当前位置:文档之家› 振动理论课后答案

振动理论课后答案

振动理论课后答案
振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制?

解:物体与桌面保持相同的运动,知桌面的运动为

x=A sin10πt;

由物体的受力分析,N = 0(极限状态)

物体不跳离平台的条件为:;

既有,

,

由题意可知Hz,得到,mm。

1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解:

设该简谐振动的方程为;二式平方和为

将数据代入上式:

联立求解得

A=10.69cm;1/s;T=s

当时,取最大,即:

得:

答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3 一个机器内某零件的振动规律为

,x的单位是cm,1/s 。这个振

动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。

解:

振幅A=0.583

最大速度

最大加速度

1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。

解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。

解:两简谐振动分别为,,

则:=3cos5t+3isin5t

=5cos(5t+)+3isin(5t+)

或;

其合成振幅为:=

其合成振动频率为5t,初相位为:=arctan

则他们的合成振动为:实部:cos(5t+ arctan)

虚部:sin(5t+ arctan)

1-6将题1-6图的三角波展为傅里叶级数。

解∶三角波一个周期内函数x (t)可表示为

由式得

n=1,2,3……

于是,得x(t)的傅氏级数

1-7将题1-7图的锯齿波展为傅氏级数,并画出频谱图。

解∶锯齿波一个周期内函数P (t)可表示为

由式得

n=1,2,3……

于是,得x(t)的傅氏级数

,

1-8将题1-8图的三角波展为复数傅氏级数,并画出频谱图。

P(t)平均值为0

+

+

将代入整理得

1-9求题1-9图的矩形脉冲的频谱函数及画

频谱图形。

解:

可表示为

由于

得:

即:

1-10 求题1-10图的半正弦波的频谱函数并画频谱图形。

解:

频谱函数:

2.1 一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。已知,?=30α,m = 1 kg ,

k = 49 N/cm ,开始运动时弹簧无伸长,速度为零,求系统的运动规律。

图 T 2-1

答案图 T 2-1

解:

0sin kx mg =α,1.049

21

8.91sin 0=?

?==

k

mg x α

cm

70110492

=?==-m k n ωrad/s

t t x x n 70cos 1.0cos 0-==ωcm

2.1 图E2.2所示系统中,已知m ,c ,1k ,2k ,0F 和ω。求系统动力学方程和稳态响应。

图E2.1

答案图E2.1(a) 答案图E2.1(b)

解:

等价于分别为1x 和2x 的响应之和。先考虑1x ,此时右端固结,系统等价为图(a ),受力为图(b ),故:

()()x c x k x c c x k k x

m 112121+=++++ t A c A k kx x c x

m 1111111cos sin ωωω+=++

(1)

21c c c +=,21k k k +=,m

k k n 2

1+=

ω (1)的解可参照释义(2.56),为:

()()

()()

()

()()

2

2

2111

112

2

2111121cos 21sin s s t k

A c s s t k

A k t Y ξθωωξθω+--+

+--=

(2)

其中:

n

s ωω1=

,21112s s tg -=-ξθ

()

()()2

12

12212212

2112

121k k c c k k k k c s ++++=

???

?

??++=+ω

ωξ

k 2x

2 (11x k - )11x x

c -

1

()()

()()

()2

1212

212

2

1

212

21121221212

2

2 121k k c c m k k

k k c c k k m s s +++-+=

?

?

????+++???? ??+-=+-ωωωωξ

故(2)为:

()()()

()

()()()()

21121

2

2

1

2

21

21

21

2121

1

212

212

2

1

21111111111sin cos sin θθωω

ω

ωωωθωωθω+-++-++=++-+-+-=

t c c m k k

c k A c c m k k t A c t A k t x

()()m k k c c tg

k k m k k c tg s s tg 212112112

121211121

1112ωωωωξθ-++=+-

+=-=--- 1

1

11

2k c tg ωθ-=

考虑到()t x 2的影响,则叠加后的()t x 为:

()()()()???? ?

?+-++-++-++=--=∑

i i i i i i i i i i i i i k c tg m k k c c tg t c c m k k c k A t x ωωωωωωω12212112

1

222122212

22sin

2.2 如图T 2-2所示,重物1W 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2

W 从高度为h 处自由下落到1W 上而无弹跳。求2W 下降的最大距离和两物体碰撞后的运动规律。

图 T 2-2

答案图 T 2-2

解:

2

22221v g

W h W =

,gh v 22=

动量守恒:

122122v g W W v g W +=,gh W W W v 22

12

12+=

平衡位置:

11kx W =,k

W x 1

1=

1221kx W W =+,k

W W x 2

1

12+= 故:

k

W x x x 2

1120=

-= ()2

121W W kg

g W W k n +=

+=

ω

故:

t

v t x t

x

t x x n n

n n n

n ωωωωωωsin cos sin cos 12

000+

-=+-=

2.4 在图E2.4所示系统中,已知m ,1k ,2k ,0F 和ω,初始时物块静止且两弹簧均为

原长。求物块运动规律。

W 2

W 1

图E2.4

答案图E2.4

解:

取坐标轴1x 和2x ,对连接点A 列平衡方程:

()0sin 012211=+-+-t F x x k x k ω

即:

()t F x k x k k ωsin 022121+=+

(1)

对m 列运动微分方程:

()1222x x k x

m --=

即:

12222x k x k x

m =+ (2)

由(1),(2)消去1x 得:

t k k k

F x k k k k x

m ωsin 2

120221212+=++

(3)

故:

()

212

12k k m k k n +=

ω

由(3)得:

()()()

???

? ??--+=

t t k k m k F t x n n n ωωω

ωωωsin sin 2

2

212

02

2.5在图E2.3所示系统中,已知m ,c ,k ,0F 和ω,且t =0时,0x x =,0v x

= ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。

t ω

x k

)1x - 2x

m (2k

2

图E2.3

解:

()()()θωωωξω-++=-t A t D t C e t x d d t cos sin cos 0

()()

2

2

20

211

s s k

F A ξ+-?=

,2

1

12s

s

tg

-=-ξθ ()θθcos cos 000A x C A C x x -=?+==

()()()()

θωωωωωωωωξωξωξω--+-++-=--t A t D t C e

t D t C e t x d d d d t

d d t sin cos sin sin cos 000

()d

d

d A C

v D A D C v x

ωθ

ωωξωθωωξωsin sin 00000-

+=?++-==

求出C ,D 后,代入上面第一个方程即可得。

2.7 求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是1k 及3k ,悬臂梁的质量忽略不计。

图 T 2-7

答案图 T 2-7

解:

1k 和2k 为串联,等效刚度为:2

12

112k k k k k +=

。(因为总变形为求和)

12k 和3k 为并联(因为12k 的变形等于3k 的变形)

,则: 2

132312132121312123k k k k k k k k k k k k k k k k +++=++=

+=

123k 和4k 为串联(因为总变形为求和)

,故: 4

2413231214

3243142141234123k k k k k k k k k k k k k k k k k k k k k k k k e ++++++=

+=

故:

m

k e

n =

ω

2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为ω时,偏心质量惯性力在垂直方向大小为

t me ωωsin 2。已知偏心重W = 125.5 N ,偏心距e = 15.0 cm ,支承弹簧总刚度系数k = 967.7

N /cm ,测得垂直方向共振振幅cm X m 07.1=,远离共振时垂直振幅趋近常值cm X 32.00=。求支承阻尼器的阻尼比及在min 300r =ω运行时机器的垂直振幅。

图E2.7

解:

()()()

()θωξ-+-?

=t s s s M

me t x sin 212

2

22

,2

1

12s

s

tg -=-ξθ

s =1时共振,振幅为:

cm M me X 07.1211=?=

ξ (1)

远离共振点时,振幅为:

cm M

me

X 32.02==

(2)

由(2)2

X me M =

?

由(1)15.0221211

2121==?=?=

?X X X X me me X M me ξ min 300r =ω,M k =

0ω,1

0ωω=s

故:

()()

m s s s M

me

X 32

2

22

108.321-?=+-?

2.9 如图T 2-9所示,一质量m 连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅锤平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。

图 T 2-9

答案图 T 2-9

解:

(1)保持水平位置:m

k k n 2

1+=

ω mg l l

F 2

11

2+=

x x 2

(2)微幅转动:

()()()()()()()()()m g

k k l l k l k l m g

k k l l k l l k l l l k l m g

k k l l k

l k l l l l k l l m g l m g

k l l l k l l l l l l k l l m g l l l l x x k F x x x 2

12212

2

21212

122122112121222121221121112121212221121112122

11

12111 ++=+-++=+-?+++=??????+-++++=

+-+='+= 故:

()2

2

21212

12

21k l k l k k l l k e

++=

m

k e

n =

ω

2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。

图 T 2-10

答案图 T 2-10

解:

m 的位置:A A x k mg

x x x +=

+=2

2 a F mgl 1=,a mgl F =

1,1

1ak mgl

x =∴ l a x x A =1,1

22

1k a mgl x l a x A ==∴

x 1

x A

m g k k a k l k a m g k a l k k a m gl k m g x x x A 2

12

2

212122212222 1+=???

?

??+=+=+=∴

2

2122

12k l k a k k a k e +=∴,m k e n

2.11 图T 2-11所示是一个倒置的摆。摆球质量为m ,刚杆质量可忽略,每个弹簧的刚

度为2

k

。 (1)求倒摆作微幅振动时的固有频率;

(2)摆球质量m 为0.9 kg 时,测得频率()n f 为1.5 Hz ,m 为1.8 kg 时,测得频率为0.75

Hz ,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?

图 T 2-1

答案图 T 2-11(1)

答案图 T 2-11(2)

解:(1)

2

222

121θθ ml I T ==

()()

()

2

22222

2

1

2121 cos 121212θθθθθm gl ka m gl ka m gl a k U -=-=--??

? ???=

利用max max U T =,max

max θωθn = ???

? ??-=

-=-=12

2222mgl ka l g l

g

ml ka ml mgl ka n ω ----------------------------------------------------------------------------------------------------------------------

(2)

若取下面为平衡位置,求解如下:

θ

零平衡位置

2222

121θθ ml I T ==

()()

m gl

m gl ka m gl m gl ka m gl ka m gl a k U +-=-+=?

?? ??-+=+??? ???=222222222

2

1

2121 2sin 2121cos 21212θθθθθθθ ()0=+U T dt

d ,()

02222=-+θθθθ mgl ka ml ()

022=-+θθ

mgl ka ml 2

2ml mgl

ka n -=

ω 2.17 图T 2-17所示的系统中,四个弹簧均未受力,k 1= k 2= k 3= k 4= k ,试问: (1)若将支承缓慢撤去,质量块将下落多少距离?

(2)若将支承突然撤去,质量块又将下落多少距离?

图 T 2-17

解:

k

k k k k k k k k k k k k k k k 2

1

32

24123412312342312311233223=+=

=+==+=

(1)01234x k mg =,k

mg

x 20=

(2)()t x t x n ωcos 0=,k

mg

x x 420max =

=

2.19 如图T 2-19所示,质量为m 2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。

图 T 2-19

解:

系统动能为:

22

22212

2

2222

2212

1

2321 2121212121x m x m R I m r x r m x m R x I x m T e =

???

? ??++=??????????? ????? ??++???? ??+= 系统动能为:

22

2221122

21

1222

1 21 2121x k x R R k k x R R k x k V e =

???? ??+=???

?

??+=

根据:

max max V T =,max max x x

n ω= 2

2212

221122

2

m R m R R k k n +++=ω

2.20 如图T 2-20所示,刚性曲臂绕支点的转动惯量为I 0,求系统的固有频率。

图 T 2-20

解:

系统动能为:

()()

()2222102221202

1 212121θθθθ l m a m I l m a m I T ++=++=

系统动能为:

()()()()2

2322212

322212

1

212121θθθθb k l k a k b k l k a k V ++=++= 根据:

max

max

V T =,max

max θωθ

n = 2

22102

322212l

m a m I b k l k a k n

++++=ω 2.24 一长度为l 、质量为m 的均匀刚性杆铰接于O 点并以弹簧和粘性阻尼器支承,如图T 2-24所示。写出运动微分方程,并求临界阻尼系数和无阻尼固有频率的表达式。

图 T 2-24

答案图 T 2-24

解: 利用动量矩方程,有:

l l c a a k J ?-?-=θθθ

,23

1ml J = 033222=++θθθ

ka cl ml 2

2

3ml

ka n =ω n m l cl ξω232

2

=,1=ξ 3

2332322

2mk

l a ml ka m m c n ===ω

2.25 图T 2-25所示的系统中,刚杆质量不计,写出运动微分方程,并求临界阻尼系数及阻尼固有频率。

图 T 2-25

答案图 T 2-25

解:

0=?+?+?b b k a a c l l m θθθ 0222=++θθθ

kb ca ml m

k

l b ml kb n =

=22ω n m l ca ξω222=,k

m

mlb ca ml ca n 22222==ωξ

l

工作分析理论与应用试卷及答案

工作岗位研究原理与应用 一、单项选择题 1、()是对职工所应承担任务的规定。 A、职务 B、责任 C、职责 D、岗位 2、()是严格按照编制员额和岗位的质量要求,为企业每个岗位配备合格的人员。 A、定编 B、定员 C、定额 D、岗位责任制 3、岗位研究中,采用的心理学研究方法有()。 A、测验法、观察法、评定量表法 B、测验法、面谈法、调查法 C、观察法、参与法、测验法 D、面谈法、观察法、参与法 4、美国工程师()是企业科学管理的主要倡导人,举世公认的“科学管理之父”。 A、弗兰克·吉尔·雷斯 B、泰勒C怀特D、迈克尔·朱修斯 5、工作日写实是对操作者整个工作日的工作时利用情 况,按()的顺序进行观察、记录和分析的一种方法。 A、时间消耗 B、工作的繁简程度 C、工作重要性的大小 D、技术操作 6、测时是以工序或某一作业为对象,按照操作顺序进行 实地观察,记录、测量和研究()的一种方法。 A、人力资源B工时消耗C、财力消耗D、体力消耗 7、工作抽样法是根据()的原理,对工作岗位随机地进行抽样调查的一种方法。 A、微积分和概率论 B、测量学和统计学 C、概率论和数理统计学 D、数理统计学和微积分 8、()是对企业各类岗位的性质、任务、职责、劳动条件和环境以及职工承担本岗位任务应具备的资格条件所进行系统分析和研究,并制定出岗位规范、工作说明书等人事文件的过程。 A、岗位调查 B、岗位分析 C、岗位评论价 D、岗位分类 9、()是通过调查者直接参与某一岗位的工作,从而细致、深入、全面地体验、了解和分析岗位特征及岗位要求的方法。 A、面谈法 B、参与法 C、关键事件法 D、书面调查法 10、岗位分析的结果——工作说明书、岗位规范以及职务晋升图必须以良好的()为基础,才能发挥其应有的作用。 A、岗位分类 B、岗位设计 C、岗位调查 D、岗位评价 11、()是把既可归为熟练工种又可归为技术工种的某些特殊工种,先分别划岗归级,再根据这些工种在不同类型中的岗位等级,求出技术工种与熟练工种之间的统一岗级换算比例,然后归级。 A、经验判断法 B、基本点数换算法 C、交叉岗位换算法 D、专家评判法 12、测评误差可分为()和代表性误差两大类。 A、系统误差 B、随机误差 C、抽样误差 D、登记误差 13、()就是岗位纵向分类中的细类或称小类,是若干性质相同但其他方面存在一定差别的岗位群。 A、岗级 B、岗等 C、岗系 D、岗类 14、体力劳动强度的测定主要有()测定两方面的内容。 A、劳动时间率和工作利用率 B、工作利用率和能量

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

大学物理振动与波练习题与答案

第二章 振动与波习题答案 12、一放置在水平桌面上的弹簧振子,振幅2 10 0.2-?=A 米,周期50.0=T 秒,当0 =t 时 (1) 物体在正方向的端点; (2) 物体在负方向的端点; (3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。 求以上各种情况的谐振动方程。 【解】:π=π = ω45 .02 )m () t 4cos(02.0x ?+π=, )s /m ()2 t 4cos(08.0v π+?+ππ= (1) 01)cos(=?=?,, )m () t 4cos(02.0x π= (2) π=?-=?,1)cos(, )m () t 4cos(02.0x π+π= (3) 2 1)2cos(π=?-=π+?, , )m () 2 t 4cos(02.0x π+π= (4) 21)2cos(π-=?=π+?, , )m () 2 t 4cos(02.0x π-π= 13、已知一个谐振动的振幅02.0=A 米,园频率πω 4=弧度/秒, 初相2/π=?。 (1) 写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。 【解】:)m () 2 t 4cos(02.0x π+π= , )(2 12T 秒=ωπ= 15、图中两条曲线表示两个谐振动 (1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。

【解】:振幅相同,频率和初相不同。 虚线: )2 t 2 1cos(03.0x 1π-π= 米 实线: t cos 03.0x 2π= 米 16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为 t 3cos 4x 1= 厘米 )3 2t 3cos(2x 2π+= 厘米 试用旋转矢量法求出合振动方程。 【解】:)cm () 6 t 3cos(32x π+= 17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。 (1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。 【解】: 18、波源作谐振动,其振动方程为(m ))240(1043t cos y π-?=,它所形成的波以30m/s 的速度沿一直线传播。

汽车振动分析试题1

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 1121y m T = m 2动能:2222222 22 222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 323 33)2 1(21))(21(212 1y m R y R m J T === ω 系统势能: 2 21)21(21)21( y k y g m gy m V + +-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =+ +-++= +2 212 321) 2 1(2 12 1)2 13 1(2 1 上式求导,得系统的微分方程为: E y m m m k y '=+ + +) 2 131(4321 固有频率和周期为: ) 2 131(43210m m m k + + = ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 212 1x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 2 1= ,角速度为x R 21=ω,转过的角度为x R 21= θ。轮子动能: )83(21)41)(21(21)4 1( 2 12 1212 122 21212 2 12x m x R R m x m J v m T c =+= + = ω 系统势能: x

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

高中物理练习振动与波(习题含答案)

1.下列关于简谐振动和简谐波的说法,正确的是 A.媒质中质点振动的周期一定和相应的波的周期相等 B.媒质中质点振动的速度一定和相应的波的波速相等 C.波的传播方向一定和媒质中质点振动的方向一致 D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍 2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的 A.频率、振幅都不变B.频率、振幅都改变 C.频率不变、振幅改变D.频率改变、振幅不变 3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。对这一现象,下列说法正确的是 A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大 B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小 C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率 D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率 4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是 A.两波源的振动频率一定相同 B.虚线一定是波谷与波谷相遇处 C.两列波的波长都为2m D.两列波的波长都为1m 5.频率一定的声源在空气中向着静止的接收器匀速运动。以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。若u增大,则 A.v增大,V增大 B. v增大,V不变 C. v不变,V增大 D. v减少,V不变 6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是 A.图示时刻质点b的加速度将减小 B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4m C.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50Hz D.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象 7.一列沿x轴正方向传播的简谐横波,周期为0.50s。某一时刻,离开平衡位置的位移都相等的各质点依次为P1,P2,P3,……。已知P1和P2之间的距离为20cm,P2和P3之间的距离为80cm,则P1的振动传到P2所需的时间为 A.0.50s B.0.13s C.0.10s D.0.20s 8.弹性绳沿x轴放置,左端位于坐标原点,用手握住绳的左端,当t =0时使其开始沿y轴做振幅为8cm的简谐振动,在t=0.25s时,绳 上形成如图所示的波形,则该波的波速为___________cm/s,t= ___________时,位于x=45cm的质点N恰好第一次沿y轴正向通过 平衡位置。 9.在t=0时刻,质点A开始做简谐运动,其振动图象如图乙所示。质点A振 动的周期是s;t=8s时,质点A的运动沿y轴的方向(填“正” 或“负”);质点B在波动的传播方向上与A相距16m,已知波的传播速度为 2m/s,在t=9s时,质点B偏离平衡位置的位移是cm。 10. 同一音叉发出的声波同时在水和空气中传播,某时刻的波形曲线见

车辆悬架振动分析

车辆悬架系统振动研究概述 关键词:振动悬架 摘要: 本文简单介绍了车辆振动的相关知识,对其做了简明的分析,由于篇幅有限故只重点介绍了与车辆悬架相关的知识。根据不同结构悬架的特点,分别介绍与其相关的振动研究内容和成果。 引言 悬架系统是提高车辆平顺性(乘座舒适性)和安全性(操纵稳定性)、减少动载荷引起零部件损坏的关键,。自70年代以来,工业发达国家开始研究基于振动主动控制的主动/半主动悬架系统。引入主动控制技术后的悬架是一类复杂的非线性机、电、液动力系统,其研究进展和开发应用与机械动力学、流体传动与控制、测控技术、计算机技术、电子技术、材料科学等多个学科的发展紧密相关。为此,关于车辆悬架系统振动的研究比较困难,但是其又具有十分重要的实际意义。一、车辆悬架系统简介 悬架系统的作用主要是连接车桥和车架,传递二者之间的作用力和力矩以及抑制并减少由于路面不平而引起的振动,保持车身和车轮之间正确的运动关系,保证汽车的行驶平顺性和操纵稳定性。 悬架系统一般由弹性元件、减振器和导向装置等组成。其中,弹性元件的作用是承受和传递垂直载荷,缓冲并抑制不平路面所引起的冲击。按弹性元件分类包括钢板弹簧悬架、螺旋弹簧悬架、扭杆弹簧悬架以及气体弹簧悬架。钢板弹簧是1根由若干片等宽但不等长的合金弹簧片组合而成的近似等强度的弹性梁,多数情况下由多片弹簧组成。多片式钢板弹簧可以同时起到缓冲、减振、导向和传力的作用,可以不装减振器而用于货车后悬架。螺旋弹簧用弹簧钢棒料卷制而成,常用于各种独立悬架。其特点是没有减振和导向功能,只能承受垂直载荷。扭杆弹簧本身是1根由弹簧钢制成的杆,一端固定在车架上,另一端固定在悬架的摆臂上。气体弹簧是在1个密封的容器中冲入压缩气体,利用气体可压缩性实现弹簧的作用。气体弹簧具有理想的变刚度特性。气体弹簧有空气弹簧和油气弹簧2种。

振动与波复习题及答案

第九章振动复习题 1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v , 加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (A) 2 max 2max /x m k v =. (B) x mg k /=. (C) 22/4T m k π=. (D) x ma k /=. [ B ] 2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固 定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量23 1ml J =,此摆作微小振动的周期为 (A) g l π2. (B) g l 22π. (C) g l 322π . (D) g l 3π . [ C ] 3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计 时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) . (B) /2. (C) 0 . (D) . [ C ] 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π2 1cos(2++=αωt A x . (B) )π2 1cos(2-+=αωt A x . l

(C) ) π2 3 cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ B ] [ ] 6. 一质点作简谐振动.其运动速度与时间 的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6. (D) -/6. (E) -2/3. [ ] 7. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有 (A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'. (C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ] 8. 一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动 时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )2 1/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )2 1/cos(π-=t k m A x (E) t m /k A x cos = [ B ] 9. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为 (A) 1 s . (B) (2/3) s . (C) (4/3) s . (D) 2 s . [ B ] 10.一物体作简谐振动,振动方程为)4 1cos(π+=t A x ω.在 t = T /4 (T 为周期)时刻,物体的加速度为 (A) 2221ωA -. (B) 222 1 ωA . (C) 232 1ωA -. (D) 232 1 ωA . [ B ] v (m/s)t (s)O m m v 21

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

机械振动与机械波答案

衡水学院 理工科专业《大学物理 B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、 填空题(每空2分) 1、 一质点在x 轴上作简谐振动,振幅 A = 4cm ,周期T = 2s ,其平衡位置取坐标原点。若 t = 0时质点第一次通过 x =— 2cm 处且向 2 x 轴负方向运动,则质点第二次通过 x =— 2cm 处的时刻为一 S 。 3 2、 一质点沿x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周期为 T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为 x Acos(2 t/T /2)。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为 x Acos(2 t/T /3)。 3、 频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为 n /3则此两点相距 0.5 m 。。 4、 一横波的波动方程是 y 0.02sin2 (100t 0.4x)(SI),则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 __________ 和 _____________ 。 二、 单项选择题(每小题2分) (C ) 1、一质点作简谐振动的周期是 T,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A ) T/12 (B ) T/8 (C ) T/6 (D ) T/4 (B ) 2、两个同周期简谐振动曲线如图 1所示,振动曲线 1的相位比振动曲线 2的相位( ) (A )落后 (B )超前 (C )落后 2 2 (D )超前 (C ) 3、机械波的表达式是 y 0.05cos(6 t 0.06 x),式中y 和x 的单位是m , t 的单位是

汽车振动分析作业习题与参考答案(更新)

1、 方波振动信号的谐波分析,00,02 (),2 T x t x t T x t T ? <

相位频谱图 1tan 0,1,3,5 n n n a n b φ -?? ===?????? ??? 2、 求周期性矩形脉冲波的复数形式的傅立叶级数,绘频谱图。 解: 数学表达式:

计算三要素: 傅立叶级数复数形式: 频谱图 00 00,0sin ,0,n x t n T A x n t n n n T ππ?=??=? ?≠-∞<<∞?? ()???? ?????≤≤≤≤--≤≤-=2 202222000 00 T t t t t t x t t T t x 偶函数 T x t a 0002=2sin 2010t n n x a n ωπ?=0 =n b 2 sin 22010t n n x a ib a X n n n n ωπ?==-=()2sin 1101012/2/02/2/102/2 /02/2/010********t n n x t in e e T x t in e T x dt e x T dt e t x T X t in t in t t t in t in t t t in T T n ωπωωωωωωω?=--?=-?=??=??=-------? ?T t x t n n x X n 0 0010002sin lim =?=→ωπ()∑ ∑ ∞-∞=∞-∞===n t in n t in n e n t n x e X t x 112sin 0 10ωωωπ

2.振动和波考试重点和习题答案

第八章 振动和波 下面重点要考试内容: 1.掌握简谐振动的基本概念、简谐振动的余弦表达式 2.掌握旋转矢量表示法、振幅、相位概念、掌握振动能量的公式 3.掌握同方向同频率谐振动的合成 4.掌握平面简谐波的表达式及其意义、掌握波的能流密度和波的干涉 5.理解机械波的产生和传播、惠更斯原理、波的衰减;;理解拍、相互垂直谐振动的合成 8-1 试解释下列名词:简谐振动、振幅、频谱分析、基频、频谱图、波动、横波、纵波、波阵面、波的强度。 答: ①简谐振动:质点在弹性力(或准弹性力)作用下所作的振动叫简谐振动,其加速度与离开平衡位置的位移成正比,且方向相反。②振幅:振动物体离开平衡位置的最大距离称为振幅。 ③频谱分析:将任一周期性振动分解为多个简谐振动之和的过程,称为频谱分析。 ④基频:一个复杂的振动可以分解为若干个频率不同的简谐振动之和,这些分振动频率中最低的频率称为基频,它与原振动的频率相同。 ⑤频谱图:将组成一个复杂振动的各分振动的频率和振幅找出来,按振幅与频率关系列出谱线,这种图称为频谱图。 ⑥波动:振动在介质中的传播现象叫波动,它也是一种重要的能量传播过程。其中简谐振动在介质中传播所形成的波叫简谐波。 ⑦横波:波在介质中传播时,如果介质中各质点振动的方向与波的传播方向垂直,则该波叫做横波。 ⑧纵波:如果介质中各质点振动的方向与波的传播方向相互平行,则这种波称为纵波。 ⑨波阵面:在波传播的介质中,质点振动相位相同的各点连成的面称为波阵面。 ⑩波的强度:单位时间内通过垂直于波的传播方向单位面积上的平均能量,称为波的强度。 8-2 有一质点作简谐振动,试分析它在下列位置时的位移、速度、加速度的大小和方向:①平衡位置,向正方向运动;②平衡位置,向负方向运动;③正方向的端点;④负方向的端点。 解: 设该质点的振动方程为:)cos(?ω+=t A x 将它对时间t 分别求一阶导数、二阶导数,可得到速度v 和加速度a 的表达式: )2 cos()sin(π ?ωω?ωω++=+-== t A t A dt dx v )cos()cos(222 2π?ωω?ωω++=+-== t A t A dt x d a 由此可以看出,速度的相位超前位移2π,加速度与位移的相位相反。下面根据上面三式来 回答本题中的四个问题。 ①质点在平衡位置,向正方向运动时: x=0, v=A ω, a =0 ②质点在平衡位置,向负方向运动时: x=0, v=-A ω, a =0

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义? 动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、S2

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

机械振动和机械波练习题[含答案]

机械振动和机械波练习题 一、选择题 1.关于简谐运动的下列说法中,正确的是 [ ] A.位移减小时,加速度减小,速度增大 B.位移方向总跟加速度方向相反,跟速度方向相同 C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同 D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反 2.弹簧振子做简谐运动时,从振子经过某一位置A开始计时,则 [ ] A.当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B.当振子再次经过A时,经过的时间一定是半周期 C.当振子的加速度再次与零时刻的加速度相同时,一定又到达位置A D.一定还有另一个位置跟位置A有相同的位移 3.如图1所示,两木块A和B叠放在光滑水平面上,质量分别为m和M,A与B之间的最大静摩擦力为f,B与劲度系数为k的轻质弹簧连接构成弹簧振子。为使A和B在振动过程中不发生相对滑动,则 [ ] 4.若单摆的摆长不变,摆球的质量增为原来的4倍,摆球经过平衡位置时的速度减少为原来的二分之一,则单摆的振动跟原来相比 [ ] A.频率不变,机械能不变 B.频率不变,机械能改变 C.频率改变,机械能改变 D.频率改变,机械能不变 5.一质点做简谐运动的振动图象如图2所示,质点在哪两段时间内的速度与加速度方向相同[ ] A.0~0.3s和0.3~0.6s B.0.6~0.9s和0.9~1.2s C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s

6.如图3所示,为一弹簧振子在水平面做简谐运动的位移一时间图象。则此振动系统 [ ] A.在t1和t3时刻具有相同的动能和动量 B.在t3和t4时刻振子具有相同的势能和动量 C.在t1和t4时刻振子具有相同的加速度 D.在t2和t5时刻振子所受回复力大小之比为2∶1 7.摆A振动60次的同时,单摆B振动30次,它们周期分别为T1和T2,频率分别为f1和f2,则T1∶T2和f1∶f2分别等于 [ ] A.2∶1,2∶1 B.2∶1,1∶2 C.1∶2,2∶1 D.1∶1,1∶2 8.一个直径为d的空心金属球壳内充满水后,用一根长为L的轻质细线悬挂起来形成一个单摆,如图4所示。若在摆动过程中,球壳内的水从底端的小孔缓慢泄漏,则此摆的周期 [ ] B.肯定改变,因为单摆的摆长发生了变化 C.T1先逐渐增大,后又减小,最后又变为T1 D.T1先逐渐减小,后又增大,最后又变为T1 9.如图5所示,AB为半径R=2m的一段光滑圆糟,A、B两点在同一水平高度上,且AB 弧长20cm。将一小球由A点释放,则它运动到B点所用时间为 [ ]

传感器原理及应用习题及答案

习题集及答案 第1章概述 什么是传感器?按照国标定义,“传感器”应该如何说明含义? 传感器由哪几部分组成?试述它们的作用及相互关系。 传感器如何分类?按传感器检测的范畴可分为哪几种? 答案 答: 从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。 我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 答: 组成——由敏感元件、转换元件、基本电路组成; 关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。 答:(略)答: 按照我国制定的传感器分类体系表,传感器分为物理量传感器、化学量传感器以及生物量传感器三大类,含12个小类。按传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 第3章电阻应变式传感器 何为电阻应变效应?怎样利用这种效应制成应变片? 图3-31为一直流电桥,负载电阻R L趋于无穷。图中E=4V,R1=R2=R3=R4=120Ω,试求:①R1为金属应变片,其余为外接电阻,当R1的增量为ΔR1=Ω时,电桥输出电压U0=? ② R1、R2为金属应变片,感应应变大小变化相同,其余为外接电阻,电桥输出电压U0=? ③ R1、R2为金属应变片,如果感应应变大小相反,且ΔR1=ΔR2 =Ω,电桥输出电压U0=? 答案 答: 导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。 当外力作用时,导体的电阻率 、长度l、截面积S都会发生变化,从而引起电阻值R的变

(新)机械振动和机械波经典复习题及答案解析

机械振动和机械波复习题 1.关于机械振动和机械波的关系,正确的说法是 A.有机械振动必有机械波 B.有机械波必有机械振动 C.离波源近的质点振动快,离波源远的质点振动慢 D.如果波源停止振动,在介质中的波也立即停止 2.一列横波在t =0时刻的波形图如右图中实线所示,t =1 s 时刻波形图如图中的虚线所示,由此可以判断 A.该列波的周期一定是4 s B.波长一定是4 m C.振幅一定是2 cm D.波速一定是1 cm/s 3.两列波长相同的水波发生干涉,若在某一时刻,P 点处恰好两列波的波峰相遇,Q 点处两列波的波谷相遇,则 A.P 点的振幅最大,Q 点的振幅最小 B.P 、Q 两点的振幅均是原两列波的振幅之和 C.P 、Q 两点的振动周期相同 D.P 、Q 两点始终处于最大位移和最小位移处 4.关于波长,下列说法中正确的是 A.在一个周期内,沿着波的传播方向,振动在介质中传播的距离是一个波长 B.两个相邻的、在振动过程中运动方向总是相同的质点间的距离是一个波长 C.一个周期内介质质点通过的路程是一个波长 D.两个相邻的波峰间的距离是一个波长 5.一列波在第一种均匀介质中的波长为λ1,在第二种均匀介质中的波长为λ2,且 λ1=3λ2.那么波在这两种介质中的频率之比和波速之比分别为 A.3∶1,1∶1 B.1∶3,1∶1 C.1∶1,3∶1 D.1∶1,1∶3 6.如图是同一机械波在两种不同介质中传播的波动图象.从图中可以直接观察到发生变化的物理量是 介质一 介质二 A.波速 B.频率 C.周期 D.波长 7.一列沿x 轴正方向传播的横波,其振幅为A (m),波长为λ(m ),某一时刻的波形图如图所示.在该时刻,某一质点的坐标为(λ,0),经四分之一周期后,该质点的坐标为

振动理论习题答案汇总

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

相关主题
文本预览
相关文档 最新文档