b a =(1);

又椭圆过点)2

3,1(,则221914a b +=,(1)式代入上式,解得24a =,2

3b =,椭圆方程为22143x y +=。

(Ⅱ)设1122(,),(,)M x y N x y ,弦MN 的中点A 00(,)x y 由22

3412

y kx m x y =+??

+=?得:222

(34)84120k x mkx m +++-=, 直线)0(:≠+=k m kx y l 与椭圆交于不同的两点,

2222644(34)(412)0m k k m ∴?=-+->,即2243m k <+ (1)

由韦达定理得:21212228412

,3434mk m x x x x k k -+=-=

++, 则2000222

443,343434mk mk m

x y kx m m k k k

=-=+=-+=+++, 直线AG 的斜率为:222

32434413234348

AG

m

m

k K mk mk k k +==

-----+, 由直线AG 和直线MN 垂直可得:2

2413234m

k mk k =---- ,即2348k m k +=-,代入(1)式,可得22234()438k k k +<+,即21

20

k >

,则k k ><。 老师支招:如果只说一条直线和椭圆相交,没有说直线过点或没给出直线的斜率,就直接设直线的方程为:y kx m =+,再和曲线联立,转化成一元二次方程,就能找到解决问题的门路。本题解决过程中运用了两大解题技巧:与韦达定理有关的同类坐标变换技巧,与点的纵、横坐标有关的同点纵横坐标变换

技巧。解决直线和圆锥曲线的问题的关键就是充分、灵活的运用这两大解题技巧。 练习2、设1F 、2F 分别是椭圆

22

154

x y +=的左右焦点.是否存在过点(5,0)A 的直线l 与椭圆交于不同的两点C 、D ,使得22F C F D =?若存在,求直线l 的方程;若不存在,请说明理由. 分析:由22F C F D =得,点C 、D 关于过2F 的直

线对称,由直线l 过的定点A(5,0)不在22

154

x y +=的内部,可以设直线l 的方程为:(5)y k x =-,联立方程组,得一元二次方

程,根据判别式,得出斜率k 的取值范围,由韦达定理得弦CD 的中点M 的坐标,由点M 和点F 1

标,得斜率为1

k

-

,解出k 值,看是否在判别式的取值范围内。 解:假设存在直线满足题意,由题意知,过A 的直线的斜率存在,且不等于。设直线l 的方程为:

(5),(0)y k x k =-≠,C 11(,)x y 、D 22(,)x y ,CD 的中点M 00(,)x y 。

由22

(5)4520

y k x x y =-??

+=?得:2222

(45)50125200k x k x k +-+-=, 又直线l 与椭圆交于不同的两点C 、D ,则22

2

2

=(50)4(45)(12520)0k k k ?-+->,即2105

k <<

。 由韦达定理得:22121222

5012520

,4545k k x x x x k k

-+==++, 则2212000

222252520,(5)(5)2454545x x k k k x y k x k k k k +-===-=-=+++,M(222545k k +,2

2045k

k -+)。 又点2F (1,0),则直线2MF 的斜率为2

222

2

2054525151

45MF k

k

k k k k

k -

+==--+, 根据2CD MF ⊥得:21MF k k =- ,即2

2

5115k k =--,此方程无解,即k 不存在,也就是不存在满足条件

的直线。

老师提醒:通过以上2个例题和2个练习,我们可以看出,解决垂直平分线的问题,即对称问题分两步:第一步,有弦所在的直线和曲线联立,转化为一元二次方程(或类一元二次方程),通过判别式得不等式,由韦达定理得出弦中点的坐标;第二步是利用垂直关系,得出斜率之积为-1,或者是利用中点坐标和对称轴直线的斜率,写出垂直平分线的方程,就可以解决问题。需要注意的一点是,求出的参数一定要满足判别式。

题型三:动弦过定点的问题

圆锥曲线自身有一些规律性的东西,其中一些性质是和直线与圆锥曲线相交的弦有关系,对这样的一些性质,我们必须了如指掌,并且必须会证明。随着几何画板的开发,实现了机器证明几何问题,好多以前我们不知道的、了解不深入的几何或代数性质,都如雨后春笋般的出来了,其中大部分都有可以遵循的规律,高考出题人,也得设计好思维,让我们在他们设好的路上“走”出来。下面我们就通过几个考题领略一下其风采。

例题4、已知椭圆C :22221(0)x y a b a b

+=>>

的离心率为2,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论。

分析:第一问是待定系数法求轨迹方程;第二问中,点A 1、A 2的坐标都知道,可以设直线PA 1、PA 2的方程,直线PA 1和椭圆交点是A 1(-2,0)和M ,通过韦达定理,可以求出点M 的坐标,同理可以求出点N 的坐标。动点P 在直线:(2)l x t t =>上,相当于知道了点P 的横坐标了,由直线PA 1、PA 2的方程可以

求出P 点的纵坐标,得到两条直线的斜率的关系,通过所求的M 、N 点的坐标,求出直线MN 的方程,将交点的坐标代入,如果解出的t>2,就可以了,否则就不存在。

解:(I )由已知椭圆C

的离心率c e a ==2a =,

则得1c b ==。从而椭圆的方程为2214

x y +=

(II )设11(,)M x y ,22(,)N x y ,直线1A M 的斜率为1k ,则直线1A M 的方程为1(2)y k x =+,由

122

(2)

44

y k x x y =+??+=?消y 整理得

222121(14)161640k x k x k +++-=

12x - 和是方程的两个根,2112

1

164

214k x k -∴-=+ 则

211212814k x k -=+,1

12

1414k y k =+,即点M 的坐标为2112211284(

,)1414k k k k -++, 同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为2

22

22

22

824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=- 12122

k k k k t

-∴

=-+,

直线MN 的方程为:

121

121

y y y y x x x x --=--, ∴令y=0,得211212x y x y x y y -=

-,将点M 、N 的坐标代入,化简后得:4

x t

=

又2t > ,∴402t

<

<

椭圆的焦点为

4

t

∴=

t =

故当t =MN 过椭圆的焦点。 方法总结:本题由点A 1(-2,0)的横坐标-2是方程2

2

2

121(14)161640k x k x k +++-=的一个根,结合韦

达定理运用同类坐标变换,得到点M 的横坐标:2

112

12814k x k -=+,

再利用直线A 1M 的方程通过同点的坐标变换,得点M 的纵坐标:1

12

1414k y k =

+;

其实由222(2)44y k x x y =-??+=?消y 整理得222

222(14)161640k x k x k +-+-=,得到2

222

2

164214k x k -=+

,即

222228214k x k -=+,2

22

2

414k y k -=+很快。 不过如果看到:将2112

1164214k x k --=+中的12k k 用换下来,1x 前的系数2用-2换下来,就得点N 的

坐标222

22

22

824(,)1414k k k k --++,如果在解题时,能看到这一点,计算量将减少,这样真容易出错,但这样减少计算量。

本题的关键是看到点P 的双重身份:点P 即

在直线

1A M 上也在直线A 2N 上,进而得到

12122

k k k k t

-=-+,由直线

MN 的方程

121

121y y y y x x x x --=--得直线与x 轴的交点,即横截距

2112

12

x y x y x y y -=

-,将点M 、N 的坐标代入,化简

4x t =

,由4

t

=

t =

,到此不要忘了考察t =是否满足2t >。

另外:也可以直接设P(t ,y 0),通过A 1,A 2的坐标写出直线PA 1,PA 2的直线方程,再分别和椭圆联立,

通过韦达定理求出M 、N 的坐标,再写出直线MN 的方程。再过点F ,求出t 值。

例题5、(07山东理)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3;最小值为1; (Ⅰ)求椭圆C 的标准方程;

(Ⅱ)若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。

分析:第一问,是待定系数法求椭圆的标准方程;第二问,直线m kx y l +=:与椭圆C 相交于A ,B 两点,并且椭圆的右顶点和A 、B 的连线互相垂直,证明直线l 过定点,就是通过垂直建立k 、m 的一次函数关系。

解(I )由题意设椭圆的标准方程为22

221(0)x y a b a b +=>>

3,1a c a c +=-=,2

2,1,3a c b === 22

143

x y ∴+

= (II )设1122(,),(,)A x y B x y ,由22

3412

y kx m x y =+??

+=?得222

(34)84(3)0k x mkx m +++-=,

22226416(34)(3)0m k k m ?=-+->,22340k m +->

2121222

84(3)

,3434mk m x x x x k k

-+=-?=++(注意:这一步是同类坐标变换) 222

2

121212122

3(4)

()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=

+(注意:这一步叫同点纵、横坐标间的变换)

以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-,

1212122

y y

x x ∴

?=---,1212122()40y y x x x x +-++=, 222222

3(4)4(3)1640343434m k m mk

k k k --+++=+++, 2271640m mk k ++=,解得1222,7

k m k m =-=-

,且满足22

340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-

时,2:()7

l y k x =-,直线过定点2(,0)7, 综上可知,直线l 过定点,定点坐标为2(,0).7

名师经验:在直线和圆锥曲线的位置关系题中,以弦为直径的圆经过某个点,就是“弦对定点张直角”,

也就是定点和弦的两端点连线互相垂直,得斜率之积为1-,建立等式。直线不过定点,也不知道斜率,设出m kx y l +=:,是经常用的一招,在第二讲中就遇到了这样设的直线。

练习:直线m kx y l +=:和抛物线2

2y px =相交于A 、B ,以AB 为直径的圆过抛物线的顶点,证明:直线m kx y l +=:过定点,并求定点的坐标。

分析:以AB 为直径的圆过抛物线的顶点O ,则OA ⊥OB ,若设1122(,),(,)A x y B x y ,则1212

0xx yy +=,

再通过

22

12121212()()()y y kx m kx m k x x mk x x m ?=+?+=+++,将条件转化为

221212(1)()0k x x mk x x m ++++=,再通过直线和抛物线联立,计算判别式后,可以得到12x x ,12x x +,

解出k 、m 的等式,就可以了。 解:设1122(,),(,)A x y B x y ,由2

2y kx m y px =+??

=?

得,2

220ky py mp -+=,(这里消x 得到的) 则2480p mkp ?=->………………(1) 由韦达定理,得:121222p mp

y y y y k k

+=

=

,,

则2

121212122

()y m y m y y m y y m x x k k k ---++==

, 以AB 为直径的圆过抛物线的顶点O ,则OA ⊥OB ,即12120x x y y +=,

可得2

1212122

()0y y m y y m y y k

-+++=,则22(1)220k mp pm m k +-+=, 即2

2

20k mp m k +=,又0mk ≠,则2m kp =-,且使(1)成立, 此时2(2)l y kx m kx kp k x p =+=-=-:,直线恒过点(2,0)p 。

名师指点:本题解决过程中,有一个消元技巧,就是直线和抛物线联立时,要消去一次项,计算量小一些,也运用了同类坐标变换——韦达定理,同点纵、横坐标变换-------直线方程的纵坐标表示横坐标。其实解析几何就这么点知识,你发现了吗?

题型四:过已知曲线上定点的弦的问题

若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。下面我们就通过例题领略一下思维过程。

例题6、已知点A 、B 、C 是椭圆E :22

221x y a b

+= (0)a b >>上的三点,其中点A 是椭圆的右

顶点,直线BC 过椭圆的中心O ,且0AC BC =

,2BC AC = ,如图。(I)求点C 的坐标及椭圆E 的

方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =对称,求直线PQ 的斜率。

解:(I) 2BC AC = ,且BC 过椭圆的中心O OC AC ∴=

0AC BC = 2

A C O π∴∠= , 又 ∴点C 的坐标为。

A 是椭圆的右顶点, a ∴=22

2112x y b +=

将点C 代入方程,得2

4b =,∴椭圆E 的方程为

22

1124

x y +=

(II) 直线PC 与直线QC

关于直线x =

∴设直线PC 的斜率为k ,则直线QC 的斜率为k -,从而直线PC 的方程为:

(y k x =

,即)y kx k =+-,

由22

)

3120

y kx k x y ?=+-??

+-=??消y ,整理得:

222(13)(1)91830k x k x k k ++-+--

=x = 是方程的一个根,

229183

13P k k x k --∴=

+

即2P x =

同理可得:2Q x =

))P Q P Q y y kx k kx k -=+-+-+

=()P Q k x x +-

22P Q x x -=

13P Q PQ P Q

y y k x x -∴=

=

- 则直线PQ 的斜率为定值1

3

。 方法总结:本题第二问中,由“直线PC 与直线QC

关于直线x =对称”得两直线的斜率互为相反数,设直线PC 的斜率为k ,就得直线QC 的斜率为-k

222(13)(1)91830k x k x k k ++-+--=的根,易得点P 的横坐标:

2P x =,再将其中的k 用-k 换下来,就得到了点Q 的横坐标:

2Q x =,这样计算量就减少了许多,在考场上就节省了大量的时间。 接下来,如果分别利用直线PC 、QC 的方程通过坐标变换法将点P 、Q 的纵坐标也求出来,计算量会增加许多。

直接计算P Q y y -、P Q x x -,就降低了计算量。总之,本题有两处是需要同学们好好想一想,如何解决此类问题,一是过曲线上的点的直线和曲线相交,点的坐标是方程组消元后得到的方程的根;二是利用直线的斜率互为相反数,减少计算量,达到节省时间的目的。 练习2、:(2009辽宁卷文、理)已知,椭圆C 以过点A (1,3

2

),两个焦点为(-1,0)(1,0)。 (1) 求椭圆C 的方程;

(2) E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率

为定值,并求出这个定值。

分析:第一问中,知道焦点,则 ,再根据过点A ,通过解方程组,就可以求出 ,求出方程。

第二问中,设出直线AE 的斜率k ,写出直线的方程,联立方程组,转化成一元二次方程,由韦达定理和点A 的坐标,可以求出点E 的坐标,将点E 中的k,用-k 换下来,就可以得到点F 的坐标,通过计算y E-y F ,

x E-x F ,就可以求出直线EF 的斜率了

解:(Ⅰ)由题意,c=1,可设椭圆方程为 ,将点A 的坐标代入方 程: ,解得 , (舍去) 所以椭圆方程为 。 (Ⅱ)设直线AE 方程为:3

(1)2

y k x =-+,代入22143x y +=得

2223

(34)4(32)4()1202k x k k x k ++-+--=

设(x ,y )E E E ,(x ,y )F F F ,因为点3

(1,)2

A 在椭圆上,所以

22

3

4()12

2x 34F k k

--=+ 3

2E E y kx k =+- ………8分 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以—K 代K ,可得

22

3

4()12

2x 34F k k

+-=+ 3

2E E y kx k =-++ 所以直线EF 的斜率()21

2

F E F E EF F E F E y y k x x k K x x x x --++=

==--

即直线EF 的斜率为定值,其值为

1

2

。 ……12分 老师总结:此类题的关键就是定点在曲线上,定点的坐标是方程的根,通过韦达定理,将动点的坐标求出,在根据斜率互为相反数,就可以直接求出第二动点的坐标,最后由斜率公式,可以求出斜率为定值。

题型五:共线向量问题

解析几何中的向量共线,就是将向量问题转化为同类坐标的比例问题,再通过未达定理------同类坐标变换,将问题解决。此类问题不难解决。

例题7、设过点D(0,3)的直线交曲线M :于P 、Q 两点,且DP DQ l =uuu r uuu r

,求实数l 的取值范围。 分析:由DP DQ l =u u u r u u u r

可以得到12

1

23(3)x x y y l l ì?=?í

?=+-??,将P(x 1,y 1),Q(x 2,y 2),代人曲线方程,解出点的坐标,用

22

1a b =+2

2

,a b 22

2211

x y a a +=-221914(1)a a +=-2

4a =22114a c =<=22

143

x y +=

l 表示出来。

解:设P(x 1,y 1),Q(x 2,y 2), 由DP DQ l =uuu r uuu r

得(x 1,y 1-3)=l (x 2,y 2-3) 即12123(3)x x y y l l ì=??í

?=+-???

方法一:方程组消元法

又P 、Q 是椭圆29x +24y =1上的点 22222222

194

()(33)19

4x y x y l l l ì??+=???í?+-?+=???? 消去x 2, 可得222

222

(33)14y y l l l l +--=- 即y 2=

1356l l

- 又Q 在椭圆上,-2≤y 2≤2, ∴ -2≤

135

6l l -≤2 解之得:155

λ≤≤ 则实数l 的取值范围是1,55??

????

方法二:判别式法、韦达定理法、配凑法

设直线PQ 的方程为:3,0y kx k =+≠,由22

3

4936y kx x y =+??+=?

消y 整理后,得 22(49)54450k x kx +++=

P 、Q 是曲线M 上的两点 22(54)445(49)k k ∴?=-?+=2144800k -≥

即2

95k ≥ ① 由韦达定理得:121222

5445

,4949k x x x x k k

+=-

=++ 212121221()2x x x x x x x x +=++ 2222

54(1)

45(49)k k λλ

+∴=+ 即2222

36944

15(1)99k k k λλ+==++ ②

由①得211095k <

≤,代入②,整理得 236915(1)5λλ<≤+, 解之得1

55

λ<<

当直线PQ 的斜率不存在,即0x =时,易知5λ=或15λ=

。 总之实数l 的取值范围是1,55??

????

。 方法总结:通过比较本题的第二步的两种解法,可知第一种解法,比较简单,第二种方法是通性通法,

但计算量较大,纵观高考中的解析几何题,若放在后两题,很多情况下能用通性通法解,但计算量较大,计算繁琐,考生必须有较强的意志力和极强的计算能力;不用通性通法,要求考生必须深入思考,有较强的思维能力,在命题人设计的框架中,找出破解的蛛丝马迹,通过自己的思维将问题解决。 例题8:已知椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线2

4

1x y =

的焦点,离心

率为5

5

2.(1)求椭圆C 的标准方程; (2)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1λ=,2λ=,求21λλ+的值.

分析:

(07福建理科)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂

线,垂足为点Q ,且QP QF FP FQ ?=?

。 (Ⅰ)求动点P 的轨迹C 的方程; (Ⅱ)过点F 的直线交

轨迹C 于A 、B 两点,交直线l 于点M ,已知12,MA AF AF BF λλ==

,求12λλ+的值。

小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分. 解法一:

(Ⅰ)设点()P x y ,,则(1)Q y -,,由QP QF FP FQ =

得: (10)(2)(1)(2)x y x y y +-=-- ,,,,,化简得2:4C y x =.

(Ⅱ)设直线AB 的方程为: 1(0)x my m =+≠.

设11()A x y ,,22()B x y ,,又21M m ?

?-- ???,,联立方程组241y x x my ?=?=+?

,,,消去x 得:

2440y my --=,2(4)120m ?=-+>,故1212

44y y m y y +=??

=-?,

. 由1MA AF λ= ,2MB BF λ= 得:1112y y m λ+=-,2222

y y m

λ+=-,整理得:

1121my λ=--

,2221my λ=--,12122112m y y λλ??∴+=--+ ?

??12

12

22y y m y y +=-- 2424

m

m =--

- 0= 解法二:(Ⅰ)由QP QF FP FQ =

得:()0FQ PQ PF +=

, ()()0PQ PF PQ PF ∴-+=

, 220PQ PF ∴-= , P Q P F ∴=

所以点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为:2

4y x =.

(Ⅱ)由已知1MA AF λ= ,2MB BF λ=

,得120λλ<

. 则:12

MA AF MB BF

λλ=-

.…………① 过点A B ,分别作准线l 的垂线,垂足分别为1A ,1B ,则有:11MA AA AF

MB BB BF == .…………②

由①②得:12AF AF

BF BF

λλ-=

,即120λλ+=.

练习:设椭圆)0(12

:2

22>=+

a y a x C 的左、右焦点分别为1F 、2F ,A 是椭圆C 上的一点,且0212=?F F AF ,坐标原点O 到直线1AF 的距离为||3

1

1OF . (1)求椭圆C 的方程;

(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点)0,1(-P ,较y 轴于点M ,若QP MQ 2=,求直线l 的方程.

山东2006理 双曲线C 与椭圆22

184

x y +=有相同的焦点,直线y =x 3为C 的一条渐近线。 (I ) 求双曲线C 的方程;(II)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与

C 的顶点不重合)。当12PQ QA QB λλ== ,且3

8

21-=+λλ时,求Q 点的坐标。

解:(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零。 设l 的方程:114,(,)y kx A x y =+,22(,)B x y 则4

(,0)Q k

-

1PQ QA λ= 11144

(,4)(,)x y k k

λ∴--=+

1111111

14444()44x k k x k k y y λλλλ?=--??-=+??

∴?????-==-???

11)(,A x y 在双曲线C 上, ∴21211

11616

()10k λλλ+--= ∴222211161632160.3k k λλλ++-

-= ∴2221116

(16)32160.3

k k λλ-++-= 同理有:22

22216(16)32160.3

k k λλ-++-=

若2

160,k -=则直线l 过顶点,不合题意.2

160,k ∴-≠12,λλ∴是二次方程

22216(16)32160.3k x x k -++-

=的两根. 122328163

k λλ∴+==-- 24k ∴=, 此时0,2k ?>∴=±. ∴所求Q 的坐标为(2,0)±. 解法二:由题意知直线l 的斜率k 存在且不等于零

设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4

(,0)Q k

-. 1PQ QA λ= , Q ∴分PA 的比为1λ.

由定比分点坐标公式得111

11

11111144(1)14401x x k k y y λλλλλλλ??

-==-+??+??→??+??=-=??+??

下同解法一

解法三:由题意知直线l 的斜率k 存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4

(,0)Q k

-

. 12PQ QA QB λλ== ,111222444

(,4)(,)(,)x y x y k k k

λλ∴--=+=+.

11224y y λλ∴-==, 114y λ∴=-,224y λ=-, 又128

3

λλ+=-, 121123y y ∴+=

即12123()2y y y y += 将4y kx =+代入2

2

13

y x -=得 222(3)244830k y y k --+-= 230k -≠ ,否则l 与渐近线平行。

212122224483,33k y y y y k k -∴+==--。 2

22

244833233k k k -∴?=?-- 2k ∴=± (2,0)

Q ∴± 解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y

则4(,0)Q k - 1P Q Q A λ= , 11144

(,4)(,)x y k k λ∴--=+。

∴11144

44k kx x k

λ-

==-

++ 同理 1244kx λ=-+ 1212448443kx kx λλ+=--=-++. 即 2

121225()80k x x k x x +++=

(*)

22

4

1

3

y kx y x =+-= 消去y 得22(3)8190k x kx ---=. 当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,2

30k -≠。

由韦达定理有:122

122

8319

3k x x k x x k +=

-=-

- 代入(*)式得

24,2k k ==±

∴所求Q 点的坐标为(2,0)±。

练习:已知椭圆C 的中心在原点,焦点在x 轴上,它的一个顶点恰好是抛物线2

4x y =的焦点,离心率

(1)求椭圆C 的标准方程;(2)点P 为椭圆上一点,弦PA 、PB 分别过焦点F 1、F 2,(PA 、PB 都不与x 轴垂直,其点P 的纵坐标不为0),若111222,PF F A PF F B λλ==

,求12λλ+的值。

解:(1)设椭圆C 的方程为:22221(0)x y a b a b +=>>,则b=1,由222411155b e a =-=-=,得25a =,

则椭圆的方程为:2

215

x y += (2)由2

215

x y +=得:12(2,0),(2,0)F F -,设001122(,),(,),(,)P x y A x y B x y , 有111222,PF F A PF F B λλ==

得:0011100222(2,)(2,),(2,)(2,)x y x y x y x y λλ---=+--=-

解得:001212

,y y y y λλ=-

=-, 根据PA 、PB 都不与x 轴垂直,且00y ≠,设直线PA 的方程为:00(2)2y y x x =++,代人2

215

x y +=,

整理后,得:2

2

2

2

00000(2)54(2)0x y y y x y y ??++-+-=??

根据韦达定理,得:2

001220(2)5y y y x y -=++,则0

122

(2)5y y x y -=++, 从而,220101(2)5y x y y λ=-

=++ 同理可求220202

(2)5y

x y y λ=-=-+ 则2

2

2

2

2

2

12000000(2)5(2)52(5)4x y x y x y λλ+=+++-+=++

由00(,)P x y 为椭圆2

215

x y +=上一点得:220055x y +=, 则1218λλ+=, 故12λλ+的值为18.

题型六:面积问题

例题8、(07陕西理)已知椭圆C :12222=+b

y a x (a >b >0)的离心率为,36

短轴一个端点到右焦点的距离为3。(Ⅰ)求椭圆C 的方程;

(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为

2

3

,求△AOB 面积的最大值。 解:(Ⅰ)设椭圆的半焦距为c

,依题意3c a a ?=???=?

1b ∴=,∴所求椭圆方程为22

13x y +=。

(Ⅱ)设11()A x y ,,22()B x y ,。 (1)当AB x ⊥

轴时,AB =。 (2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+。

2=

,得2

23(1)4

m k =+。 把y kx m =+代入椭圆方程,整理得2

2

2

(31)6330k x kmx m +++-=,

122

631

km

x x k -∴+=+,21223(1)31m x x k -=+。 2

2

2

21(1)()AB k x x ∴=+-2222

222

3612(1)(1)(31)31k m m k k k ??

-=+-??++??

222222222

12(1)(31)3(1)(91)

(31)(31)

k k m k k k k ++-++==++ 242

22121212

33(0)34196123696k k k k k k

=+=+≠+=++?+++≤。 当且仅当2

2

1

9k k

=

,即k =时等号成立。当0k =

时,AB =, 综上所述max 2AB =。 ∴当AB 最大时,AOB △

面积取最大值max 12S AB =?=。 练习1、(07浙江理)如图,直线y kx b =+与椭圆2

214

x y +=交于A 、B 两点,记ABC ?的面积为S 。

(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;

(Ⅱ)当12==,S AB 时,求直线AB 的方程。

本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力。满分14分。

解:(Ⅰ)解:设点A 的坐标为()b x ,1,点B 的坐标为()b x ,2,由14

22=+b x ,解得2

2112b x -±=,,所以212

1

x x b S -?=

212b b -?=,b b 112=-+≤ 当且仅当22=b 时,S 取到最在值1,

相关主题
文本预览
相关文档 最新文档