当前位置:文档之家› 过氧化物酶体Peroxisome

过氧化物酶体Peroxisome

过氧化物酶体Peroxisome
过氧化物酶体Peroxisome

第四节过氧化物酶体(Peroxisome)

1954年,Rhodin在研究大鼠肾小管上皮细胞时发现一种膜结合的颗粒,直径约为0.5~1.0μm。由于不知道这种颗粒的功能,将它称为微体(microbody)。微体有两种主要类型∶过氧化物酶体和乙醛酸循环体(glyoxysomes),后者只在植物中发现。

一、过氧化物酶体的形态结构和化学组成

过氧化物酶体的形态、大小多样。多为圆形或卵圆形,直径0.01~0.15nm。常含有类核体(类晶体)结构,为尿酸氧化酶,有些含有边缘板,与形态有关(图3-2-7)。

图3-2-7动物细胞中的过氧化物酶体

过氧化物酶体含有丰富的酶类,目前已知的有40余种,主要是氧化酶(oxidase)、过氧化氢酶(catalase)和过氧化物酶。氧化酶作用于不同的底物,其共同特征是氧化底物的同时,将氧还原成过氧化氢:RH2 + O2→ R + H2O2。过氧化氢酶是过氧化物酶体的标志酶,它的作用是使过氧化氢还原成水: 2H2O2→ O2 + 2H2O。过氧化物酶类仅存在于血细胞等少数细胞。

二、过氧化物酶体的功能

1、使毒性物质失活

这种作用是过氧化氢酶利用过氧化氢氧化各种底物,如酚、甲酸、甲醛和乙醇等,氧化的结果使这些有毒性的物质变成无毒性的物质,同时也使H2O2进一步转变成无毒的H2O。这种解毒作用对于肝、肾特别重要,例如人们饮入的乙醇几乎有一半是以这种方式被氧化成乙醛的,从而解除了乙醇对细胞的毒性作用。

2、对氧浓度的调节作用

过氧化物酶体与线粒体对氧的敏感性是不一样的,线粒体氧化所需的最佳氧浓度为2%左右,增加氧浓度,并不提高线粒体的氧化能力。过氧化物酶体的氧化率是随氧张力增强而成正比地提高(图3-2-8)。因此,在低浓度氧的条件下,线粒体利用氧的能力比过氧化物酶体强,但在高浓度氧的情况下,过氧化物酶体的氧化反应占主导地位,这种特性使过氧化物酶体具有使细胞免受高浓度氧的毒性作用。

图3-2-8过氧化物酶体和线粒体中氧浓度与呼吸速率的关系

3、脂肪酸的氧化

动物组织中大约有25~50%的脂肪酸是在过氧化物酶体中氧化的,其他则是在线粒体中氧化的。另外,由于过氧化物酶体中有与磷脂合成相关的酶,所以过氧化物酶体也参与脂的合成。

4、含氮物质的代谢

在大多数动物细胞中,尿酸氧化酶(urate oxidase)对于尿酸的氧化是必需的。尿酸是核苷酸和某些蛋白质降解代谢的产物,尿酸氧化酶可将这种代谢废物进一步氧化去除。另外,过氧化物酶体还参与其他的氮代谢,如转氨酶(aminotransferase)催化氨基的转移。

线粒体与过氧化物酶体小结

第七章线粒体与过氧化物酶体 细胞的生存需要两个基本的要素:构成细胞结构的化学元件和能量。生物从食物中获取能量,根据对氧的需要情况分为两种类型:厌氧、好氧。在真核生物中,需氧的能量转化过程与线粒体有关,并且伴随一系列的化学反应,而在原核生物中,能量转化与细胞质膜相关。 线粒体外膜是线粒体最外的一层全封闭的单位膜结构,是线粒体的界膜,厚6~7nm, 平整光滑。外膜含有孔蛋白, 所以外膜的通透性非常高,使得膜间隙中的环境几乎与胞质溶胶相似。外膜含有一些特殊的酶类,外膜上含有单胺氧化酶,该酶是外膜的标志酶,这种酶能够终止胺神经递质,如降肾上腺素和多巴胺的作用。外膜的主要作用是形成膜间隙,帮助建立电化学梯度,同时能进行一些生化反应,协助线粒体内膜和基质完成能量转换功能。 内膜是位于外膜的内侧包裹线粒体基质的一层单位膜结构,厚5~6nm。内膜的通透性较低,一般不允许离子和大多数带电的小分子通过。内膜的蛋白与脂的比例相当高,并且含有大量的心磷脂,约占磷脂含量的20%,心磷脂与离子的不可渗透性有关。线粒体内膜通常要向基质折褶形成嵴,嵴的形成使内膜的表面积大大增加。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒,即ATP 合酶,又叫F0 F1 ATP酶复合体,是一个多组分的复合物。内膜的酶类可以粗略地分为三个大类∶运输酶类∶内膜上有许多运输酶类进行各种代谢产物和中间产物的运输;合成酶类∶内膜是线粒体DNA、RNA和蛋白质合成的场所;电子传递和ATP合成的酶类∶这是线粒体内膜的主要成分,参与电子传递和ATP的合成。内膜的标志酶是细胞色素氧化酶。内膜是线粒体进行电子传递和氧化磷酸化的主要部位,含有电子传递链中进行氧化反应的蛋白和酶。在电子传递和氧化磷酸化过程中,线粒体将氧化过程中释放出来的能量转变成ATP。 膜间隙是线粒体内膜和外膜之间的间隙,宽6~8 nm,其中充满无定形的液体,含有可溶性的酶、底物和辅助因子。膜间隙中的化学成分很多,几乎接近胞质溶胶。腺苷酸激酶是膜间隙的标志酶,它的功能是催化ATP分子的末端磷酸基团转移到AMP,生成两分子ADP。膜间隙的功能是建立氢质子梯度。线粒体基质是内膜和嵴包围着的线粒体内部空间是线粒体基质。基质中的酶类最多,与三羧酸循环、脂肪酸氧化、氨基酸降解等有关的酶都存在于基质之中。此外还含有DNA、tRNAs、rRNA、以及线粒体基因表达的各种酶和核糖体。基质中的标志酶是苹果酸脱氢酶。线粒体基质的功能是进行氧化反应,主要是三羧酸循环。 线粒体对许多亲水物质透性低,所以必须具备主动运输系统。线粒体还是钙库,具有储备钙离子的能力,但是钙离子的出入需要运输蛋白。内膜的运输系统主要是运输蛋白和促进运输作用的脂类,此外还有参与电子传递和氢质子传递的复合物。线粒体需要自主完成下列运输作用:①糖酵解产生的NADH必须进入电子传递链参与有氧氧化;②线粒体产生的代谢物质如草酰辅酶A和乙酰辅酶A

甲状腺过氧化物酶超出1000,是什么病

甲状腺过氧化物酶超出1000,是什么病? 甲状腺过氧化物酶(TPOA)是催化甲状腺激素的重要酶。甲状腺过氧化物酶(TPOA)由甲状腺滤泡细胞合成,它是由933个氨基酸残基组成的分子量为103kD的10%糖化的血色素样蛋白质,在滤泡腔面的微绒毛处分布最为丰富。甲状腺过氧化物酶很常见,服用某些药物也会产生甲状腺过氧化物酶升高的现象,超出三倍以上就可确诊为甲状腺炎,在三倍以下可以观察,看是否甲状腺过氧化物酶恢复正常。 甲状腺专家贾春宝博士指出:甲状腺过氧化物酶(TPOA)是主要的甲状腺组织自身抗体,是甲状腺激素合成过程的关键酶,与甲状腺组织免疫性损伤密切相关。主要包括甲状腺刺激性抗体(TS-Ab)和甲状腺刺激阻滞性抗体(TSB-Ab)。 这项化验结果高说明您患有甲状腺的炎症,一般来说甲状腺功能的检查都会查T3、T4、TSH,所以只有这一项不合格的话,就说明只是单纯的炎症,没有伴随甲亢或甲减的症状,但是并不能肯定炎症是如果引起的,因为引起炎症的因素有很多,所以还要配合其他检查来确定。建议再去做一个甲状腺彩超,看是否有可能是甲状腺的结节或肿大引起的。 对于甲状腺炎的治疗,西医是没有药物治疗的,只有当患者发展为终身性甲减或者甲亢时,医生会开一些激素药,让患者服用,长期服用激素对身体有很大的影响,而且会产生依赖性。 中医中药对于治疗桥本氏甲状腺为具有明显的优势。贾春宝博士说,所谓桥本甲状腺炎在中医里主虚证,由脾肾阳虚引起的,所以患者常常表现为乏力、倦呆,记忆下降等症状。在临床上,我们通过健脾气、温肾阳的方法,可达到扶弱固本,增强后天禀赋的效果,从而使甲状腺过氧化物酶指标恢复正常。

髓过氧化物酶

髓过氧化物酶(myeloperoxidase,MPO)又称过氧化物酶,是一种重要的含 铁溶酶体,存在于髓系细胞(主要是中性粒细胞和单核细胞)的嗜苯胺蓝颗 粒中,是髓细胞的特异性标志,随着对 MPO 研究的深入,人们发现 MPO 基 因多态性导致个体对一些疾病易感性的差异,与人类多种疾病的发生、发 展密切相关,因此越来越受到国内外学者的重视。 髓过氧化物酶 MPO 研究 1.MPO 的结构髓过氧化物酶(MPO)是由中性粒细胞、单核细胞和某些组 织的巨噬细胞分泌的含血红素辅基的血红素蛋白酶,是血红素过氧化物酶 超家族成员之一。MPO 是 I 相代谢酶。每个酶分子有两个铁素基团,顺磁共 振波谱表明血红素中的铁是在甲酰基血红素部分。 MPO 的合成是粒细胞进入 循环之前在骨髓内合成并贮存于嗜天青颗粒内,外界刺激可导致中性粒细 胞聚集,释放髓过氧化物酶(MPO)。在成熟的粒细胞中,MPO 是含量最丰富 的糖蛋白,约占外周血多形核中性粒细胞(PMNs)内总蛋白质含量的 5%,血 液中 95%的 MPO 来源于 PMNs。MPO 的相对分子质量为 150×103,是由 2 个 亚单位聚合而成的二聚体,每个亚单位又由一条重链(α 链,相对分子质量 约 60×103)和一条轻链(β 链,相对分子质量约 15×103)所构成。2 个亚单 位在 α 链处由 1 个二硫键相连。重链具有亚铁卟啉基团,说明 MPO 是铁依 赖性的。MPO 以 3 种亚形存在于髓系细胞中,分别为 MPOⅠ、Ⅱ、Ⅲ。3 种 亚型主要是重链有差异,轻链的差异较小,导致它们在相对分子质量及疏 水性等方面不同,3 种亚型在功能上的差异还不明确,有待进一步研究。 2.MPO 基因及其多态性人髓过氧化物酶基因位于染色体 17q23?q24,含 有 12 个外显子和 11 个内含子,长约 14 638 bp,调控其基因表达的是生长 因子。MPO 的 mRNA 在早幼粒细胞的表达水平最高,其次是原始粒细胞、幼 稚和原始单核细胞;当细胞分化到成熟时期,MPO 基因表达水平迅速下降。 现已知 MPO 基因首先表达的是一条相对分子质量为 89×103 的前体蛋白 (precursor protein),经过翻译后加工,切割成 α 和 β 两种亚基,再聚 合为成熟的 MPO 分子,加上糖链,最后形成有功能的 MPO。MPO 在基因表达 过程中存在的缺陷,造成 MPO 基因 DNA 序列发生改变,影响其活力。MPO 基 因的多态性影响其基因的转录和表达,对机体的疾病易感性有一定的影响。 Chevrier 等发现了外显子 11 处和启动子区域的 V53F、A332V、I642L 和 IVS11? 2A→C4 个新的基因多态性位点, 它们的作用与功能需要进一步研究。 Piedrafita 等研究发现与疾病有关的位点有 5 个:463G/A,R569W,Y173C, M251T 和外显子 9 的碱基缺失。目前研究最多的是 MPO 基因启动子区第 463 位核苷酸 G/A 的突变,该位点位于 SP1 转录因子识别结合的顺式作用元件 中,内含 4 个 Alu 重复序列。G/A 的突变导致位于 Alu 反应元件的 SP1 转录 因子结合位点消失,从而使 MPO 转录水平显著下降。也有报道发现外显子 10 的密码子 569 存在 C 被 T 替代,使 CGG→TGG,导致遗传性 MPO 缺陷性疾

过氧化物酶peroxidase 简介

过氧化物酶peroxidase 简介 peroxidase 氧化还原酶的一种。 过氧化物酶是由微生物或植物所产生的一类氧化还原酶,它们能催化很多反应. 过氧化物酶是以过氧化氢为电子受体催化底物氧化的酶。主要存在于细胞的过氧化物酶体中,以铁卟啉为辅基,可催化过氧化氢氧化酚类和胺类化合物,具有消除过氧化氢和酚类、胺类毒性的双重作用。 过氧化物酶体是由一层单位膜包裹的囊泡, 直径约为0.5~1.0μm, 通常比线粒体小。普遍存在于真核生物的各类细胞中,在肝细胞和肾细胞中数量特别多。过氧化物酶体的标志酶是过氧化氢酶,它的作用主要是将过氧化氢水解。过氧化氢(H2O2)是氧化酶催化的氧化还原反应中产生的细胞毒性物质,氧化酶和过氧化氢酶都存在于过氧化物酶体中,从而对细胞起保护作用。 植物体中含有大量过氧化物酶,是活性较高的一种酶。它与呼吸作用、光合作用及生长素的氧化等都有关系。在植物生长发育过程中它的活性不断发生变化。一般老化组织中活性较高,幼嫩组织中活性较弱。这是因为过氧化物酶能使组织中所含的某些碳水化合物转化成木质素,增加木质化程度,而且发现早衰减产的水稻根系中过氧化物酶的活性增加,所以过氧化物酶可作为组织老化的一种生理指标。此外,过氧化物同工酶在遗传育种中的重要作用也正在受到重视. 催化从底物移去电子,并转给过氧化氢反应。 即:供体+H2O2→氧化的供体+2H2O,是一种血红素蛋白(hemoprotein)。 如过氧化氢酶便是过氧化物酶的一种。过氧化氢酶可与葡萄糖氧化酶配合使用,脱除蛋清中的葡萄糖,代替了传统的自然发酵的方法,从而提高产品质量,缩短生产周期。 在医学上,也可作为工具酶,用于检验尿糖和血糖。 现代医学上认为机体衰老与氧化有关,例如染色体、酶等的氧化。所以,一些有还原性功能的物质可以在某种程度上抗衰老,如过氧化物酶体,维生素C、E也有抗衰老作用。

酶法合成阿莫西林原理

酶法合成阿莫西林介绍 β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。 酶法产品主要有三大特点: 一是产品含量稳定、变化小,可降低制剂在有效期内的检测风险,并且杂质低,降解速度慢,对制剂的安全性,尤其是特殊制剂的稳定性尤为重要。 二是酶法产品生产批量能够达到化学法产品的2~3倍,这既能够大幅度节省制剂生产商的检验成本,粗略估算原料检测成本能够节约人民币9元/kg;同时,也便于物流、仓储和生产管理。 三是酶法产品是通过生物酶一步到位生产而得,以纯净水为介质,不使用传统化学工艺中的特殊化工原料,有机溶剂的使用量大幅度减少90%,废水排放减少80%,品质更纯净。 1 青霉素酰化酶的发展 青霉素酰化酶是从微生物或其代谢产物中发现的一类具有特定活性的蛋白质。能够产生青霉素酰化酶的微生物广泛分布于细菌、放线菌、真菌和酵母中,如:醋酸杆菌、假单胞菌、粪产碱菌、黄单胞菌、产气单胞菌、大肠杆菌、芽孢杆菌、枝状杆菌、克氏梭菌( Kluyvera) 等,其中常用的有巴氏醋酸杆菌、粪产碱

过氧化物酶体Peroxisome

第四节过氧化物酶体(Peroxisome) 1954年,Rhodin在研究大鼠肾小管上皮细胞时发现一种膜结合的颗粒,直径约为0.5~1.0μm。由于不知道这种颗粒的功能,将它称为微体(microbody)。微体有两种主要类型∶过氧化物酶体和乙醛酸循环体(glyoxysomes),后者只在植物中发现。 一、过氧化物酶体的形态结构和化学组成 过氧化物酶体的形态、大小多样。多为圆形或卵圆形,直径0.01~0.15nm。常含有类核体(类晶体)结构,为尿酸氧化酶,有些含有边缘板,与形态有关(图3-2-7)。 图3-2-7动物细胞中的过氧化物酶体 过氧化物酶体含有丰富的酶类,目前已知的有40余种,主要是氧化酶(oxidase)、过氧化氢酶(catalase)和过氧化物酶。氧化酶作用于不同的底物,其共同特征是氧化底物的同时,将氧还原成过氧化氢:RH2 + O2→ R + H2O2。过氧化氢酶是过氧化物酶体的标志酶,它的作用是使过氧化氢还原成水: 2H2O2→ O2 + 2H2O。过氧化物酶类仅存在于血细胞等少数细胞。 二、过氧化物酶体的功能 1、使毒性物质失活 这种作用是过氧化氢酶利用过氧化氢氧化各种底物,如酚、甲酸、甲醛和乙醇等,氧化的结果使这些有毒性的物质变成无毒性的物质,同时也使H2O2进一步转变成无毒的H2O。这种解毒作用对于肝、肾特别重要,例如人们饮入的乙醇几乎有一半是以这种方式被氧化成乙醛的,从而解除了乙醇对细胞的毒性作用。 2、对氧浓度的调节作用 过氧化物酶体与线粒体对氧的敏感性是不一样的,线粒体氧化所需的最佳氧浓度为2%左右,增加氧浓度,并不提高线粒体的氧化能力。过氧化物酶体的氧化率是随氧张力增强而成正比地提高(图3-2-8)。因此,在低浓度氧的条件下,线粒体利用氧的能力比过氧化物酶体强,但在高浓度氧的情况下,过氧化物酶体的氧化反应占主导地位,这种特性使过氧化物酶体具有使细胞免受高浓度氧的毒性作用。

髓过氧化物酶MPO的临床应用

髓过氧化物酶指数在57例急性冠状动脉综合征患者的临床应用 髓过氧化物酶(MPO是由中性粒细胞、单核细胞和某些组织的巨噬细胞分泌的含血红素辅基的血红素蛋白酶,是血红素过氧化物酶超家族成员之一。分子量为150KDa。MPO基因位于人第17号染色体,其编码蛋白翻译修饰后形成2条轻链和2条重链,构成四聚体糖基化蛋白。在早期由北京协和洛克和美国克利夫兰医院共同研究发现出来,它具有早期预警和提前筛查心脑血管疾病一个标记物。另一方面血液中95%的MPO来源于多形核白细胞。尽早明确急性冠状动脉综合征(acute coronary syndrome,ACS的诊断、危险分层及正确地评估个体近期发生ACS的危险性,对尽早干预治疗ACS至关重要。有研究表明,血浆髓过氧化物酶(myeloperoxidase,MP0是早期诊断ACS的重要指标,与心肌肌钙蛋白I(cardiac troponin I,cTnI联合应用更能增加ACS诊断的灵敏度[1]。尤其是当cTnI正常时,血浆MPO升高可预测心脏事件的发生[2]。但血浆MPO检测方法繁琐,目前无法自动化,临床应用受到限制。Unionluck全自动血细胞分析仪是一种基于流式细胞分析原

理的仪器,现在广泛应用于大中型医院实验室,在计数全血细胞的同时可根据细胞内MPO染色的情况得出中性粒细胞过氧化物酶活性指数(myeloperoxidase index,MPXI,用于评价炎症状况和白血病[3-4]。现将本院分析MPXI在57例ACS患者的临床应用报道如下。 1资料与方法 1.1一股资料选择2011年5~8月本院收治的ACS患者57例。其中,不稳定型心绞痛(UAP20例为UAP组,其中,男12例,女8例,年龄(70.00±10.10岁。非ST段抬高心肌梗死(NSTEMI20例为NSTEMI组,其中,男12例,女8例,年龄(67.00±18.10岁。ST段抬高型心肌梗死(STEMI17例为STEMI组,其中,男8例,女9例,年龄 (69.90±15.20岁。选取同期本院体检中心健康体检者20例为对照组,其中,男10例,女10例,年龄(63.3±3.0岁。根据病史和辅助检查,ACS的临床诊断标准参照美国心脏病学会(美国心脏病协会制订的标准[5]。排除标准:(1近期罹患感染性疾病或慢性炎症疾病;(2严重血液性疾病;(3骨髓移植术;(4结缔组织病和风湿病;(5应用炎症抑制药物如非固醇类消炎镇痛药、类固醇类药物等;(6创伤、肿瘤;(7严重肝肾功能不全。4组年龄、性别等方面比较差异无统计学意义,具有可比性。

(转化率)酶法合成头孢氨苄工艺研究

. 516 . 收稿日期:2012-08-10 基金项目:国家863计划(2012AA021204)。 作者简介:王艳艳,女,生于1978年,学士,工程师,主要从事生物酶的制备和应用,E-mail: wyycspc@https://www.doczj.com/doc/236978189.html, 文章编号:1001-8689(2013)07-0516-04 酶法合成头孢氨苄工艺研究 王艳艳 袁国强 朱科 王进贤 (石药集团中诺药业(石家庄)有限公司,河北省抗生素工程技术研究中心,石家庄 050041) 摘要:目的 酶法合成氨苄西林工艺优化并回收套用母液中的母核。方法 采用酶催化法,以7-氨基-3-去乙酰氧基头孢烷酸(7-Amino-3-methyl-3-cephem-4-carboxylic acid , 7-ADCA) 为母核,苯甘氨酸甲酯(D-phenylglycine methyl ester, PGM) 为酰基供体,在水相中用固定化青霉素酰化酶(Penicillin Gacylase, PGA)催化合成头孢氨苄(Cephalexin);对投酶量、侧链与底物投料比、反应温度、反应pH 、反应时间及母液中7-ADCA 回收套用等条件进行优化,考察头孢氨苄摩尔收率及产品质量。结果 工艺优化后头孢氨苄摩尔收率85%以上,套用母液中回收的7-ADCA 后头孢氨苄摩尔收率91%以上,高于目前化学法的收率(89%),产品质量合格。结论 酶法合成头孢氨苄工艺反应条件温和,收率高,排放废水中仅含有一些简单的无机盐,对环保无压力,属于绿色合成工艺。 关键词:青霉素G 酰化酶;头孢氨苄;7-ADCA 中图分类号:R978.1+1 文献标识码:A Study on preparation of cephalexin by enzymatic method Wang Yan-yan, Yuan Guo-qiang, Zhu Ke and Wang Jin-xian (Shijiazhuang Pharm.Group Hebei Zhongnuo Pharmaceutical Co., LTD, Hebei Province Antibiotic Engineering Technology Research Center, Shijiazhuang 050041) Abstract Objective To study the process optimization of cephalexin by enzymatic synthesis and recycling the nucleus in the mother liquid. Method Using the enzymatic method, 7-amino-3-methyl-3-cephem-4-carboxylic acid as the nucleus, D-phenylglycine methyl ester as the acyl donor, in the aqueous phase with immobilized penicillin G acylase catalyzed synthesis of cephalexin; temperature, pH, side chain and substrate feed ratio, investment conditions, Such as the amount of enzyme, reaction time and recycling the nucleus in the mother liquid was optimized, examining the yield and quality of the products. Result The molar yield of cephalexin was 85% after process optimization, and the molar yield of cephalexin was 91% after mother liquor was recycled, it was higher than the chenmical method(89%), and product quality was quali ? ed. Conclusion The reaction conditions of enzymatic cephalexin was mild, the yield was higher, waste water of reaction contained only some simple inorganic salt and it decreased the environmental pressure, which belonged to the green synthesis process. Key words Penicillin G acylase; Cephalexin; 7-ADCA 头孢氨苄是广谱抗生素,通过抑制细胞壁的合成,达到杀菌作用,是目前临床使用量较大的一个半合成头孢菌素,是头孢类抗生素中的一个主要品种。 头孢氨苄的传统合成方法是把母核和侧链经过 化学方法结合而得到头孢氨苄[1-2],化学合成过程经过混酐、缩合、水解和结晶等工序,由于需要基团保护、工艺路线较长,工序中用到吡啶、特戊酰氯、N, N-二甲基甲酰胺(DMF)β-萘酚等毒性很大的 中国抗生素杂志2013年7月第38卷第7期 DOI:10.13461/https://www.doczj.com/doc/236978189.html,ki.cja.005215

线粒体与过氧化物酶体

1. 线粒体(mi tochondri on) 线粒体是1850年发现的,1898年命名。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂"(power plant)之称。另外,线粒体有自身的DNA和遗传体系, 但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。 线粒体的形状多种多样, 一般呈线状,也有粒状或短线状。线粒体的直径一般在0.5~1.0 μm, 在长度上变化很大, 一般为1.5~3μm, 长的可达10μm ,人的成纤维细胞的线粒体则更长,可达40μm。不同组织在不同条件下有时会出现体积异常膨大的线粒体, 称为巨型线粒体(megamitochondria) 在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外, 在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。 2. 外膜(o ute r membrane) 包围在线粒体外面的一层单位膜结构。厚6nm, 平整光滑, 上面有较大的孔蛋白, 可允许相对分子质量在5kDa左右的分子通过。外膜上还有一些合成脂的酶以及将脂转变成可进一步在基质中代谢的酶。外膜的标志酶是单胺氧化酶。 3. 内膜(inner memb rane) 位于外膜内层的一层单位膜结构, 厚约6nm。内膜对物质的通透性很低, 只有不带电的小分子物质才能通过。内膜向内折褶形成许多嵴, 大大增加了内膜的表面积。内膜含有三类功能性蛋白:①呼吸链中进行氧化反应的酶; ②ATP合成酶复合物; ③一些特殊的运输蛋白, 调节基质中代谢代谢物的输出和输入。内膜的标志酶是细胞色素氧化酶。 4. 线粒体膜间隙(in ter memb rane space) 线粒体内膜和外膜之间的间隙, 约6~8nm, 其中充满无定形的液体, 含有可溶性的酶、底物和辅助因子。膜间隙的标志酶是腺苷酸激酶。 5. 线粒体基质( ma tr ix) 内膜和嵴包围着的线粒体内部空间, 含有很多蛋白质和脂类,催化三羧酸循环中脂肪酸和丙酮酸氧化的酶类, 也都存在于基质中。此外, 还含有线粒体DNA、线粒体核糖体、tRNAs、rRNAs以及线粒体基因表达的各种酶。基质中的标志酶是苹果酸脱氢酶。 6. 嵴(c ris tae)

过氧化物酶体增殖物激活受体研究的新进展_刘美莲

(niacin),纤维酸类,雌二醇,他汀类。 烟酸是最常用最有效的药物,其代表药物为N-i aspan,可抑制肝脏对Apo -AI 的清除,促进C H 的逆转运,因此能提高血HDL -C H (25%~30%),Apo -AI,HDL2,HDL3水平,降低TG 及LDL,此药安全性好,副作用少,能够被患者较好耐受,也适用于II 型糖尿病患者。 纤维酸主要通过促进Apo -AI,AII 基因表达来提高血浆HDL 浓度;同时,它还可以减轻静脉壁炎症反应,抑制血栓形成。临床实践表明gemfibrozil,bezafibrate 及fenofibrate 可以有效缓解高脂血症及II 型糖尿病患者动脉硬化进展,gemfibrozil 尤其适用于低HDL 正常TG 及LDL 患者 [14] 。 雌二醇促进Apo -AI 基因的转录,因而刺激Apo -AI 的合成,故理论上其与烟酸、纤维酸合用效果更 好,但目前尚未用之于临床。 他汀类(Lovastatin,Pravastatin 及Simvastatin)已广泛用于治疗高脂血症,但提高HDL 效果不如前述药物,因此,临床提倡与前述药物联合应用[15]。4.3 基因疗法 将人Apo -AI,Apo -AIV,Apo -E,LC AT,LPL,SR -BI 基因注入转基因小鼠,可使HDL -C 浓度明显增高,缓解高脂血症;导入CETP 的反义寡聚核苷酸(ODNS),可通过降低LDL 及VLDL 、增高HDL -C 水平,对AS 的发生产生抑制作用。应用基因 疗法提高HDL 治疗高脂血症将是本世纪重点研究课题,而且将由动物实验过度到临床[16,17]。 参 考 文 献 01 Colvi n PL,Parks J S.Curr Opin Lipidol,1999,10(4):309-314.02 Kerry -Anne R,Moira AC,Philip J.Atherosclerosi s,1999,145(2):227-238. 03 Phillips MC,Gillotte KL,Haynes MP et al .Atherosclerosis,1998,137: 13-17. 04 Silver D L,Jiang XC,Arai T,et al .Ann NY Acad Sci,2000,902:103-111. 05 Moes trup SK,Kozyraki R.Curr Opin Lipi dol,2000,11(2):133-140.06 Kas hyap ML.Am J Cardiol,1998,82:42-48. 07 Hargruve G M ,Junc o A,Wong NC.J Mol Endocrinol,1999,22(2):103-111. 08 Chen Hua,Yu Qing -Sheng,Guo Zhao -Gui,et al .Ac ta Physi ol Scand, 2000,52(1).81-84. 09 Boden WE,Pearson TA.Am J Cardiol,2000,85(5):645-650.10 Saffer RS,Cornell MO.Pos tgrad Med,2000,108(7):87-90.11 Bowen PH,Guyton JR.Curr Atheroscler Rep,2000,2(1):58-63.12 De Lorimier AA.Am J Surg,2000,180(5):357-361. 13 Tavintharan S,Kashyap ML.Curr Atheroscler Rep,2001,3(1):74-82.14 Fruchart JC,Staels B,Duriez P,et al .Curr Atheroscler Rep,2001,3 (1):83-92. 15 Stei n EA.Curr Atheroscler Rep,2000,2(1):11-13. 16 Rader DJ,Tie tge UJ.Curr Atheroscler Rep,1999,1(1):58-69.17 Ka washiri M,Maugeais C,Rader DJ,e t al .Curr Atheroscler Rep, 2000,2(5):363-372. 过氧化物酶体增殖物激活受体研究的新进展X 刘美莲 综述 宋惠萍 审校 (中南大学湘雅医学院生物化学教研室,湖南长沙410078) 摘要:过氧化物酶体增殖物激活受体(PPARs)是一种核内受体转录因子,具有多种生物学效应。除能调节脂肪分化和脂代谢外,PPARs,尤其是PPAR C 还能调控细胞因子生成,增强机体对胰岛素的敏感性,具有调节体内糖平衡,控制炎症形成和影响肿瘤生长等作用。 关键词:过氧化物酶体增殖物激活受体(PPARs); PPARs 的配基; 微体; 脂质过氧化作用; PPARr 中图分类号:R34 文献标识码:A 文章编号:1001-1773(2001)05-0413-03 过氧化物酶体增殖物激活受体(PPARs)是调节目标基因表达的核内受体转录因子超家族成员[1]。1990年,PPARs 作为过氧化物酶体增殖的关键分子第一次被发现[2],因具有由过氧化物酶体增殖物激 活而得名。PPARs 具有多种生物学效应,可促进脂肪细胞分化和脂肪生成,增强机体对胰岛素的敏感性[3] ,调节体内糖平衡,抑制炎症因子生成及炎症形成,影响肿瘤生长,对心血管产生保护效应[4]。 413 X 收稿日期:2000-12-06 修回日期:2001-05-09 作者简介:刘美莲(1971-),女,湖南人,中南大学湘雅医学院生化教研室讲师,博士,从事糖尿病及并发症的发病机制方面的研究。 第21卷第5期2001年10月 国外医学#生理、病理科学与临床分册 Foreign M edical Sci ences #Sec tion of Pathophysi ology and Clinical M edici ne Vol.21 No.5 Oct. 2001

谷胱甘肽化学与酶法合成

谷胱甘肽化学法和酶法合成 1 化学性质 谷胱甘肽(glutathione,GSH)是由谷氨酸、半胱氨酸和甘氨酸结合而成的三肽,半胱氨酸上的巯基为其活性基团(故谷胱甘肽常简写为G-SH)分子式为C10H17N3O6S,分子量为307.32348,熔点为189~193℃,晶体呈无色透明细长拉状,等电点为5.93。GSH有还原型(G-SH)和氧化型(G-S-S-G)两种形式,在生理条件下以还原型GSH占绝大多数。谷胱甘肽还原酶催化两型间的互变。该酶的辅酶为磷酸糖旁路代谢提供的NADPH。 图1 GSH的结构式 2 药理作用 GSH可促进糖、脂肪及蛋白质代谢,加速自由基排泄,保护肝脏的合成、解毒、灭活激素等功能。 3 谷胱甘肽的生产方法 1888年,GSH首先从酵母中分离出来。日本1983年进行了含量较多的GSH 酵母的生产,其后又研究了GSH提取、分离技术及分析检测方法。目前国外实现了GSH规模生产。世界主要的氨基酸制造商Kyowa,Aji-nomoto和Degussa 等都相继投巨资于氨基酸的研究与开发,仅Kyowa 1998年氨基酸的研究与开发就耗费达1.9亿美元,而GSH是其重点之一,Kyowa目前是GSH主要的供应商。目前GSH的主要生产方法有:萃取法、发酵法、酶法和化学合成法。 3.1萃取法 萃取法主要是通过萃取和沉淀的方法从GSH含量比较高的动植物组织中将GSH分离提取的一种方法,GSH的早期生产都是采用萃取法,是生产GSH的经典方法,也是发酵法生产流程中的下游过程基础。其工艺路线如下图:

图2 GSH发酵法工艺路线图 该方法的不足:由于GSH在组织中含量极低,可用原料少,制备的纯度和收率都不高,故在实际生产中应用不广泛。 3.2酶法 在酶催化合成GSH中,几种关键的化合物和条件包括:GS HⅠ和GS HⅡ、氨基酸原料(L-谷氨酸、甘氨酸和L-半胱氨酸)、ATP、保持GS HⅠ和GSHⅡ活性所必需的辅因子(Mg2+)和一个适当的pH值环境。合成中,需求大量ATP,给GSH的工业化生产带来麻烦,大大提高了GSH生物合成的成本,所以只能寻求一个ATP生成系统来藕联ATP消耗系统。两种系统同在一种生物体内的称为自藕联系统,在多种生物体内的称为共藕联系统。自藕联系统研究的比较少,因为很难找到一种生物体同时含有ATP生成系统和ATP消耗系统。 Murata等人发现酒酵解菌(s.cerevisae)中的葡萄糖是最简单的ATP生产系统之一,可以提供足量的ATP用来GSH的生物合成。酶催化法合成GSH的浓度可以达到99/l,但是所用的氨基酸原料比较贵,提高了GSH生物合成的成本。 3.3发酵法 生物发酵法是利用廉价的糖作为原料,利用微生物体内物质的代谢途径来合成GSH的方法。由于发酵法所使用的细菌或酵母容易培养,加之生产方法及工艺的不断改进和完善,因此微生物发酵法已成为目前GSH工业化生产的最普遍方法。在工业上,生物发酵法一般都选用s.eerevisae和Candidautilis为原料进行发酵。 一般情况下,微生物细胞中GSH含量不高,仅为细胞干重的0.1~1.0%。过高含量的GSH容易破坏体内业已平衡的氧化还原环境,GSH是胞内产物,实际生产过程中需要进行提取,较低的含量无疑会大大提高生产成本。因此,发酵法生产GSH的关键问题在于如何提高细胞密度以及细胞内的GSH含量。二者的有机结合将有利于GSH产量的大幅度提高。

生物酶法制备生物柴油研究综述.

生物酶法制备生物柴油研究综述 分数低于0.0005 %,十六烷值高达73.6,在0#柴油中添加了 20%的生物柴油后,尾气排放中 CO 降低了28%,未燃烧的碳氢化合物降低了 36 %,NOx降低了24 %,全负荷烟度下降幅度达到 0.2~0.9 Rb。 蔡志强等 [10]探究了固定化脂肪酶分别催化酯化与醇解两种方法合成生物柴油的最佳工艺条件。 研究发 现,酯化工艺的最佳工艺条件是:2%固定化脂肪酶,温度为30 ℃,油酸∶甲醇=1∶1(摩尔比),分 2 次等摩尔流加甲醇,反应时间 24 h,或分 3 次等摩尔流加甲醇,反应时间 36 h,酯化率都可以达到 95%以上;醇解的最佳工艺条件是:4%固定化脂肪酶,温度为30 ℃,菜籽油∶甲醇=1∶3(摩尔比),分 3 次等摩尔流加甲醇,反应时间为 48 h,酯化率可以达到 95%以上,去除下层甘油后,菜籽油甲酯纯度可达 98%。 安永磊等 [11]利用固定化脂肪酶催化餐饮废油与乙醇反应制备生物柴油。通过实验获得了酯化反应的最佳条件:反应温度47 ℃,有机溶剂为正己烷,醇油比3∶1,5 次投加乙醇,酶用量为 0.3 g,反应时间 32 h 时,生物柴油产率可达 81%。 徐桂转等 [12]利用固定化脂肪酶 Novozym 435,在无有机溶剂存在的情况下,催化菜籽油与甲醇酯交换反应制取生物柴油。研究得到了菜籽油间歇酯交换反应的适宜工艺条件:转速200 r/min,反应温度:50 ℃,甲醇∶菜籽油=1∶5 (摩尔比),酶用量 10%(与菜籽油的质量比)。 反应分两次加入等量甲醇,即先加入总量一半的甲醇,反应 10 h(菜籽油的酯交换率达到 47%);再加入剩下全部甲醇,反应26 h(酯交换率达到80%)。 唐凤仙等 [13]以戊二醛交联壳聚糖固定的 A.niger Li-38脂肪酶催化棉籽毛油 合成生物柴油取得了不错的效果。 研究发现该固定化酶的贮藏稳定性较好,室温放置 12 d, 酶活性仍能保持 80%以上。固定化酶在30~70 ℃,pH=5.5~6.5 之间较稳定,其热稳定性和 pH 稳定性较游离酶有所提高。固定化酶可重复使用 7 次,转化率保持在80%以上。 洪鲲等 [14]研究了两种脂酶顺序催化制备生物柴油的生产工艺。结果表明:固相化细菌 A007 脂酶催化甘油三酯(TAG)水解的最适条件为:含水量 40%、脂酶用量100 U/g、反应温度30 ℃、反应时间 12 h,此时 TAG水解率和游离脂肪酸(FFA)含量分别为 93.3%和90.1%;在催化 FFA 甲酯化过程中,固相 化 Candidaantarctica 脂酶在FFA∶甲醇=1∶5 时可达到最佳效果;在第二次甲酯化时,加入甘油有利于提高FFA 酯化率,经过 24 h 反应,可将总酯化率

酶法合成研究进展

β-内酰胺抗生素的酶法合成研究进展β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由 于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过 30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。 全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。 我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。现将近年来β-内酰胺抗生素合成研究、产品的分离纯化、酶反应器研究进行概述。 1 现状 青霉素中如氨苄西林、阿莫西林等,头孢菌素中如头孢氨苄、头孢羟氨苄、头孢克洛、头孢丙烯、头孢唑林等,这些产品有化学半合成法(简称化学法)和酶半合成法(简称酶法)。化学法是将母核与侧链以化学法缩合,现在世界上绝大多数生产这些产品的企业使用的是化学法,常用的方法有酰氯法、混合酸酐法、Vilsmeier法及活性醋法。酶法则是将母核与侧链通过酶催化缩合。化学法需要较多的有机化学原料(如溶剂二氯甲烷、吡啶、二甲苯胺),反应条件苛刻,如需无水条件,反应温度低(有的需低至零下90℃),反应步骤多,产生大量的三废需处理。 这些产品酶法合成技术自1969年开始报道,但由于当时酶的性能较差,分离纯化技术也一直未能很好的解决,因此多年来酶法合成技术仍处于研究和试生产阶段。近年来,随着生物工程技术和固定化酶技术的快速发展,酶法制备β-内酰胺抗生素的技术也不断得到提高。 2 酶催化合成研究进展 2.1 酶催化酰胺化缩合反应 酶法制备β-内酰胺抗生素酰胺化缩合反应的研究涉及的品种有氨苄西林、阿莫西林、头孢氨苄、头孢拉定、头孢羟氨苄、头孢唑林、头孢丙烯、头孢克洛等。 酶催化缩合反应类型一般有两类,一类为热力学控制的酶催化缩合反应,另一类为动力学控制的酶催化缩合反应。 (1)热力学控制的酶催化缩合反应 其特点是不必活化酰基配体,废物产生少。Schroen等研究了不同pH、溶剂浓度和温度条件下,热力学控制的头孢氨苄酶法合成。pH 5-8,酶的稳定性

相关主题
文本预览
相关文档 最新文档